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Abstract

We analyze the effects of retaliation on optimal contracts in a hierarchy consisting of a princi-
pal, a monitor, and an agent. With probability m, the monitor observes a signal about the agent’s
effort and decides whether to reveal it to the principal. With probability (1−m), the monitor is
uninformed. The agent retaliates against the monitor and the principal whenever the disclosed signal
reduces his compensation from the no-disclosure benchmark. We show that the principal’s opti-
mal contracting problem can be divided into two steps: first, an information acquisition stage. The
principal chooses how much retaliation to tolerate, and more retaliation generates more informative
signals (in the Blackwell sense) about the agent’s effort. Second, given the information acquired, the
principal designs the optimal payment schemes, which pool moderately (potentially all) bad agent’s
performances with the uninformative signal realization. The empirical literature documents that su-
pervisors are reluctant to provide poor ratings and that performance reports are often inflated and
compressed. We show that such a pattern can stem from retaliation concerns.

1 Introduction

When designing incentive schemes, firms often rely on supervisors to monitor and evaluate their agents.
However, the supervisor might not reveal all the information she possesses about her subordinate’s ac-
tions. There is substantial empirical evidence that supervisors are reluctant to disclose their subordinates’
poor performance1. This paper studies optimal contracts when disclosing poor performance is costly to
the supervisor and/or the organization.

The relationship between supervisor-subordinate is not without conflict. Often, agents who receive
bad evaluations retaliate against supervisors and their organizations. The retaliation can take several
forms, such as: talking back to the supervisor, spreading rumors, intentionally working slower, or sab-
otaging production. For instance, Stud Terkel - in his classic book Working (1972) - interviews Mike,
a steelworker from Cicero, Illinois (Terkel (1972), p. xxxi-xxxv). Mike describes his conflicts with
his foreman and how he retaliates by ”not even try[ing] to think ”, by refusing to say ”Yes, sir” to the

1See Bol (2011) for supporting empirical evidence.
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boss, and by occasionally ”putting a dent in [the steel]” 2. Sprouse (1992) collects several examples
of employee retaliatory behavior in many different contexts, that range from jamming machinery in an
industrial plant to a waitress serving spoiled food to ruin her employer’s business. Moreover, extensive
literature in accounting, psychology, and management examines retaliation in the workplace. Greenberg
(1990) documents employee theft doubling after a pay decrease of 15%. In a sample of 240 manu-
facturing employees, Skarlicki and Folger (1997) documents a variety of retaliatory behaviors such as
”gossiped about his or her boss”, ”left an unnecessary mess”, and ”talked back to his or her boss”, among
others3.

In this article, we study the effect of an agent’s retaliatory behavior on optimal incentive contracts.
We characterize optimal contracts in a hierarchy consisting of a principal, a monitor, and an agent. The
monitor privately observes a verifiable signal about the agent’s performance with probability m and
decides whether or not to disclose the information to the principal. The monitor is uninformed with
probability (1−m) and has no evidence to disclose. After receiving his compensation, the agent decides
whether or not to retaliate against the monitor and the principal. We assume the agent retaliates whenever
his payment is less than he would have been paid if no evidence was revealed.

We show that the optimal agent’s wage schedule can be described by a reference payment in case
of no disclosure and punishments/rewards depending on the disclosed performance. Depending on the
magnitude of the retaliation losses, the contract offered to the agent takes one of two possible forms:
the carrot-only contract, in which the agent is never paid below the reference value, or the stick-and-
carrot contract, in which the agent might be paid above or below the reference value. Moreover, this
reference value is endogenously determined and reflects the informational content of no-disclosure.
That is, the less frequently the principal uses punishments, the more no disclosure is associated with
low performance. The stronger the association between no-disclosure and low performance (hence, low
effort), the smaller the optimal payment under no-disclosure.

Classic principal-agent models usually assume the signal structure observed by the principal — condi-
tional on the agent’s effort — to be exogenous. However, when there is the possibility of retaliation, the
information the principal observes depends on what signal realizations the monitor is willing to reveal.
For instance, the monitor may refrain from disclosing information that reduces the agent’s compensation
to avoid retaliation losses. In this case, the evidence the principal observes about the agent’s action de-
pends directly on the compensation scheme in place. When designing incentive schemes, the principal
must not only choose the compensation plan for a given information structure but also consider what
information is revealed for each chosen compensation scheme.

We find the optimal contracts in such a setting using three main steps: first, we show that retaliation
must take a cutoff form. That is, if the evidence revealed is low enough, the agent retaliates. Second, we
fix an amount of retaliation the principal is willing to tolerate and solve for the optimal compensation
scheme. Third, we solve for the optimal amount of retaliation. On the one hand, the more retaliation the
principal tolerates, the more information about the agent’s performance she can use, and the cheapest it

2Both examples are also described by Akerlof and Kranton (2005).
3evidence of employee retaliation can be found at Greenberg (1990), Aquino and Douglas (2003), Krueger and Mas (2004),

Mas (2008), Charness and Levine (2010), and Coviello et al. (2022).
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is to compensate the agent for effort.

On the other hand, dealing with retaliation is costly. Either by directly suffering retaliatory dam-
ages and/or by compensating the monitor for her retaliation losses. We then show that the principal’s
choice of the retaliation cutoff is formally equivalent to an information acquisition problem. If the prin-
cipal tolerates more retaliation — that is, if she implements a higher retaliation cutoff — she observes
more informative signals about the agent’s effort. However, tolerating more retaliation brings additional
retaliatory costs.

The main insight is that the principal faces a trade-off between using more information and punishing
poor performances but enduring retaliation losses or providing only positive incentives but wasting in-
formation. The stick-and-carrot contract allows the principal to use more information about the agent’s
effort, while the carrot-only contract avoids retaliation. In order to build intuition, it is helpful to con-
sider two extreme situations. The first is the case where the losses caused by the agent’s retaliation
are negligible. In such a case, the principal does not care about retaliation and uses all information
available. In particular, she rewards good performances and punishes bad ones. On the other extreme,
when the retaliation costs are sufficiently high, the principal prefers to eliminate retaliatory behavior
completely. Hence, she provides incentives only through rewards and disregards any information about
bad performance.

Beyond the use of carrots and sticks, we show that the optimal mechanism can also be implemented
by not providing incentives for the monitors to reveal their information fully. Moreover, we show that
the optimal mechanism is consistent with allowing two performance review patterns extensively docu-
mented by the empirical literature and often perceived as sub-optimal: leniency and centrality. Leniency
refers to the fact that managers often do not report their employees’ low performances, while centrality
refers to the observation that payments are less dispersed than realized performances. By letting man-
agers hide moderately (potentially all) bad performances, the principal mitigates the costs associated
with retaliation while generating lenient and centrally concentrated performance reviews.

Most of the analysis is conducted while keeping the monitoring effort as an exogenous variable. In
Section 5, we extend the analysis to the case in which monitoring is costly to the monitor. In this case,
the principal must also incentivize the monitor to acquire evidence about the agent’s performance. In
the optimal mechanism, the principal always requires the monitor to reveal all the information obtained
and provides the monitor a bonus when evidence is disclosed. However, not all evidence is revealed to
the agent. As with free monitoring, the principal hides moderately (potentially all) bad performances
from the agent. Such a mechanism is consistent with the simultaneous use of two types of performance
reports: an internal private one, observed only by the monitor and the principal, and a public one, also
disclosed to the agent. Using two separate reports allows the principal to incentivize monitoring without
necessarily generating more retaliation.
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1.1 Related literature

This paper contributes to the literature on moral hazard with endogenous monitoring, such as Kvaløy and
Olsen (2009), Georgiadis and Szentes (2020), and Li and Yang (2020). In this literature, before choosing
the contracts, the principal acquires a monitoring technology at a given ex-ante cost and chooses optimal
contracts given the information structure selected. In my paper, the monitoring costs are not determined
ex-ante and depend on the signal realization. Retaliation occurs only when the evidence disclosed by
the monitor reduces the agent’s payment. Hence, what retaliation costs and information structure arise
in equilibrium directly depends on the contracts.

As low signal realizations are helpful to the principal only if they generate low payments, and low
payments imply retaliation costs, this paper is also related to the literature on costly verification, e.g.,
Townsend (1979), Gale and Hellwig (1985), and Hart and Moore (1998). In these models, an investor
decides whether to verify the firm’s performance at a cost. However, the cost is paid upfront, inde-
pendently of the evidence realization. In our model, there is a cost only if the realized state generates
low payments. Hence, high state realizations are always revealed at the optimal contracts, while low
realizations are not.

A closely related article is that of Lang (2019), who studies the optimal use of subjective performance
evaluations under partial and costly verification. They assume that evaluations are subjective but that
the signal can be verified at a given cost. The agent demands a justification whenever he does not get
the highest payment, which prevents the principal from underreporting signals to save on payments. His
main finding is that the optimal contract pools high signal realizations to avoid such justification costs.
My model has two main differences from Lang (2019): first, the information is verifiable if revealed;
second, the one deciding whether or not to disclose is the monitor, who has no incentive to renege on
payments (or conceal high signals). As a result, the optimal contracts in my model feature the pooling
of low and intermediary signal realizations instead of high ones.

Another closely related strand of literature is the one on whistleblowing and retaliation, such as Chas-
sang and Padró i Miquel (2019). In their model, a monitor perfectly observes whether an agent has
committed a crime and decides whether to report it to the principal. The agent commits to a retaliation
strategy to incentivize the monitor to use her preferred report. Like my results, the principal limits how
much her response to the monitor’s reports reveals about the reports themselves to allow for information
transmission. However, there are two critical differences: first, the monitor is fully informed about a
binary action in their model. Hence there is no loss in restricting attention to binary reports. In my
model, the evidence observed by the monitor is not binary. Second, we allow the principal to control
incentives fully; hence she can compensate the monitor for the retaliation. Their analysis focuses on
cases where the principal cannot directly control the payoffs. Even with this additional tool, we show
that the principal still prefers to commit not to use some of the information to avoid retaliation costs.

Finally, the paper also relates to the literature on contracts as reference points pioneered by Hart and
Moore (2008). In my model, one can interpret the payment to the agent in the case of no disclosure as
a reference point and the retaliation cost incurred by the monitor as a psychological cost of disclosing
bad information about the agent’s performance. Signal realizations that generate a payment higher than
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the endogenously set reference point (the payment in the case of no disclosure) do not create retaliation
losses. In contrast, signal realizations associated with lower payments do. We provide a tractable way to
find the optimal contract with an endogenous reference point and relate it to an information acquisition
problem.

The rest of the article is organized as follows: Section 2 describes the model and analyzes a benchmark
case without retaliation. Section 3 introduces retaliation and characterizes optimal contracts. Section 4
reinterprets the optimal level of retaliation tolerated as an information acquisition problem. In Section
5, we introduce costly monitoring. Finally, Section 6 concludes.

2 Model

Consider a risk-neutral principal who hires a monitor (she) and an agent (he), both risk-averse. The
principal proposes contracts that specify payments to both employees conditional on a verifiable signal,
as described later. After signing contracts, the agent exerts effort a ∈ [0,1], which is unobservable by
the principal and the monitor. With probability m ∈ (0,1), the monitor observes the realization of a
verifiable signal denoted by x with support X = [x,x]. The monitor then decides whether or not to
disclose the realized signal4. With probability (1−m), the monitor is uninformed and has nothing to
disclose. The verifiable signal x is drawn from a cumulative distribution function P(·|a), that admits a
density given by

p(x|a) = ap1(x)+(1−a)p0(x),

where p0, p1 are densities strictly bounded away from zero and with support X . We define the score of
a signal s : X× [0,1]→ R as

s(x|a) :=
p1(x)− p0(x)

p(x|a)
.

We assume that s(·|a) is strictly increasing, bounded, and continuously differentiable. The score is a
strictly increasing transformation of the likelihood ratio of a signal and is a sufficient statistic in canonical
moral hazard problems (see Holmström (1979)).

The timing of the game is the following:

1. The principal offers contracts specifying two measurable functions: the monitor and the agent’s
payments wM,wA : X ∪{ /0}→ R. The symbol /0 denotes that no evidence was disclosed.

2. The agent and the monitor decide whether or not to accept the contracts. If either of them rejects,
the game ends, and they both get their respective outside option ūM and ūA.

3. If both contracts are accepted, the agent chooses effort a ∈ [0,1].

4. x is realized and the monitor observes the realization with probability m.

5. If informed, the monitor decides whether or not to disclose x.
4We denote random variables in bold font and typical realizations of the random variable in regular font.
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6. Payments are realized.

7. The agent observes his payment, and retaliation takes place.

The agent’s effort a ∈ [0,1] generates a disutility given by cA : [0,1]→ R+. The function cA is twice
continuously differentiable, strictly increasing, strictly convex, and cA(0) = 0. The agent is risk averse
with strictly increasing and strictly concave utility over income, denoted by the function uA :R→R with
a finite lower bound u < ūA

5. If the agent exerts effort a and gets a wage w his utility is uA(w)− cA(a).

The monitor privately observes the realization of the verifiable signal x with probability m. With
probability (1−m), she does not observe anything. The monitor then decides whether or not to disclose
the signal to the principal. If the monitor is uninformed, she has nothing to disclose. However, if
informed, she can hide the information and pretend to be uninformed. The monitor has preferences over
income and suffers a utility loss Lr ≥ 0 if retaliated against. If the monitor gets a wage w and is retaliated
against with probability r, then her payoff is uM(w)− rLR, where ur : R→ R is strictly increasing and
weakly concave.

The principal has a gross benefit from a given by B(a), where B is strictly increasing and weakly
concave. She is risk-neutral with respect to payments and incurs a cost cr ≥ 0 whenever the agent
retaliates. For a given effort level a, payments wA and wM, and retaliation probability r, the principal’s
payoff is

Π(a,wA,wM,r) = B(a)−wA−wM− rcr.

The principal commits to payments conditional on what she observes (disclosed signal or nothing).
The monitor — if informed — decides whether or not to reveal the signal. The agent chooses his effort
and, after observing his payment, whether or not to retaliate. We further assume that retaliation strictly
harms at least one of the two (principal or monitor). That is, max{cr,Lr}> 0.

2.1 Retaliation and Disclosure

We assume the agent retaliates whenever his payment under disclosure is smaller than without disclo-
sure. That is, whenever the monitor’s report reduces the agent’s payments, he retaliates. Given a payment
function wA : X ∪{ /0}→ R, an agent who received payment w, retaliates if and only if w < wA( /0). With
a slight abuse of notation, we write the retaliation strategy r(x) as a function of x. For a given contract
wA, r(x) = 1 if wA(x) < wA( /0) and zero otherwise. This retaliation form is assumed to keep the model
as simple as possible while still capturing the reciprocal nature of retaliation6.

An alternative interpretation of the model is that the monitor directly dislikes reducing the agent’s
payments. That is, instead of thinking about the retaliation as an action by the agent, one can assume
the monitor incurs a psychological cost whenever her report decreases the agent’s payment. In such an
interpretation, the parameters would satisfy Lr > 0 and cr = 0.

5The finite lower bound assures the existence of optimal contracts. See Moroni and Swinkels (2014) for a detailed argument.
6An alternative approach that generates the same results is to assume the agent can commit to a retaliation strategy.
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We denote the monitor’s strategy about whether or not to disclose the signal as d : X →{0,1}. Given
contracts and a given realization x, the monitor’s best response is to disclose the signal if her payoff is
higher under disclosure. That is,

d(x) = 1 if and only if uM(wM(x))− r(x)Lr ≥ uM(wM( /0)).

For given contracts, a disclosure strategy, and an effort level a, the agent’s expected utility is given by

UA(a,r,d,m) =
∫

X

{
[1−md(x)]uA(wA( /0))+md(x)uA(wA(x))

}
p(x|a)dx− c(a), (1)

while the monitor’s expected utility is

UM(a,r,d,m) =
∫

X

{
[1−md(x)]uM(wM( /0))+md(x)

[
uM(wM(x))−Lr(r(x)

]}
p(x|a)dx. (2)

2.2 Principal’s Problem

Following the Grossman and Hart (1983) approach, we study the principal’s problem of minimizing the
cost of implementing a given effort level a ∈ (0,1). By the revelation principle (Myerson (1982)), we
can, without loss, focus on minimizing expected payments and retaliation costs by choosing contracts,
recommending an effort level, a retaliation strategy, and a disclosure strategy such that monitor and
agent are willing to participate and follow the recommendations. That is, the principal’s problem can be
written as

min
wA,wM ,r,d

Ex

[
(1−md(x))(wA( /0)+wM( /0))+md(x)(wa(x)+wM(x)+ crr(x))

∣∣∣a] (3)

subject to
UA(a,r,d,m)≥ ūA, (IRA)

UM(a,r,d,m)≥ ūM, (IRM)

a ∈ argmax
â∈[0,1]

{
UA(â,r,d,m)

}
, (ICA)

[wA(x)−wA( /0)][1− r(x)]≥ 0 ∀x ∈ X , (ICr)

[uM(wM(x))−uM(wM( /0))− r(x)Lr]d(x)≥ 0 ∀x ∈ X , (ICd)

where (IRA) and (IRM) denote the usual participation constraints, (ICA) denotes the effort incentive
compatibility constraint, (ICd) assures the monitor is willing to follow the recommended disclosure
strategy, and (ICr) guarantees the recommended retaliation strategy is implemented.

The agent’s payment when no information is disclosed wA( /0) is an endogenous reference value deter-
mining when retaliation occurs. We refer to payments strictly below this reference as punishments (or
sticks) and to payments strictly above as rewards (or carrots). Using sticks generates retaliation, while
paying the reference value or using carrots does not.
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2.3 Preliminary analysis: a convenient change of variables

As is standard, it is convenient to work in the space of utilities instead of payments. Therefore, we make
the following change of variables

vA( /0) := uA(wA( /0)) and vA(x) := [uA(wA(x))−uA(wA( /0))]

vM( /0) := uM(wM( /0)) and vM(x) := [uM(wM(x))−uM(wM( /0))],

where vi( /0) represents the monetary utility from payments in case no evidence was revealed, and vi(x)
is the incremental utility (which might be negative) associated with signal x for each i ∈ {A,M}. The
monetary utility associated with no disclosure vA( /0) denotes the reference point determining whether
there is retaliation. Signal realizations with vA(x) > 0 are the ones associated with payments above the
reference value vA( /0) (the carrots) which do not generate retaliation. While signal realizations with
vA(x)< 0 generate lower payments (the stick) and are retaliated against.

We can then re-write the agent’s and monitor’s participation constraints as:

UA(a,r,d,m) =
∫

X

{
vA( /0)+mvA(x)d(x)

}
p(x|a)dx− c(a)≥ ūA, (IRA)

UM(a,r,d,m) =
∫

X

{
vM( /0)+mvM(x)d(x)−mr(x)d(x)Lr

}
p(x|a)dx≥ ūM. (IRM)

Note that for any mechanism, the agent’s payoff is strictly concave in the agent’s effort. Therefore,
effort incentive compatibility can be replaced by the first-order condition. That is, (IC′A) is equivalent to

m
∫

X
vA(x)d(x)s(x|a)p(x|a)dx = c′A(a). (IC′A)

Finally, let ϕi := u−1
i denote the inverse of ui. One can re-write the principal’s problem as

min
vA,vM ,r,d

∫
X

{
md(x)

[
ϕM
(
vM(x)+ vM( /0)

)
+ϕA

(
vA(x)+ vA( /0)

)
+ crr(x)

]
+(1−md(x))

[
ϕM
(
vM( /0)

)
+ϕA

(
vA( /0)

)]}
p(x|a)dx

(4)

subject to (IRA), (IRM), (IC′A), (ICM), (ICd), (ICr).

2.4 Harmless retaliation benchmark

The novel friction introduced in this model is the possibility of the agent inflicting damage on the prin-
cipal and the monitor by retaliating. It is helpful to revisit the case in which there is no retaliation or
equivalently when retaliation is harmless (Lr = cr = 0). First, note that paying a flat wage to the monitor
given by vM( /0) = uM and vM(x) = 0 for all x ∈ [x,x] is enough to assure she participates and is willing
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to disclose all the information she gets. The following standard moral hazard problem characterizes the
optimal agent’s compensation scheme:

min
vA

{
(1−m)ϕA

(
vA( /0)

)
+m

∫
X

ϕA
(
vA(x)+ vA( /0)

)
d(x)p(x|a)dx

}
(5)

subject to (IRA) and (IC′A).

The solution to this problem has the standard Holmström-Mirrlees form (see Holmström (1979) and
Mirrlees (1999)), for which the score s(·|a) is a sufficient statistic for the optimal contract. The optimal
agent’s compensation scheme denoted by v0

A : X ∪{ /0}→ R is given by

ϕ
′
A(v

0
A( /0)) = λ

0
A ,

ϕ
′
A(v

0
A( /0)+ v0

A(x)) = λ
0
A +µ

0
As(x|a),

where λ 0
A and µ0

A are the dual multipliers associated with (IRA) and (ICA) respectively. Moreover, given
the increasing score assumption, higher signal realizations are associated with higher payments. Be-
low we present a graphical illustration of the optimal agent’s compensation scheme. The dashed line
represents the payments in case of no-disclosure, and the solid line is the payment for each realization x.
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wA( /0)
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Figure 1: Harmless Retaliation Benchmark

There are a few important features of this benchmark to highlight. First, note that both rewards (pay-
ments above the no disclosure reference) and punishments (payments below the no disclosure reference)
are used. Second, note that the payment to the agent under no disclosure is the same as the payment
under the signal realization x0 that has s(x0|a) = 0. Moreover, all realizations below x0 are associated
with punishments and all above with rewards. The score of a signal realization is determined by how
often one observes such a realization under low versus high effort. Realizations with negative scores are
more likely to be realized under low effort levels, while positive ones occur more often for high effort
levels. One can interpret negative score signal realizations as bad and positive score realizations as good
ones. In the harmless retaliation benchmark, the principal punishes all bad realizations and rewards the
good ones.
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3 Harmful retaliation

We now reintroduce retaliation to the problem. That is, we proceed to analyze problem (4) assuming
that retaliation is harmful (max{cr,Lr}> 0). The approach to finding the optimal mechanism is divided
into a few steps: first, we characterize the monitor’s optimal compensation scheme as a function of the
retaliation strategy implemented. Second, we show that retaliation must take a cutoff form. The agent
retaliates only after a sufficiently low signal realization is revealed. Third, we find the cost-minimizing
agent’s contract for a given retaliation cutoff. Fourth, we find the optimal cutoff. We then contrast the
optimal mechanism with harmful retaliation with the harmless retaliation benchmark.

Define a mechanism as feasible if it satisfies all the imposed constraints.

Definition 1. We say a mechanism (vM,vA,r,d) is feasible if it satisfies (IRM), (IRA), (IC′A), (ICr) and
(ICd).

We then address the monitor’s disclosure decision and compensation scheme. The first observation is
that there is no loss of optimality in restricting attention to mechanisms that recommend the monitor to
disclose all observed signals.

Definition 2. A mechanism satisfies full disclosure if d(x) = 1 for all x ∈ X.

Lemma 1. There is no loss of optimality in restricting attention to full disclosure mechanisms.

Proof. In Appendix.

The principal can always replicate the monitor’s disclosure strategy directly on payments and imple-
ment full disclosure. Suppose that in a given mechanism (vM,vA,r,d) there is a set x̃ ⊂ X such that
d(x) = 0 for all x ∈ X̃ . It would be equivalent to recommend d̃(x) = 1 for all x, and change payments to
(ṽM, ṽA), with (ṽM(x), ṽA(x)) = (vM( /0),vA( /0)) for all x ∈ X̃ , and (ṽM(x), ṽA(x)) = (vM(x),vA(x)) other-
wise.

Knowing that the principal can, without loss, get full disclosure, we look for the cheapest monitor’s
payment function that implements full disclosure. It consists of paying the monitor her outside option
whenever the disclosed signal is such that she is not retaliated against and compensating her for the
retaliation loss whenever retaliation occurs.

Lemma 2. For any given triple (vM,vA,r), the cheapest monitor’s compensation that implements full
disclosure is given by vM(x) = r(x)Lr and vM( /0) = ūM.

Proof. In Appendix.

Lemmas 1 and 2 jointly characterize the optimal monitor’s compensation scheme for a given retal-
iation recommendation. The following section shows that such a recommendation must take a cutoff
form.
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3.1 Retaliation as a cutoff

Retaliation occurs when the agent gets paid below what he would have been paid if the signal were not
disclosed. We now show that in the optimal mechanism, it must be the case that the agent retaliates if
the disclosed signal is low enough and does not retaliate otherwise7.

Definition 3. A function g : X → [0,1] is a cutoff function if there exists x∗ ∈ X such that g(x) = 1 for
almost all x < x∗ and g(x) = 0 for almost all x > x∗.

Proposition 1. Take any arbitrary feasible full disclosure mechanism (vM,vA,r) such that r is not a
cutoff function. Then, there exists an alternative feasible full disclosure mechanism (ṽM, ṽA, r̃) with a
strictly lower implementation cost.

Proof. In Appendix.

Proposition 1 implies that the optimal mechanism must have a cutoff retaliation strategy recommen-
dation. If the agent retaliates after a given signal realization is disclosed, he must retaliate if any lower
signal is revealed. At first sight, the result might seem obvious; however, one must recall that retaliation
is directly determined by the payments after each signal realization, which is an endogenous object. The
proof is constructive: take an arbitrary feasible full disclosure mechanism such that r is not a cutoff
function. Then, construct a strict improvement by switching payments from higher signal realizations
with retaliation to lower realizations that did not generate retaliation while keeping the agent’s expected
utility the same. One can check that such a switch causes slackness in the effort incentive compatibility
constraint, which allows the principal to offer less steep incentives and decrease expected payments to
the agent.

From now on, we denote the recommended retaliation by a cutoff xr ∈ X . That is, r(x) = 1 if x < xr

and r(x) = 0 otherwise. We then denote mechanisms by a triple (vM,vA,xr). Our next step is to show
that there is no loss in restricting attention to cutoffs xr ≤ x0

8. That is, the principal would never use a
mechanism in which retaliation happens after good signal realizations.

Lemma 3. For any feasible full disclosure mechanism (vM,vA,xr) such that xr > x0, there exists an
alternative feasible full disclosure mechanism (ṽM, ṽA,x0) with lower implementation costs.

Proof. In Appendix.

In the harmless retaliation benchmark, signal realizations above x0 did not generate retaliation because
they had higher scores (and consequently payments) than the empty signal. There is no reason for the
principal to pay less for such realizations than for the empty signal, which implies that the retaliation
cutoff must be below x0.

7Note that we have not restricted the contracting space to increasing payments. Hence, the retaliation strategy assumed
does not directly imply that retaliation must take a cutoff form.

8Recall that x0 is such that s(x0|a) = 0.
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3.2 Optimal agent’s compensation for a given retaliation cutoff

Knowing that retaliation must take a cutoff form, we break the characterization of the optimal mecha-
nism into two steps. First, we fix a retaliation cutoff and find the agent’s contract that minimizes the
principal’s expected cost. Then, we look for the best retaliation cutoff. In Section 4, we provide an
information acquisition interpretation for this two-step procedure.

For a fix xr, Lemma 2 characterizes the monitor’s compensation scheme vM. Hence, we can write the
problem of minimizing the principal’s cost by choosing the agent’s contract vA as

C(xr,a,m) := min
vA

{
ϕM(ūM)

(
1−m+m

∫ x

xr

p(t|a)dt
)
+m

[
ϕM(ūM +Lr)+ cr

]∫ xr

x
p(t|a)dt

+
∫

X

[
mϕA

(
vA(x)+ vA( /0)

)
+(1−m)ϕA

(
vA( /0)

)]
p(x|a)dx

} (6)

subject to
m
∫

X
vA(x)s(x|a)p(x|a)dx = c′A(a). (IC′A)∫

X

{
vA( /0)+mvA(x)

}
p(x|a)dx− cA(a)≥ ūA (IRA)

vA(x)[1−χ
x
[x,xr)

]mp(x|a)≥ 0 ∀x ∈ X , (ICr)

where χx
[x,xr)

denotes an indicator function of whether x ∈ [x,xr) or not.

The first line of equation (6) denotes the expected payments to the monitor plus the expected direct
retaliation losses suffered by the principal. The second line denotes the expected payments to the agent.
We look for the vA that minimizes the principal’s expected costs while satisfying (IRA), (IC′A), and
implementing the desired retaliation cutoff.

Proposition 2. Given xr ≤ x0, the optimal agent’s compensation scheme is characterized by

ϕ
′
A(vA( /0)) = λA +µAs(x̃|a),

ϕ
′
A(vA( /0)+ vA(x)) = λA +µAs(x̃|a) for x ∈ (xr, x̃],

ϕ
′
A(vA( /0)+ vA(x)) = λA +µAs(x|a) for x ∈ X \ (xr, x̃],

where x̃ is uniquely characterized by

s(x̃|a) = m

1−m
[
1−

∫ x̃
xr

p(x|a)dx
] ∫ x̃

xr

s(x|a)p(x|a)dx, (7)

and λA and µA are the dual multipliers associated with (IRA) and (ICA) respectively.

Proof. In Appendix.

There are a few characteristics of the optimal compensation scheme worth highlighting. First, note
that it takes a modified Holmström-Mirrlees form, in which the score remains a sufficient statistic.
Second, it implies that whenever the principal wants to reduce retaliation from the harmless retaliation
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benchmark (xr < x0), there is a concentration in payments at the reference payment. That is, the agent
receives the reference payment not only when the monitor is uninformed but also for any disclosed
signal in (xr, x̃]. Third, note that the reference payment is no longer associated with a score equal to zero
but with s(x̃|a) < 0, which means that preventing retaliation decreases the performance standards for
receiving the reference value. Figure 3.2 plots an example of an optimal compensation scheme.
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Figure 2: Optimal Agent’s Compensation for a Given xr

Moreover, note that as payments when the disclosed signal belongs to (xr, x̃] are the same as when the
monitor is uninformed, the optimal compensation scheme is as if the monitor revealed all signals but the
ones in (xr, x̃]. That is, the principal could equivalently implement the same effort at the same cost by
recommending the monitor not to reveal signal realizations in (xr, x̃].

Under full disclosure, the observation of no signal has a score equal to 0. As seen in the harmless
retaliation benchmark, if the principal disregards retaliation, all realizations below x0 would generate
retaliation. When fixing xr, we establish the most retaliation the principal is willing to tolerate. To
avoid retaliation for signals above xr and below x0, the principal must increase such payments up to
how much she pays in case of no information, that is, vA( /0). However, paying the same for a given x
as the no information case is equivalent to asking the monitor not to reveal such x. When the monitor
does not disclose a subset of possible signal realizations, those realizations are pooled with the empty
signal, which decreases the score associated with observing the empty signal. As the score is a sufficient
statistic for payments, pooling low signals with /0 decreases how much the principal pays the agent if
there is no disclosure. Equivalently, the principal can recommend the monitor not to disclose all signals
starting from xr up to x̃. Where x̃ is such that it has the same score as the empty signal when there is
no disclosure in (xr, x̃]. Any signals above x̃ have a higher score. Hence, they generate higher payments
than the empty signal and do not generate retaliation.

Note also that x̃ is fully characterized by xr and does not depend on vA. Hence, fixing xr is equivalent
to fixing the information that is going to be revealed to the principal. For a given xr, solving the problem
(6) is equivalent to solving a canonical moral hazard problem in which the information structure is
exogenous and the principal does not observe realizations in (xr, x̃].

13



Remark 1. The implementation described above, which requests the monitor not to reveal signal real-
izations in (xr, x̃] does not contradict the Lemma 1. Showing that full disclosure is without loss facilitates
the characterization of the optimal contracts. However, it does not imply that full disclosure is necessary
for optimality. Using the full disclosure implementation of the mechanism, the principal commits ”not
to use” signal realizations in (xr, x̃]. She commits to pay the agent the same under such realizations or
without disclosure. Hence, asking the monitor not to report such signals is equivalent.

It is interesting to notice that the reference payment is an endogenous object. When the principal
changes the amount of retaliation tolerated, she affects the set of signals disclosed by the monitor. Hence,
she affects the informational content of observing no-disclosure. Next, we describe how different xr’s
affect the score associated with no disclosure.

Corollary 1. The score associated with the reference payment s(x̃|a) is increasing in xr. That is, de-
creasing the retaliation cutoff implies reducing the standards for the reference payment.

Proof. In Appendix.

By Proposition 2, we know that the informational content of a given signal is captured by its score.
When the principal tolerates less retaliation, it requires lower performances not to be revealed, which
reduces the standards for the reference no disclosure payment. That is, a firm that tolerates less retaliation
faces a lower benchmark for performance.

4 Retaliation and information acquisition

We have established that the choice of the retaliation cutoff implies the information observed by the
principal. We now argue that tolerating more retaliation (higher xr) is formally equivalent to costly
acquiring more information (in a Blackwell sense) about the agent’s effort.

As is typical in moral hazard problems, the score s(·|a) is a sufficient statistic for the optimal com-
pensation problem. In particular, by construction of x̃, when x ∈ (xr, x̃] is not disclosed, the score of
no-disclosure (the /0 signal) is given by s(x̃|a). Denote by ρ(·,a) the inverse of the score function for a
given effort level a, that is, ρ

(
s(x|a),a

)
= x9. Define Fxr(·|a) as the cumulative probability function of

the scores observed by the principal when the monitor discloses all signals but x ∈ (xr, x̃). That is,

Fxr(y|a) :=


m
∫

ρ(y,a)
x p(t|a)dt if y≤ s(xr|a),

m
∫ xr

x p(t|a)dt if y ∈ [s(xr|a),s(x̃|a)),

(1−m)+m
∫

ρ(y,a)
x p(t|a)dt otherwise.

Scores below s(xr|a) are associated with realizations of x below xr, which are disclosed by the monitor
whenever observed. Hence, the first part of the definition of Fxr . The second part stems from the fact

9As s(·|a) is strictly increasing, there is a well-defined inverse.
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that x’s realizations in (xr, x̃] are not disclosed. Thus, the cdf remains constant at Fxr(s(xr|a)|a) until
y = s(x̃|a). The last part reflects the fact that at y = s(x̃|a), there is a mass point regarding all the
non-disclosed signals together with the probability of an uninformed monitor.

Theorem 1. If the principal chooses a higher xr, she gets more information (in the Blackwell sense)
about the agent’s effort. That is, if x′r ≥ x′′r , then Fx′r % Fx′′r , where % denotes the second-order stochastic
dominance relation.

Proof. For any xr, the cumulative distribution Fxr(y|a) co-moves with the distribution of x up to y =

s(xr|a). Then, all realizations in (xr, x̃] are pooled with the empty signal. Hence, the cumulative distribu-
tion Fxr(·|a) is flat on (s(xr|a),s(x̃|a)). At s(x̃|a), there is a mass point corresponding to all signals that
were not disclosed and pooled with the non-informative signal realization. For realizations above x̃, the
distribution again co-moves with x’s distribution. Below, we plot Fxr(·|a) for the harmless retaliation
benchmark (xr = x0), as well as for examples with x0 > x′r > x′′r . Figure 4 illustrates that Fx′′r single
crosses Fx′r from below when x′r ≥ x′′r . Therefore, Fx′r Blackwell-dominates Fx′′r .
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Figure 3: Distribution of Scores as a Function of xr

Theorem 1 implies that a higher choice of xr corresponds to a more informative signal about the
agent’s effort. However, a higher xr implies dealing with retaliation costs more often. For each x < xr,
the principal incurs the cost κr :=

[
ϕM
(
ūM + Lr

)
−ϕM

(
ūM
)
+ cr

]
which implies that tolerating more

retaliation (choosing a higher xr) corresponds to acquiring more information, while paying the additional
κr retaliation costs. Firms then face a trade-off between acquiring better information about their workers’
performance or disregarding information about poor performances and avoiding retaliation costs.
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4.1 The optimal retaliation cutoff

We have established the principal’s cost and associated contracts for each amount of retaliation the
principal is willing to tolerate. The final step in characterizing the optimal mechanism is finding the
optimal retaliation cutoff. We are then ready to state our main result, which describes many features of
the optimal mechanism when retaliation is harmful.

Theorem 2. Suppose retaliation is harmful. Then, for a given pair (a,m) ∈ (0,1)2 the cost-minimizing
mechanism is consistent with the following features:

i- The monitor is lenient: she refrains from revealing moderately (potentially all) signals perceived as
bad;

ii- Payments are compressed: multiple different realized performances generate the same agent’s pay-
ment;

iii- No news is bad news: no-disclosure is associated with a strictly negative score.

iv- For low retaliation costs, the optimal agent’s contract uses punishments and rewards to motivate
the agent (stick-and-carrot contract);

v- For high retaliation costs, the optimal agent’s contract uses only rewards (carrot-only contract).

Proof. In Appendix.

Parts (i) and (ii) stem from the fact that there is always a region in which payments are flat and equal
to the payment in case of no-disclosure. As dealing with retaliation is costly, the principal is better off
pooling signals with a score below but close to the one of no-disclosure. That is, such signal realiza-
tions have an information value close to the no-disclosure signal but entail a strictly positive retaliation
cost. Hence, the principal is better off pooling the payments of such signals with the benchmark and
avoiding retaliation costs. This pattern arises optimally, but it is consistent with two empirical features
of performance evaluations often perceived as harmful biases: leniency and centrality.

Leniency refers to monitors refraining from revealing bad performance by their subordinates. We have
shown that the optimal mechanism can be implemented by asking the monitor not to disclose signals
in (xr, x̃], which have a score strictly lower than no-disclosure score. Centrality refers to agents with
different performances receiving the same compensation. As all agents with performance in (xr, x̃] get
the same reward, the optimal agent’s compensation has centrality as a feature.

Part (iii) is a direct consequence of this manifestation of leniency and centrality. As the principal
optimally lets the manager pool signals with a negative score with the no-disclosure benchmark, it is
as if no-disclosure had a negative score. Refraining from revealing bad performances deteriorates the
benchmark since no-disclosure now arises when the performance is low.

Parts (iv) and (v) describe cases in which the principal uses a stick-and–carrot or carrot-only contract.
On the one hand, when κr is sufficiently small, the informational gains from punishing extremely bad
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performances overweight retaliation costs, and the principal uses both punishments and rewards to mo-
tivate the agent. In this case, the agent’s compensation scheme takes the form illustrated in Figure 3.2.
On the other hand, when κr is large, the principal is better off by completely eliminating retaliation. In
such a case, the agent’s compensation scheme has a flat region for low signals and increases after x̃, as
plotted in the example below.
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Figure 4: Optimal Compensation with High Retaliation Cost

Note also that when the retaliation costs are high, the agent’s compensation has a flat region for low
values of x. The agent is only paid above the base wage when the performance is sufficiently high. To
the best of our knowledge, this is the first paper that generates a flat payment region for low-performance
levels without relying on a binding minimum payment constraint. When a binding minimum payment
constraint exists, the optimal contract naturally presents a flat initial region (see Jewitt et al. (2008)).
However, in practice, we often observe flat payments for low-performance levels even when there is no
binding minimum wage constraint. In our model, the level at which the flat payment occurs is determined
by the outside option, not an exogenous payment constraint. Hence, it may occur even for job positions
where the minimum wage is never binding.

5 Incentives for monitoring

We have assumed that the monitor observes the signal x for free. One can enrich the model by assuming
that m ∈ [m,m]⊂ (0,1) is a monitor’s choice, for which the monitor incurs a private cost cM(m), which
is strictly increasing, strictly convex and such that cM(0) = 0. The principal now must motivate the
monitor to exert the desired monitoring effort.

The agent’s compensation for a given xr remains unaltered. The only change is that the principal
must incentivize monitoring. That is, the monitor’s participation constraint must account for monitoring
costs, and there is a monitor’s incentive compatibility constraint:

UM(m)≥ cM(m)+ ūM, (IRM)
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∫
X

vM(x)p(x|a)dx−Lr

∫ xr

x
p(x|a) = c′M(m). (ICM)

The agent’s compensation problem remains unaltered.

Proposition 3. Fix (a,m) ∈ (0,1)2 and a xr ∈ [x,x0). The optimal manager’s compensation scheme is
given by vM( /0) = ūM and

vM(x) =

 c′M(m)+Lr if x ∈ [x,xr],

c′M(m) otherwise.

While vA is characterized in Proposition 2.

Disclosing the signal becomes evidence that the monitor has exerted monitoring effort. Then, the
principal offers a bonus in case of disclosure to incentivize monitoring. However, the agent’s flat com-
pensation region remains present to save on retaliation costs. One interpretation of this result is that
there are two reports on the performance of the agent: one shared only with the principal, fully revealing
the evidence, and another also shared with the agent, which conceals information in case the realized
signal is in [xr, x̃).

6 Discussion and Conclusion

Relationships inside firms are not without conflict. Often unsatisfied employees retaliate against their
supervisors and organizations. This paper analyzes how the possibility of retaliation shapes optimal
incentive contracts. We assume that an agent retaliates whenever her realized payment is below an en-
dogenous benchmark level — the payment under no information. The optimal agent’s contract features
centrality and leniency, often perceived as the monitor’s biases, but here they arise from the principal’s
optimal disclosure recommendation to the monitor.

We show that tolerating more retaliation allows the principal to be better informed about the agent’s
effort. One can characterize optimal contracts using a two-step procedure: first, fix the amount of
retaliation tolerated and minimize expected payments. Second, choose the optimal level of retaliation.
The first step is a classic moral hazard problem with an exogenous information structure. The second can
be interpreted as an information acquisition problem where a higher retaliation cutoff generates higher
retaliation costs but also more information (in a Blackwell sense) about the agent’s effort.

Our model is a first step toward studying the interaction between retaliation and incentive contracts.
There is extensive literature and anecdotal evidence documenting retaliation inside organizations. A
better understanding of how retaliation patterns interact with monitoring and compensation schemes can
improve firm performance and reduce losses due to internal conflicts.

A Appendix A - Proofs

Proof of Lemma 1. Take any mechanism
(

vA,vM,r,d
)

that satisfies (IRA), (IC′A), (IRM), (ICr) and (ICd).
Let x̃ := {x∈X : d(x), 1}. We construct an alternative mechanism that satisfies all constraints, generates
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the same payments to agent and monitor, and has d̂(x) = 1 for all x ∈ X .

Let
(

v̂A, v̂M,r, d̂
)

be such that

v̂A(s) =


vA( /0) if s = /0,[
vA( /0)(1−d(s))+d(s)vA(s)

]
if s ∈ X̃ ,

vA(s) otherwise.

v̂M(s) =

vM( /0) if s ∈ X̃ ∪{ /0}

vM(s) otherwise.

The monitor is now willing to disclose any signal realization. The change did not alter the monitor’s
payments on the equilibrium path. The agent’s expected utility conditional on each possible realization
of x also did not change. Instead of paying vA(x) with probability d(x) and vA( /0) with the complementary
probability, the principal pays the certain equivalent, which is cheaper. If d(x) = 0 for all x ∈ X̃ , the
payments do not change.

Proof of Lemma 2. We have proved that d(x) = 1 is without loss of generality. The payment suggested
implements that disclosure rule and keeps the monitor at his outside option for every possible x. Hence,
the principal cannot do better.

Proof of Proposition 1. As r is not a cutoff function, there must exist two positive measure (with respect
to p) sets X∗, X̌ such that x∗ > x̌ and vA(x∗) < 0 ≤ vA(x̌) for all x∗ ∈ X∗ and x̌ ∈ X̌ . Then, there exists
ε > 0 such that there exists a positive measure set X∗ε ⊆ X∗ such that vA(x)<−ε for all x ∈ X∗ε .

Let Ŝ ⊂ X∗ε and Š ⊂ X̌ be positive measure subsets with the same measure k > 0. That is, let k =∫
Ŝ p(x|a)dx =

∫
Š p(x|a)dx > 0.

Let n∈N and {Ŝ1, ..., Ŝn}, {Š1, ..., Šn} be successively finer partitions of Ŝ and Š such that
∫

Ŝi
p(x|a)dx=∫

Ši
p(x|a)dx = k

n . Also, let the sets in each partition be ordered, in the sense that all elements of subset i
are smaller than all elements of subset j > i for any i, j ∈ {1, ...,n}.

First, we approximate vA by the following sequence of functions

vAn(s) =



vA( /0) if s = /0,∫
Ŝi

vA(x)
p(s|a)
k/n dx if x ∈ Ŝi for i ∈ {1, ...n},∫

Ši
vA(x)

p(s|a)
k/n dx if x ∈ Ši for i ∈ {1, ...n},

vA(s) otherwise.

Note that vAn converges almost everywhere to vA. Also, as vAn’s are mean preserving contractions of vA,
they each generate a strictly lower expected payment. We now construct a sequence of ˜̃vAn switching
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payments in Ŝ and Š and satisfying (IRA) and (ICA). Define

˜̃vAn(s) =



vA( /0) if s = /0,∫
Ši

vA(x)
p(x|a)
k/n dx if x ∈ Ŝi for i ∈ {1, ...n},∫

Ŝi
vA(x)

p(x|a)
k/n dx if x ∈ Ši for i ∈ {1, ...n},

vA(s) otherwise.

Note that∫
Ŝ∪Š

[
˜̃vAn(x)− vAn(x)

]
s(x|a)p(x|a)dx

=
n

∑
i=1

[∫
Ŝi

s(x|a)p(x|a)dx−
∫

Ši

s(x|a)p(x|a)dx
][∫

Ši

vA(x)
p(x|a)
k/n

dx−
∫

Ŝi

vA(x)
p(x|a)
k/n

dx
]

≥ ε

[∫
Ŝ

s(x|a)p(x|a)dx−
∫

Š
s(x|a)p(x|a)dx

]
> 0.

The first inequality is direct from the construction of vAn and ˜̃vAn. The square brackets in the third line
is strictly positive because Ŝ > Š. Note that for n sufficiently large∫

Ŝ∪Š

[
˜̃vAn(x)− vA(x)

]
s(x|a)p(x|a)dx

=
∫

Ŝ∪Š

[
˜̃vAn(x)− vAn(x)

]
s(x|a)p(x|a)dx+

∫
Ŝ∪Š

[
vAn(x)− vA(x)

]
s(x|a)p(x|a)dx

≥ε

[∫
Ŝ

s(x|a)p(x|a)dx−
∫

Š
s(x|a)p(x|a)dx

]
+
∫

Ŝ∪Š

[
vAn(x)− vA(x)

]
s(x|a)p(x|a)dx.

As vAn converges to vA, for n sufficiently large∫
Ŝ∪Š

[
˜̃vAn(x)− vA(x)

]
s(x|a)p(x|a)dx > 0.

Hence, there exists γn ∈ (0,1) such that

γn

∫
X

˜̃vAn(x)s(x|a)p(x|a)dx =
∫

X
vA(x)s(x|a)dx.

Let αn ∈ R+ be such that
αn = m[1− γn]

∫
X

˜̃vAn(x)p(x|a)dx.

Define

ṽAn(s) =


(
vA( /0)+αn

)
if s = /0,

γn ˜̃vAn(s) otherwise.

By construction, for sufficiently large n, ṽAn satisfies (IRA), (ICA), and is a mean preserving contraction
of vA. Hence, it strictly reduces expected payments. One can complete the new mechanism definition
by letting

r̃(x) = 1 if and only if ṽA(x)< 0,

and letting ṽM be defined as in Lemma 2.

Proof of Lemma 3. Take any (vM,vA,xr) as stated. We construct an alternative full disclosure feasible
mechanism (ṽM, ṽA,x0) with lower implementation costs. Let

γ :=
c′A(a)∫

X\[x0,xr]
vA(x)s(x|a)p(x|a)dx

.
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Note that as the original mechanism is feasible, γ ∈ (0,1). Let

α :=−m
∫ xr

X0

vA(x)p(x|a)dx > 0.

ṽA(x) :=

0 if x ∈ [x0,xr]

γvA(x) otherwise,

and
ṽA( /0) = vA( /0)+α.

By construction, ṽA satisfies (IRA) and (ICA). Then, the mechanism (ṽM, ṽA,x0), where ṽM is defined as
in Lemma 2, is feasible. Also, as ṽA is a mean preserving contraction of vA, the implementation costs
are smaller.

Proof of Proposition 2. The first order conditions of problem (6) are:

(1−m)ϕ ′A(vA( /0))+m
∫

X
ϕ
′
A(vA( /0)+ vA(x))p(x|a)dx = λA; (8)

ϕ
′
A(vA( /0)+ vA(x)) = λA +µAs(x|a)+µ

r(x)[1−χ
x
[x,xr)

]; (9)

By equations (8) and (9)

ϕ
′
A(vA( /0)) = λA−

m
1−m

∫ x

xr

µ
r(x)p(x|a)dx. (10)

We now prove that the multipliers λA and µA must be strictly positive.

Lemma 4. λA > 0 and µA > 0.

Proof. By equation (8) we have λA > 0.

We now need to show that µA > 0. For the sake of obtaining a contradiction, suppose that µA = 0.
Hence, for all x

ϕ
′
A(vA( /0)+ vA(x)) = λA +µ

r(x)[1−χ
x
[x,xr)

].

For all x such that vA(x)> 0, then µr(x) = 0 and ϕ ′A(vA( /0)+ vA(x)) = λA.

For all x such that vA(x) = 0,

ϕ
′
A(vA( /0)+ vA(x)) = λA +µ

r(x)[1−χ
x
[x,xr)

] = λA−
m

1−m

∫ x

xr

µ
r(x)p(x|a)dx = ϕ

′
A(vA( /0))

which can only hold if µr(x) = 0 almost everywhere. Thus, ϕ ′A(vA( /0) + vA(x)) = ϕ ′A(vA( /0)) almost
everywhere. Then, (ICA) cannot be satisfied. A contradiction.

Define x̃ = in f{x ∈ X : vA(x)> 0}. By definition xr ≤ x̃. For x > x̃, µr(x) = 0. For x ∈ (xr, x̃)

µ
r(x) =−µAs(x|a)− m

1−m

∫ x̃

xr

µ
r(x)p(x|a)dx. (11)

x̃ is given by µr(x̃) = 0.
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Lemma 5. For a given xr, x̃ is uniquely characterized by

s(x̃|a) = m

1−m
[
1−

∫ x̃
xr

p(x|a)dx
] ∫ x̃

xr

s(x|a)p(x|a)dx (12)

Proof. Take equation (11) multiply both sides by p(x|a) and integrate with respect to x in (xr, x̃). We
then have that,

∫ x̃

xr

µ
r(x)p(x|a)dx =

−(1−m)

1−m
[
1−

∫ x̃
xr

p(x|a)dx
]µA

∫ x̃

xr

s(x|a)p(x|a)dx. (13)

Replace (13) into (11) and equate it to 0. We then get the equation in the lemma. It remains to show
that for each xr ∈ [x,x0] there is a unique x̃ satisfying equation (7). Note that

s(xr|a)−
m

1−m
[
1−

∫ xr
xr

p(x|a)dx
] ∫ xr

xr

s(x|a)p(x|a)dx = s(xr|a)< 0.

Also,

s(x0|a)−
m
∫ x0

xr
s(x|a)p(x|a)dx

1−m
[
1−

∫ x0
xr

p(x|a)dx
] =− m

∫ x0
xr

s(x|a)p(x|a)dx

1−m
[
1−

∫ x0
xr

p(x|a)dx
] > 0.

By the intermediate value theorem there exists a x̃ ∈ (xr,x0) such that the equality is satisfied.

Rearranging (7), we can write it as

s(x̃|a)
[
(1−m)+m

∫ x̃

xr

p(x|a)dx
]
−m

∫ x̃

xr

s(x|a)p(x|a)dx = 0. (14)

Taking the derivative of the lhs with respect to x̃ we get

∂ s(x̃|a)
∂x

[
(1−m)+m

∫ x̃

xr

p(x|a)dx
]
> 0.

Hence, there exists only one x̃.

We then replace µr(x) and x̃ in the first-order conditions and get the expressions stated in the propo-
sition.

Note that given xr we can directly characterize x̃. Moreover, given [xr, x̃), the problem is equivalent to
a canonical moral hazard problem. Hence, existence is guaranteed by the same arguments as in Moroni
and Swinkels (2014).

Proof of Corollary 1. When we fully differentiate (12) with respect to xr and rearrange terms we get

dx̃
dxr

∂ s(x̃|a)
∂x

[
1−m

[
1−

∫ x̃

xr

p(x|a)dx
]]

=−(1−m)p(xr|a)s(xr|a).

As ∂ s(x̃|a)/∂x > 0 and s(xr|a), we have dx̃
dxr

< 0. As the score is increasing in x, we have that s(x̃|a) is
increasing in xr.
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Proof of Theorem 1. Note that for any xr the expected score is zero, that is,
∫

xdFxr(x|a) = 0. Hence, it
remains to show that for any x′r > x′′r and any t ∈ R∫ t

−∞

Fx′′r (x|a)dx≤
∫ t

−∞

Fx′r(x|a)dx. (15)

Let x̃′, x̃′′ be the respective x̃ for x′r,x
′′
r . First notice that for any x≤ s(x′′r |a)

Fx′r(x|a) = Fx′′r (x|a).

Second, note that for any x ∈ (s(x′′r |a),s(x̃′′|a)), Fx′′r (·|a) is constant while Fx′r(·|a) initially increases.
That is,

Fx′′r (x|a) = Fx′′r (s(x′′r |a)|a) = Fx′r(s(x′′r |a)|a)< Fx′r(x|a).

Third, note that for any x≥ s(x̃′′|a)

Fx′′r (x|a) = (1−m)+m
∫

ρ(y,a)

x
p(x|a)dx≥ Fx′r(x|a).

That is, Fx′′r (·|a) single crosses Fx′r(·|a) from below. Hence, Fx′r % Fx′′r .

Proof of Theorem 2. The first observation is that there exists and optimal retaliation cutoff which is
always strictly below x0. Signal realizations close to x0 have scores very close to 0. Hence, payments for
such realizations have a low impact on effort incentives. However, negative vA(x)’s generate a discrete
cost with retaliation. Therefore, the principal is better off by reducing the retaliation cutoff and avoiding
such expenses.

Lemma 6. There exists an optimal retaliation cutoff and it is strictly below x0. That is, x∗r < x0.

Proof of Lemma 6. Let V be the set of mappings vA : X ∪{ /0} → R that satisfy (IRA), (ICA) and (ICr).
Let g : V × [x,x0]→ R be

g(vA,xr) :=
∫

X

[
mϕA

(
vA(x)+ vA( /0)

)
+(1−m)ϕA

(
vA( /0)

)
+mκr

∫ xr

x
p(t|a)dt +ϕM(ūM)

]
p(x|a)dx.

Note that g(vA, .) is absolutely continuous for all vA ∈ V . Also, note that

|gXr(vA,xr)|= mκr p(xr|a)≤ sup
x∈X
{mκr p(x|a)}.

Hence, C(·,a,m) is absolutely continuous. Therefore, there exists x∗r ∈ argmin
xr∈[x,x0]

{
C(xr,a,m)

}
.

Take the derivative of C(xr,a,m) with respect to xr and evaluate it at x0. We get

dC (x0,a,m)

dxr
=

dL

dxr
= mp(x0|a)

[
ϕM(ūM +Lr)−ϕM(ūM)+ cr

]
> 0.

Hence, reducing xr strictly lowers implementation costs and x∗r < x0.
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Parts (i) and (ii): they are directly implied by Lemma 6. Note that as x∗r < x0 and x̃ ∈ (x∗r ,x0), then
all realizations x ∈ (x∗r , x̃) are pooled with the no-disclosure payment. Hence, such signals receive the
same payments (centrality), and such payments reflect a score s(s̃|a) larger than the score of their actual
performance (leniency).

Part (iii): note that the payment to no disclosure is associated with s(x̃|a), which is strictly negative
since x̃ < x0.

Part (iv): note that the necessary first order condition for minimizing C(xr,a,m) over xr is given by

κr +
[
ϕA

(
vA(x∗r )+ vA( /0)

)
−ϕA

(
vA( /0)

)]
− vA(x∗r )[λA +µAs(x∗r |a)]≥ 0

(
= if x∗r > x

)
.

Therefore, if
κr < vA(x)[λA +µAs(x|a)]−

[
ϕA

(
vA(x)+ vA( /0)

)
−ϕA

(
vA( /0)

)]
,

the retaliation cutoff must be interior10. For that to be possible, we must show that the right-hand-side
of the equation above is strictly positive. Note that as ϕA is strictly convex and vA(x)< 0, we have[

ϕA

(
vA(x)+ vA( /0)

)
−ϕA

(
vA( /0)

)]
< vA(x)ϕ ′A

(
vA(x)+ vA( /0)

)
= vA(x)

[
λA +µAs(x|a)

]
.

Hence, there exists a strictly positive κ such that x∗r > x, and consequently a stick-and-carrot contract is
used.

Part (v): note that λA and µA are characterized by (IRA) and (ICA) binding. As both constraints are
continuous in xr, the multipliers are also continuous functions of xr. Let

K := max
xr∈[x,x0]

{[
ϕA

(
vA(xr)+ vA( /0)

)
−ϕA

(
vA( /0)

)]
− vA(xr)[λA +µAs(xr|a)]

}
.

The maximum exists because the function inside the brackets is continuous in xr. If κr > K, then
∂Ĉ(xr,a)

∂xr
< 0 for all xr ∈ [x,x0]. Hence, x∗r = x and a carrot-only contract is optimal.

Proof of Proposition 3. Note that for a given m ∈ (0,1), agent’s compensation problem remains unal-
tered. Hence, Proposition 2 characterizes the optimal scheme.

Now We characterize the optimal monitor’s compensation. For a given xr, the principal minimizes:

min
vM

{∫
X

[
mϕM(vM( /0)+ vM(x))+(1−m)ϕM(vM( /0))

]
p(x|a)dx

}
subject to

m
∫

X

{
vM(x)− Lr

p(x|a)

∫ xr

x
p(t|a)dt

}
p(x|a)dx = c′M(m). (ICM)∫

X

{
vM( /0)+mvM(x)−m

Lr

p(x|a)

∫ xr

x
p(t|a)dt

}
p(x|a)dx− cM(m)≥ ūM (IRM)

vM(x)[1−χ
x
[x f ,xr]

]mp(x|a)≥ mp(x|a)Lr ∀x ∈ X . (ICd)

The problem above has a strictly convex objective function and linear constraints. The pointwise solution
delivers the result.

10An important remark is that λA and µA are functions of xr. We omit this dependency not to overload the notation.
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