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Abstract

We investigate how individuals alter their educational investments in response to routine-
biased technology. We find that individuals growing up in robot-impacted areas are
more likely to complete a bachelor’s degree and experience a relative increase in earn-
ings. Changes in the skill premium and opportunity cost appear to drive these effects.
To interpret these findings, we estimate a model of endogenous skill acquisition where
changes in the demand and supply of skills shape the path of earnings. Counterfactual
simulations suggest that endogenous human capital accumulation cannot undo most
of the earnings effects of automation unless there are sufficiently generous educational
subsidies.
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1 Introduction

How do agents adjust to automation technologies? Despite an extensive literature examining the
labor market consequences of automation, little is known about how individuals alter their skill
investments in response to these technological innovations. Answers to this question have important
policy implications. If individuals endogenously accumulate more human capital in response to
new technologies that lower the opportunity cost of and raise the returns to skill acquisition, then
concerns over educational policies aimed at mitigating the disruptive effects of automation may be
overstated. But if there are factors that limit this skill response, such as financial frictions and
lack of academic readiness, then policies that remove such frictions or improve the learning process
could be desirable. In this paper, we exploit the unprecedented penetration of robotics technology
in the United States to provide detailed empirical evidence on this important question.

While previous research has undoubtedly advanced our understanding of the relationship be-
tween labor market conditions and human capital, existing studies have often focused on aggregate
shocks that affect educational incentives primarily at the bottom of the skill distribution, including
shocks stemming from the construction industry (Charles et al., 2018), agricultural sector (Shah
and Steinberg, 2017; Carrillo, 2020), trade (Atkin, 2016; Greenland and Lopresti, 2016) as well as
from immigration and offshoring (Hickman and Olney, 2011). What is different about the recent
advances in automation technologies is that they tend to disproportionately affect routine-intensive
occupations that are toward the middle range of the skill distribution (Goos and Manning, 2007;
Autor and Dorn, 2013). It is not obvious that the implications of previous studies are immediately
applicable to these settings, where additional skill investments in the form of a bachelor’s-level
education are more expensive, require a more complex set of skills, and take a significant period
of training. Consistent with this higher bar, a quick look the data reveals that while 88 percent of
individuals over 25 years of age had a high school diploma in 2015 in the United States, only 32
percent had completed a bachelor’s degree.! Youths forgoing college education may be just those
who are credit-constrained (Lovenheim, 2011), too impatient (Cadena and Keys, 2015; Lavecchia
et al., 2016), or lack the foundational skills to succeed in college (Goldin and Katz, 2009). Recent
work by Athreya and Eberly (2021) concisely highlights the importance of the latter and argue
that:

“In the absence of improved college readiness . ... the continuing long-standing trends in
skill-biased technological change can be expected primarily to increase earnings inequality

rather than college attainment.”

Whether or not routine-biased technology induces skill acquisition therefore remains an open ques-
tion that we address in this paper. Our analysis focuses on industrial robots, which are repro-
grammable machines that can perform a variety of routine tasks, ranging from painting and assem-

bly to packaging, without requiring any human operator. With the incorporation of sophisticated

!See https://nces.ed.gov/programs/digest/d15/tables/dt15_104.10.asp, last accessed on May 2, 2023.
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sensor and machine vision systems, robotics technology advanced dramatically in the 1990s. Follow-
ing the substantial decline in the price of an industrial robot, there was a sharp and discontinuous
rise in robot adoption rates since 1993 in the United States, with an increase of 120 percent from
1992 to 1995 alone and 200 percent to the end of the 1990s (Figure 1). This was in contrast to a
relatively flat trend in adoption rates in previous years. Acemoglu and Restrepo (2020) document
that this unexpected, sudden, and salient technological shock had negative effects on the earnings
of routine-intensive workers. We investigate the consequences of this technological shock for the
college decisions of individuals growing up in impacted labor markets.

The paper proceeds in three steps. We first characterize the impacts of robots on college
attainment. Our research design exploits variation in the intensity of robot penetration across
locations and the timing of birth cohort exposure in a difference-in-differences empirical strategy.
We construct a Bartik-like measure of exposure to robots based on pre-existing industry mix across
locations and industry-specific robot penetration, following the neat approach developed by Ace-
moglu and Restrepo (2020) and recent methodological advances in shift-share designs (Goldsmith-
Pinkham et al., 2020; Borusyak et al., 2022; Adao et al., 2019). We assign individuals to robot
exposure intensities based on their state of birth, assuming that the state where an individual was
born is the same as the one where she or he grew up in an intent-to-treat strategy. We show that
this assignment is reasonable and that there is a great deal of variation in exposure intensities across
states.? We then compare the outcomes of cohorts exposed before, during, and after their critical
college-going ages in states with varying robot penetration intensities. Under the common trends
assumption that more- and less-exposed areas would have followed similar trends over time across
birth cohorts in the absence of the robot shock, our estimates can be given a causal interpretation.

We find a visually clear and statistically significant increase in the likelihood of having a bach-
elor’s degree in areas housing the industries with greater robot penetration. Higher-versus-lower
exposed areas exhibit statistically identical trends for approximately 50 years and begin to diverge
only when new birth cohorts exposed to the robot shock before or during the typical college-going
ages enter the economy. Our estimates imply that the change in the bachelor’s degree completion
rate from the older- to younger-exposed cohorts in a highly affected state like Ohio was 1.5 per-
centage points (or 5 percent) more positive compared to the change between the same cohorts in a
more mildly affected state like Montana. This effect comes entirely from individuals who otherwise
would have completed exactly high school or attended a two-year college, or those on the relevant
margin in the middle of the skill distribution.

We document extensively that our estimates are very unlikely to be capturing mean-reverting
dynamics, differential trends in manufacturing employment, or differences in trends related to
a diverse set of initial socioeconomic and demographic characteristics. We also show that our
estimated effects are not confounded by other major shocks to the labor market, such as offshoring,

import competition, other technological shocks, and the recession of the early 1980s, or by major

2 As we discuss in Section 2 in more detail, approximately 80 percent of individuals reside in the same state as the
one where they were born during their college-going ages.



social programs, such as school finance reforms, war-on-poverty programs, and Medicaid. Finally,
we show that the results are robust to the specification tests recommended by recent contributions
in the literature on shift-share designs, such as excluding industries with the largest Rotemberg
weights (Goldsmith-Pinkham et al., 2020) and considering inference procedures that account for
spatial correlation across areas with similar sectoral shares (Borusyak et al., 2022; Adao et al.,
2019).

We then look at the childhood-exposure effects on labor market earnings. The data indicate
that cohorts exposed to robots at the beginning of the life cycle experienced an increase (or a
smaller decline) in their incomes relative to late-exposed cohorts. This income effect disappears
entirely once we account for the relationship between robots and college attainment, suggesting
that education is the driving force behind this income effect. It is important to note that these
results do mot imply that automation is good on net for younger cohorts. The introduction of
robots had negative labor market impacts on all individuals, but this effect has been smaller for
younger cohorts who could alter their educational decisions.?

In the second part of the paper, we provide evidence of the mechanisms underpinning our
findings. We estimate that labor markets with greater exposure to robots saw a rise in the premium
from having a bachelor’s degree relative to a two-year college and high-school degree. This premium
effect has been paralleled fairly closely by a meaningful decline in the opportunity cost of college-
going, as proxied by the average labor market earnings a young adult without college training
receives. The magnitude of this effect is particularly large: the state in the 75th percentile of
the exposure to robot distribution experienced a decline of approximately 17 percent in the labor
market income a young adult worker receives. We rule out alternative explanations related to
the supply-side of education and local government responses, including changes in the net cost of
colleges, college revenues from public appropriation, or government expenditures in education.*

We interpret these findings as robust evidence that individuals endogenously redirect their hu-
man capital investments toward areas that are less susceptible to automation. While this evidence is
elucidating, the magnitude of this reduced-form result is not straightforward to interpret. As such,
our reduced-form analysis leaves many questions unanswered about the adjustment of the economy
to changes in technology. For example, it says little about whether the endogenous educational
response to the robot-induced shock is of the right order of magnitude to significantly counter-
balance the disruptive effects of technology, or about how policy could influence this process. To
investigate these questions, we structurally estimate a simple model of human capital investments

where changes in the demand and supply of skills shape the long-run evolution of earnings. We

3Late cohorts were the ones feeling the bulk of the displacement effects created by robots. This raises the concern
that our results may be driven by biases due to older cohorts experiencing the scarring effects from job losses they
incurred during their earlier working life. As we shall see, our results hold (and become stronger) even when we
compare adults in the labor market but that grew up in places with varying degrees of exposure to robots, suggesting
that biases due to scarring effects are unlikely to be a major issue.

4These results, however, do not rule out the possibility that policymakers did respond to the adoption of robotics
technologies but at the national level, an effect that would not be identified by our cross-location empirical strategy.
But this does not necessarily affect the interpretation of our results and parameter of interest.



view this structural analysis as exploratory in nature but useful because it provides an intuitive
way to interpret our findings while highlighting avenues for future areas of investigation.

In the final part of the paper, we introduce the structural model, discuss the identification con-
ditions and perform counterfactual exercises. In the model, individuals are heterogeneous in terms
of initial income, the childhood market of residence, and taste for college attendance. Individuals
decide whether or not to attend college based on college costs and expected lifetime income, with
the latter partially influenced by automation. We estimate the model using the simulated method
of moments and document that it is successful in replicating our basic reduced-form results as well
as the baseline share of individuals with a bachelor’s degree. Moreover, the model predicts effects
of changes in the skill returns on bachelor attainment that are quantitatively and qualitatively in
line with recent quasi-experimental evidence (Abramitzky et al., Forthcoming).

Our simulations suggest that the endogenous educational response is not of the right order of
magnitude to significantly offset the long-run decline in earnings induced by changes in technology.
Indeed, this mechanism can reduce the adverse earnings effect of robots by only 33 percent. We
then conduct a series of policy counterfactuals to explore the role of subsidies in enhancing the
college response to technology. We find that a reform that increases the coverage and value of
college grants can offset the earnings effects of technology by approximately 92 percent over the
long term. Taken together, these counterfactual exercises suggest that endogenous human capital
accumulation is unlikely to undo the adverse effects of automation on labor markets unless there
are sufficiently generous educational subsidies.

These results naturally raise the question of why there has been little progress in the aggregate
trends of college attainment for cohorts entering the labor market after the 1980s despite the rapid
adoption of different routine-biased technologies. We believe that the most plausible explanation
is that there have been changes in other important factors offsetting the skill-acquisition incentives
brought by these new technologies. This point has already been highlighted by Goldin and Katz
(2009) and quantitatively analyzed by Castro and Coen-Pirani (2016), who demonstrate that the
sharp rise in tuition costs faced by recent cohorts can explain a substantial portion of the slowdown
in aggregate college attainment.’Note that this does not imply that the human capital response
to technology has not been important. Our analysis suggests that college attainment would have
likely increased at a slower rate or even declined in the absence of endogenous skill investments.

Our findings contribute to a vast literature on the impacts of technology. This literature has
documented extensively that routine-biased technologies adversely affect the demand for unskilled

labor (see Jaimovich and Siu (2019) for an overview of the literature).*We contribute by providing

®The important role of rising tuition costs is consistent with recent experimental evidence documenting that
financial aid, which reduces the costs of college attendance, has a fairly large causal effect on bachelor’s degree
attainment (Angrist et al., Forthcoming). Castro and Coen-Pirani (2016) also explore the role of declining learning
ability and find that it also accounts for an important fraction of the slowdown in college attainment. Other studies
employing an analogous approach reach similar conclusions (Jones and Yang, 2016; Donovan and Herrington, 2019).

SPioneering studies in this literature include Katz and Murphy (1992), Krueger (1993), and Autor et al. (1998).
Subsequent work provides more detailed evidence on the role of computers (Burstein et al., 2019), information and
communication technologies (Michaels et al., 2014; Akerman et al., 2015; Hjort and Poulsen, 2019), industrial robots
(Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020; Dauth et al., 2021) and artificial intelligence and machine



evidence on whether, and how these technologies induce skill acquisition. While education has
often been emphasized as an important factor mitigating the consequences of labor-displacing
technologies (Katz and Murphy, 1992; Goldin and Katz, 2009), there has been little effort to
estimate the key parameters governing this endogenous response. The parameters we estimate can
serve as inputs to discipline models of the economy that consider changes in skill-biased technologies
and endogenize education.”

This paper also adds to a large body of work linking aggregate economic conditions and human
capital accumulation. As discussed above, the bulk of this literature have focused on labor market
shocks affecting educational incentives among individuals in the lower end of the skills spectrum.
These studies unsurprisingly tend to find no significant effects on bachelor attainment (e.g., Hickman
and Olney, 2011; Charles et al., 2018). A recent strand of this literature explores how students alter
their college major choices when exposed to major-related economic shocks (Han and Winters, 2020;
Weinstein, 2022) and during the business cycle and the Great Recession (Ersoy, 2020; Blom et al.,
2021). These studies therefore focus on the intensive margin of college decisions, among individuals
who have already overcome non-trivial barriers associated with attending college. These estimates
are not therefore necessarily generalizable to college enrollment decisions. We contribute to the
literature by providing one of the first pieces of evidence on how the extensive margin of bachelor’s-
level college education reacts to a major labor market shock altering its net returns.

Finally, our study is most closely related to Di Giacomo and Lerch (2022), who estimate how
college enrollment changes in commuting zones that were more and less exposed to robots. A major
difference between our analysis and theirs is that we study the impacts of robots on individuals
rather than on places. This is important because the latter may reflect compositional effects due to
endogenous migration responses, and the evidence suggests that such migration effects are salient
in this context (Acemoglu and Restrepo, 2020; Faber et al., 2022). Because the exposure to robots
is based on an individual’s place of birth in our intent-to-treat analysis, determined before the
robot-induced shock, selective migration is not a concern. This may explain why they find results
that are stronger and more in line with ours when they repeat their analysis at the state level,
where migration is less likely to be an issue.

Our analysis also differs from Di Giacomo and Lerch (2022) in other substantive aspects. First,
because we look at cohorts several years after the typical college-going ages, our analysis captures
effects on completed rather than ongoing human capital decisions. While college enrollment out-
comes are informative, they alone do not tell us the entirety of the story. If dropout is pervasive,
the long-run effects on completed human capital could be limited or even null. Second, we examine
how exposure to robots during the critical ages of college decisions affects subsequent earnings in
the labor market, which may shed light on whether and by how much acquiring more human capital
helps to mitigate the effects of automation. Finally, we move beyond the reduced-form analysis and

structurally estimate a model of human capital investments to investigate deeper questions about

learning technologies (Babina et al., 2020; Acemoglu et al., 2020).
"Examples include Galor and Moav (2000), Addo et al. (2020), Caselli and Manning (2019), Hémous and Olsen
(2022), and Guerreiro et al. (2022).



the adjustment of the economy to changes in technology.

The rest of the paper is organized as follows. Section 2 describes the data and variable defi-
nitions, while Section 3 presents the empirical strategy and basic findings. Section 4 investigates
potential threats to identification. Section 5 examines the effects of exposure to robots during the
critical college-going ages on subsequent labor market earnings. Section 6 provides evidence of the
likely mechanism behind our results. Section 7 structurally estimates a model of human capital

investments to evaluate the quantitative importance of the results. Section 8 concludes.

2 Data and Variable Definitions

In this section, we provide an overview of the data sources, present the robot exposure variable,
and other variable definitions. Our basic analysis uses data from the American Community Survey
(ACS) and data on robots from Acemoglu and Restrepo (2020). We also use other data sources
that are described throughout the paper.

ACS microdata. We use data on the ACS for the years 2001 to 2019, a nationally representa-
tive sample of the population conducted annually by the US Census Bureau. The ACS provides
rich demographic characteristics (including gender, age, race, and state of birth) as well as basic
socioeconomic information (such as education and earnings). A compelling feature of these data
relative to other population surveys is their enormous sample sizes, covering on average between
1.5 and 3 million individuals per year.® Our analysis compares cohorts exposed and unexposed to
the dramatic advance in robotics during the 1990s and 2000s, which depends on when and where
they were born. Our main outcome of interest is an indicator for bachelor’s degree completion,
the level of education that is less prone to experience the displacement consequences created by

robots.?

Robot data. We use the measure of robot exposure built by Acemoglu and Restrepo (2020) at
the state level, a level of aggregation discussed in detail below. For each state, we compute the
robot exposure as the adjusted change in the stock of robots in that state’s industries, weighted by
each industry share in the state’s baseline employment:
Industry share
Robot penetration, = Zfzj\ (AMj — %)
JeX

Ly 7Ly (1)

Robot Penetration

where £ is the initial employment share of industry j in state s, which we calculate using the census

conducted in 1970 to capture the long-term industrial composition that was prevailing before the

8The number of people sampled changed sharply in 2005 and onward, going from 1.1 to more than 2.8 million
individuals. This discontinuity is visible in our estimation sample (see Appendix Figure A.1). We have no reason to
believe it has important implications for our identification strategy. The results are essentially the same if we exclude
the ACS conducted before 2005.

9We use “bachelor attainment” and “bachelor completion” interchangeably throughout the paper.



major advance in automation. The variable AM; = M. — My, is the change in the number of robots
in each industry between the base year b and final year 7, normalized by the number of workers
Ljp. In the model of automation developed by Acemoglu and Restrepo (2020), the labor market
effects are related to the change in the number of robots per thousand workers after adjusting for
the growth rate of output \; of each industry (captured by the expression \;jMj,/Lj,). We keep
this adjustment term for consistency with their conceptual framework.! Data on robots come
originally from the International Federation of Robotics (IFR), which is consistently available since
1993 for all industries aggregated into 19 consistent categories across 50 countries. We use the 1993
to 2007 period to measure the adjusted penetration of robots, a period that corresponds to the
intense adoption of robots in the United States and the timing of college decisions of younger birth
cohorts in our sample.

A concern with using realized penetration of robots in the United States is unobservable shocks
correlated with that robot adoption. For example, reductions in the profitability of manufactur-
ing certain products using traditional manufacturing techniques would like both lower demand in
locations intensive in those industries and increase the adoption of robots in those industries. In
this case, our results could be driven by the market effects induced by other factors that reduce
profitability (e.g., foreign competition) rather than by the adoption of robots itself. To mitigate
this concern, we follow Acemoglu and Restrepo (2020) and construct the robot penetration variable
in equation (1) using data of average robot adoption in the top 5 non-US countries with greater
advances in robotics (Denmark, Finland, France, Italy, and Sweden), which strongly predict US
robot penetration (Figure 2).!' This approach exploits variation coming from global advances in
robotics technology rather than specific idiosyncratic US shocks. Much of the robotics advances
occurred first in these countries and are thus unlikely to be driven by future factors hitting par-
ticular industries in the United States. Therefore, focusing on this measure of robot penetration
allows us to isolate a source of variation plausibly independent of individuals’ schooling decisions.
Our baseline exposure variable focuses on this measure of European-based robot penetration, but

we also present results using the observed US robot penetration as the key independent variable.

Main analysis sample. The enormous sample sizes in the ACS allow us to focus the analysis
on the specific cohorts of interest while retaining a sufficient sample size. We focus on the 1953-83
birth cohorts, which include individuals who made their college decisions before and during the
advance in robotics and are not too young or old to observe their outcomes consistently in the
2000s and 2010s. Our analytical sample restricts to adults born in the mainland of the United

States and above age 30 at the survey time.!?We exclude individuals residing in institutional group

0Data on the growth rate of output of each industry and baseline employment level in each industry are originally
obtained from the Euro KLEMS database (Jager, 2016). See Section A.2 of the Appendix for further details.

"This group excludes Germany, which is well ahead of the United States and thus is less relevant for robot adoption
trends in the latter. We will examine the robustness of our results to alternative constructions of the exposure to
robots, which consider expanding the top 5 to include Germany and other countries.

12This restriction excludes individuals from Hawaii and Alaska, so the resulting sample includes all individuals born
in one of the remaining 48 states or the District of Columbia. In the ACS, the District of Columbia is considered a
separate state. This sample restriction also excludes immigrants (about 10 percent of the observations), as it is not



quarters to increase consistency between the different rounds of the ACS, a restriction that results
in dropping about 3 percent of the sample."*We pool all of the ACS rounds into a single file to
increase the precision of our estimated results.'* Our basic sample consists of approximately 15.3

million observations.

Geographic unit. We assign robot exposure intensity to individuals assuming that the place
where they were born is the same as the one where they grew up, so our analysis is an intent-to-
treat design. This requires that we choose the geographical level of the robot exposure measure.
In principle, one would measure robot exposure at the county level. However, information on
birthplace is only available at the state level in the ACS microdata, and thus, we are unable to
match individuals with a measure of robot exposure at smaller geographies than a state. Therefore,
we construct our measure of robot exposure at the state-of-birth level.!?:16

While state divisions are relatively large geographic units, they have important strengths when
studying the effects of robots on educational choices. Because mobility between states is much less
frequent than between other smaller geographies,'” the state of birth provides a more reasonable
approximation of the place where individuals were residing during their childhood and college-going
years. This reduces noise in our assignment of childhood exposure due to migration. Consistent
with this notion, we find that approximately 80 percent of the birth cohorts in our sample were still
residing in their state of birth when they were between ages 15 to 18, the critical ages when college
decisions are formed.'® In addition, many individuals attend college outside their county of birth,
and therefore, their outlook on future job prospects is likely to be shaped by a wider geographic area
beyond their granular place of birth. As a consequence, estimates based on measures of exposure

to robots at highly disaggregated levels, such as a county, may underestimate the importance of

possible to infer whether or not they were exposed to automation technologies in the United States.

13The first rounds of the ACS conducted between 2001 and 2005 did not cover persons in group quarters. Hence, by
excluding individuals in institutional group quarters in subsequent ACS rounds, we increase the consistency between
ACS years.

14Since we have a fixed number of birth cohorts in our sample, the composition of these birth cohorts in the sample
varies with the survey year. Younger cohorts are mechanically more likely to be observed in more recent survey
years (see Appendix Figure A.3). In Section 3, we show that the results are essentially the same if we restrict the
estimation sample to the 2015-19 survey years where all birth cohorts of interest are observed.

15 An alternative possibility would be to assign robot exposure intensities based on an individual’s place of residence
at survey time rather than that of birth. This would allow us to explore variation in robot exposure at a fine
geographic scale. We do not pursue this approach because, unlike the birthplace which is determined prior to future
technological advances, the actual location of residence may reflect endogenous responses to contemporaneous trends
in robot adoption.

16Because the original analysis of pre-trends in labor market outcomes by Acemoglu and Restrepo (2020) is at the
commuting zone level, one may be worried about the possibility of differential trends at the state level. In Appendix
C, we check for pre-trends in the main labor market outcomes used by Acemoglu and Restrepo (2020) at the state
level. Reassuringly, we find no evidence that labor market trends between 1970 and 1990 across states are significantly
correlated with robot penetration.

For example, according to the 2000 Census, only 7 percent of individuals declared they moved between states
during the last previous five years. By contrast, about 30 percent moved between administrative divisions that are
smaller than a state. Between-state mobility accounts for less than 20 percent of the overall internal migration.

8We use the censuses conducted in 1980, 1990, and 2000 to track birth cohorts’ place of residence at different
moments in time. By its decennial nature, the population census does not allow us to observe all cohorts when they
were ages 15 to 18.



the college premium channel.

Importantly, there is a great deal of variation in the intensity of robot exposure across states,
as shown in Figures A.4 through A.6.'" The difference between the 25 and 75th percentiles in the
robot exposure intensity distribution is approximately 55 percent, and the difference between the

10 and 90 percentiles is more than 230 percent.

3 Research Design and Main Findings

Our analysis exploits geographic and time variation in robot adoption in a difference-in-differences
research design. The first difference is over time across birth cohorts, as some individuals were
exposed to the global advance in robotics before, during, or after their college-going ages depending
on when they were born. The second difference is across locations, as robot adoption differs
substantially across regions depending on their industrial composition. Thus, our analysis compares
individuals who were younger and older during the advance in robotics in more and less exposed
areas. The key difference between this approach and the standard two-group/two-period difference-
in-differences is that we use a continuous measure of “treatment” intensities given by the Bartik-like
variable of robot exposure described above.

It is important to emphasize that, in the presence of important general equilibrium effects,
our approach does not identify the “pure” effects of robots. The adoption of robots could imply
significant changes in the organization of work and induce the adoption of other routine-biased
technologies. For example, manufacturing firms adopting industrial robots may also adopt other
technologies that work in tandem with robots to improve production efficiency, such as automated
conveyor belts, autonomous guided vehicles, or software robots to automate data entry tasks.
Hence, we interpret the measure of robot penetration as a proxy for the routine-biased technology

shocks that affect different industries differently during this time period.

3.1 Basic Specification

To estimate the effects of robots on human capital, we use a baseline specification that takes the
form:
Sist = a + [ Robot penetration, x Post;
+ X0 + Z(I)z(z x FE;) + FE; + FE; + &5 (2)
z€Z
where S;g is the outcome of interest for individual 7 born in state s and birth cohort ¢. All models
include fixed effects for state-of-birth (FEg) and birth-cohort (FE;). Since we are using all of the

ACS rounds pooled into a single file, we include a detailed set of survey-year xage fixed effects. The

19While our state-level analysis comes at a cost in terms of loss of variation, much of the variation in the commuting-
zone level data in fact stems from differences between (rather than within) states. Figure A.7 illustrates this visually.
Remarkably, state fixed effects account for about 75 percent of the overall cross-commuting zone variation in robot
exposure intensity. This suggests that our state-level analysis captures a substantial portion of the relevant identifying
variation.



vector X/, includes a set of basic demographic characteristics such as gender and race. The term
> .cz (2 x FEy) controls for interactions between birth-cohort fixed effects and a full set of 1990
state characteristics Z. Basic state-level demographic characteristics include the log of population,
the share of the population over 65 years of age, the share of the population under 5 years of age,
the share of blacks, and the share of the population that is urban. To account for any possible
convergence (or divergence) effects in human capital across states, we also control for interactions
between 1990 state college attainment and birth-cohort fixed effects. The 1990s also witnessed other
major shocks affecting US labor markets. Following Acemoglu and Restrepo (2020), we control for
the share of manufacturing employment in 1990, the share of light manufacturing employment in
1990 (textile industry and the paper, publishing, and printing industry), the share of employment
in routine jobs in 1990, and a measure of exposure to imports from China, all of which interacted
with birth-cohort fixed effects.?? The residual term, &, is clustered at the state-of-birth level to
allow for serial correlation across birth cohorts.

The key independent variable of interest is given by the interaction between our time-invariant
measure of robot exposure intensity (Robot penetration,) and an indicator for the cohorts exposed
to the dramatic advance in robotics technology during their college-going years (Post;). Figure
1 provides descriptive evidence that the dramatic advance in robot adoption started in the early
1990s and became particularly salient around 1995.2! If individuals have altered their human
capital decisions in response to automation, one would expect these effects to emerge between the
1972 and 1977 cohorts, which were of college-going ages during the mid-1990s. Theory suggests
that this college response should naturally be stronger for younger cohorts, but there is no precise
prediction about when exactly these effects could begin to manifest. To guide our definition of Post,
and summarize our findings in table format parsimoniously, we adopt a hands-off approach that is
similar in spirit to Goodman-Bacon (2021). In particular, we estimate model (2) for all possible
definitions of Post; and choose the one that maximizes the R?, following the idea of structural
break tests (Hansen, 2001). As documented in Appendix D, the breakpoint that best captures
the pattern of college responses in the data is the 1974 birth cohort. Thus, we use this definition
throughout the paper.

Identification. A causal interpretation of our results rests crucially on the assumption that the
outcomes of individuals from areas that experienced different robot penetration intensities would
have followed similar trends over time across birth cohorts in the absence of the global advance in
robotics. Note that the identifying assumption does not require that low- and high-exposed areas
are similar in observable or unobservable factors, but requires that such factors evolve similarly over

time. By conditioning on state and birth-year fixed effects, the parameter of interest is identified

20We use the measure of exposure to imports from China developed by Autor et al. (2013). They construct this
measure at the commuting zone level. For our analysis, we re-constructed this measure at the state level. The
share of employment in routine jobs is defined as in Autor and Dorn (2013): routine occupations that are in the top
employment-weighted third of routine task-intensity.

21 Consistent with this descriptive evidence, in Appendix B, we document that the effects of robots on labor markets
became particularly pronounced by the mid-1990s.
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from within-state differences between cohorts that were exposed at younger and older ages to robots
after partialling out shocks common to all states. The interaction of a wide range of pretreatment
state characteristics with birth-cohort trends reduces the risk of differential trends driven by other
factors. More importantly, we will show that states disproportionately exposed to robots were on
similar trends for approximately 50 years before the birth cohorts exposed to robots during their
college-going ages.

The inclusion of manufacturing shares (interacted with birth-cohort fixed effects) means that
we are exploiting variation in robot penetration within manufacturing industries across states. The
comparison is thus between younger and older cohorts from states with similar exposure to manu-
facturing employment but that differ in their overall robot penetration. This is important because
robot penetration was much higher in manufacturing industries, and these industries have experi-
enced a secular decline that started before the recent progress in robotics technology. Controlling
for the baseline manufacturing employment ensures that our estimates are not confounded by some
long-run common causal factor behind the general manufacturing decline correlated with trends in

human capital.

3.2 Visual Evidence

The evidence suggests that the recent advances in robotics became salient by the mid-1990s. There-
fore, the first birth cohorts who could have altered their human capital investments in response
to the robot-induced shock range between the 1972 and 1977 cohorts, since they were between 18
and 23 years old during this period. To evaluate this premise and the plausibility of the common
trends assumption, we present results from estimating a fully flexible version of equation (2) that
replaces the Post; dummy with birth-cohort indicators:

Sist = + Zﬁt Robot penetration, x 1{r =t}

teT

+ XiyQ + ) ®.(2 x FEy) + FE, + FE; + &
z€Z

3)

where 1{-}’s are indicators for birth cohorts, which are equal to one if the observation falls in
birth year t. The cohort of comparison is 1953, the oldest group in our sample. By estimating
the effects separately for each birth cohort, this approach allows us to assess the plausibility of
the identification condition visually and transparently without imposing any parametric structure.
There is no reason to expect higher- versus lower-exposure states to have differential trends before
the 1972 cohort, as these cohorts had largely completed their schooling investments by the mid-
1990s. Thus, if the identifying assumption is valid, the path of the cohort-specific coefficients {/;}
should be flat prior to 1972 and begin to diverge only around this date. Any clear tendency toward
improving schooling before 1972 would suggest that our results may simply reflect pre-existing
differential trends across more-and less-exposed states.

Panel A of Figure 3 plots the estimated coefficients of 8; and corresponding 95 percent confidence

intervals for each birth cohort. The coefficients are shown in percentage points for ease of reading.
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The pattern is fairly clear. We do not observe any clear tendency toward improving or deteriorating
schooling before the 1972 cohort. After the 1972 cohort, we observe a meaningful, visually clear,
and gradual increase in bachelor’s degree completion in higher-versus-lower-exposed areas. This
is the pattern that one would expect to observe if the identification condition holds. The gradual
increase in the estimated effect is natural, given that younger cohorts spent more childhood years
exposed to robots and given the increasing adoption of robots over time. The effects begin to
emerge with the 1974 cohort but become highly significant only after the 1977 birth cohort.

The 1974 birth cohort was 18 in 1992, at which point they would be preparing to graduate from
high school and make decisions about starting college in 1993. While many students, especially
at less selective universities, take more than four years to graduate from college, the fraction who
delay their entry into college is relatively small 12-16 percent.?? This suggests that these effects
do not come solely from increased enrollment, since the adoption of robots experienced the largest
increase in the mid-1990s and had barely begun in 1992. It could be that the 1974 cohort is equally
likely to enroll in college, but they are more likely to persist in college as the shock begins during
their time in college. For example, youths initially enrolled in associate’s degree programs may
later pursue a bachelor’s degree, a practice occurring in 31 percent of cases (Shapiro et al., 2017).23

In the next subsection, we will provide evidence consistent with this possibility.

Longer Pretrends. To provide further evidence on the identification assumption, we repeat the
flexible model (3) using the census conducted in 1990. With these data, we are able to look at
longer birth cohorts whose college attainment was measured before the robot-induced shock. If the
identification condition holds, these past trends in college attainment should be unrelated to the
robot penetration across states. We construct the estimation sample following the same logic as in
the baseline sample by including individuals between ages 30 and 66 at the time of the census —or
cohorts born between 1924 and 1960. The results are displayed in Panel B of Figure 3. Consistent
with the identification condition, the placebo coeflicients are statistically insignificant and small in
magnitude without any clear tendency toward improving or deteriorating college attainment.

In sum, the evidence indicates that the pre-robot cohorts were on similar trends for at least
since 1924, approximately 50 years. This is striking given that this period was marked by a series of
pivotal social, cultural, and economic factors plausibly affecting educational investments, including
the Great Depression, World War II, baby boom, civil rights movements, and significant expansion
of social safety net programs. Notably, these birth cohorts also experienced a secular increase in
schooling attainment, with bachelor’s degree completion rates nearly tripling between the 1924 and

1970 birth cohorts. Yet, these remarkable trends appear to be largely unrelated to the recent trends

22Based on the Beginning Postsecondary Students Longitudinal Study, for people beginning their postsecondary
education in 1995-1996, 16 percent delayed their entry from high school to college for those enrolling in public four-
year universities, and this figure is 12 percent at private not-for-profit four-year institutions (National Center for
Education Statistics, 2005).

23See the first row in columns 3 and 4 of Table 2 in (Shapiro et al., 2017). Among a full cohort of first-time
students who started their postsecondary studies at community colleges 852,439 —approximately 268,749 transferred
to four-year institutions (31 percent).
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in robot-induced changes in routine-biased technologies. In the absence of the recent advances in
robotics technology, higher-versus-lower-exposed states most likely would have experienced similar

trends before, during, and after the robot-exposed birth cohorts.

3.3 Baseline Estimates

The flexible estimates provide visually clear evidence that the advance in robotics taking place since
the mid-1990s has had significant impacts on college attainment. We now focus on the parametric,
parsimonious model (2) to summarize magnitudes in tables and perform specification checks.

These results are reported in Table 1. Column (1) presents results from a specification that
incorporates the basic set of fixed effects, individual demographic characteristics as well as 1990 state
demographic characteristics interacted with birth-cohort fixed effects. The coefficient of interest
is estimated at 0.32 with a standard error of 0.07 and significant at the 1 percent level. Column
(2) adds baseline shares of employment in manufacturing and light manufacturing interacted with
birth cohort fixed effects. The inclusion of these controls has little impact on the coefficient of
interest, going to 0.36. Columns (3) and (4) control for the exposure to imports from China and
the baseline share of employment in routine jobs, again interacted with birth cohort fixed effects.
We now observe effects that are slightly larger in magnitude, with the coefficient of interest standing
at 0.40 (standard error=0.18). Column (5) presents results from our preferred specification, which
includes interactions between baseline state college attainment and birth cohort fixed effects. The
coefficient of interest becomes somewhat larger in magnitude and much more precisely estimated.
This suggests that the inclusion of these additional controls substantially reduces sampling variation
and any convergence or divergence effect cause us to underestimate the effects of robots.

Quantitatively, the results from the preferred specification imply that the change in the bache-
lor’s degree completion rate from the older- to younger-exposed cohorts in a highly affected state
like Ohio was 1.5 percentage points more positive compared to the change between the same cohorts
in a more mildly affected state like Montana. Relative to the sample mean, this effect represents
an increase of approximately 5 percent.

In our main analysis, we use all rounds of the ACS pooled into a single file to increase power.
An advantage of this approach beyond the gains in precision is that it reduces biases due to
mortality attrition in the older cohorts, as individuals are included in the sample only if they are
alive at the time of the survey.?* However, by construction, younger cohorts are disproportionately
underrepresented in the estimation sample.?® As a robustness check, we restrict the estimation
sample to the ACS conducted between 2015 and 2019, where all the birth cohorts are observed

with similar likelihood. This restriction reduces sample size by approximately 66 percent, yet both

24For example, if more educated individuals in the older birth cohorts are more likely to survive at the time they
are observed in the survey (as previous studies suggest (Lleras-Muney, 2005)), then it may change the composition
of the sample. This issue is largely absent when including all rounds of the ACS, beginning since 2001, because we
observe the outcomes of the older cohorts at younger ages when mortality risk is relatively low and because education
changes very little with age after formal schooling is completed.

25This is illustrated in Figure A.1, which plots the share of each birth cohort in the estimation sample.
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the point estimate and standard error are not appreciably affected (column 6, Table 1). This is
likely due to the fact that, although the nominal sample size shrinks substantially, the number of
clusters is unchanged.

In Appendix Table E.1, we explore heterogeneity with respect to gender. We do not observe
statistically meaningful differences in the estimated coefficients between males and females. At
first glance, this lack of heterogeneous effects could seem surprising, given that Acemoglu and
Restrepo (2020) document effects of robots on labor market outcomes that somewhat larger for
males (though not always statistically significant). However, these forces may be counterbalanced
whether female education responds more strongly to a same change in labor market conditions.
This possibility is plausible in view of the recent evidence by Charles et al. (2018) documenting
that a labor market shock, which similarly affected male and female employment opportunities,
had larger effects on female education. This possibility is also consistent with the rapid growth in
female schooling during our study period.

Because the underlying variation that we exploit is across states and birth cohorts, the use of
individual-level data in the analysis effectively weights state-cohort clusters by population size. As
discussed by Solon et al. (2015), such weighting is appropriate in the presence of heteroskedastic-
ity, but it may be counterproductive in its absence. We follow their practical recommendations
and report both weighted and unweighted estimates. To estimate the unweighted version of model
(2), we first estimate a regression of bachelor’s degree attainment on individual-level characteris-
tics (gender, race) and then collapse the residuals into state-of-birth and year-of-birth cells. We
then estimate model (2) using these state-cohort level data. Appendix Table E.2 shows that the
unweighted estimate is extremely similar to the weighted one (0.48 versus 0.44) but notably less

precise. This confirms the strengths of our main approach.

2SLS estimates. We next present two-stage least squares (2SLS) estimates where our European-
based robot penetration measured is used as an instrumental variable for the observed US robot
penetration. These results are presented in Appendix Table E.3. Column (1) documents a powerful
first-stage relationship, as had already been noted in Figure 2, with the F-statistics well above the
conventional weak instrument threshold of 10. Notably, the F-statistics is also well above 100,
which is important in view of the recent advances in instrumental variable estimation, suggesting
that it may be the relevant threshold for weak instruments (Lee et al., 2022). Turning to the
second stage, we find that the 2SLS estimate is comparable to the reduced-form coefficient and

corresponding OLS estimates, both in magnitude and statistical significance.

Additional robustness checks. We perform several additional sensitivity tests, all of which
are presented in the Online Appendix to save space. We examine the robustness of the basic
results to: i) alternative forms of constructing the robot penetration measure (Appendix Table
E.4); ii) excluding outlier observations based on regression residuals as well as on Cook’s distance
measures (Appendix Table E.5); iii) excluding industries with the largest Rotemberg weights (Ap-
pendix Table E.6), as recommended by Goldsmith-Pinkham et al. (2020); v including baseline
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employment rate and 1990-2008 change in state demographics interacted with birth-cohort fixed
effects (Appendix Table E.7); and v) alternative inference procedures (Appendix Table E.8), in-
cluding standard errors that account for spatial correlation across areas with similar sectoral shares
(Borusyak et al., 2022; Adao et al., 2019).

The distribution of education. We next investigate the sources of the gains in bachelor’s degree
completion. As shown in Table 2, the robot-induced increase in bachelor attainment is driven by a
combination of the extensive and intensive margins: lower likelihood of having a high school degree
(extensive margin) and an associate’s degree (intensive margin). Workers with these education
categories fall in the middle of the skill distribution and are more likely to engage in occupations
highly prone to be automated by robots.?% As a result, youths who otherwise would have completed
high school or an associate’s degree had incentives to pursue a bachelor’s degree-level education.
From a causal perspective, we take this pattern in the data as an indication that our findings
are unlikely to be the product of unobservable factors affecting all individuals in the bottom and
middle of the skill distribution similarly. The fact that the effects are driven by a combination of
the intensive and extensive margins suggests that both the opportunity cost and premium channels
are at play. The former is more likely to account for the extensive margin effect, whereas the latter
for the intensive margin effect.

We also learn other important insights from the table. Among individuals who have at most a
high school degree, we can distinguish between those who have less than one year of college credit
and those who have more than one year of college credit but no degree. As one can infer from
Table 2, there is an increase in the likelihood of having more than one year of college credit but not
a degree. This is consistent with the effects coming in part from individuals who otherwise would
not have started a bachelor’s degree at all. The negative effect on associate’s degree completion is
also consistent with persistence in college, as some youths may be enrolling in or transferring to a
bachelor’s degree program during the course of their associate’s degree training.?”

Overall, the results of this section show that exposure to robots leads to a significant im-
provement in bachelor’s degree completion, an effect driven by youths in the middle of the skill
distribution who otherwise would have attained an education level prone to automation by robots.
We next turn to major identification concerns and provide further insights into the effects of robots.

To save space, we focus on the indicator of bachelor’s degree completion in the remaining analyses.

26Even workers with associate’s degrees are disproportionately engaged in occupations replaceable by robots, such
as assemblers of electrical equipment, automobile mechanics, cementing and gluing machine operators, machinists,
and machine operators. According to the 1990 Census, approximately 22 percent of jobs performed by workers with
an associate’s college degree are “replaceable” by industrial robots, as defined in Acemoglu and Restrepo (2020).
The same figure for workers with a high-school degree is 38 percent, and about 7 percent for those with a bachelor’s
degree.

2"The ACS data provide information on the highest degree completed, so an individual with both an associate’s and
bachelor’s degree is recorded as having a bachelor’s degree. Therefore, these results may reflect individuals starting
a bachelor’s rather than an associate’s degree, individuals transferring from an associate’s to a bachelor’s degree
before completing the former, individuals enrolling in a bachelor’s degree after completing an associate’s degree, or a
combination of these three possibilities. We are unable to identify the separate importance of each mechanism.
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4 Robustness Checks and Identification Concerns

In this section, we investigate potential threats to the validity of our findings, including possible

mean reversion and other shocks coinciding with the advances in robotics.

4.1 Preexisting Trends and Mean Reversion

While the magnitude of our results is virtually unchanged when we flexibly control for differences
in trends correlated with baseline college attainment levels, and while we find no evidence of pre-
trends, one might still be worried about the possibility that our estimates are capturing some
pre-existing convergence (or divergence) effect in human capital across states. We perform several

additional exercises to address this issue in Table 3.

Mean reversion. Our baseline specification includes interactions between college attainment
levels in 1990 and birth cohort fixed effects. Thus, this model accounts to a great extent for any
possible mean-reverting (or diverging) dynamics in college attainment taking place around the onset
of recent advances in robotics technology. As an additional check, we consider interactions between
birth cohort fixed effects and 1970 college attainment levels, approximately 30 years before the
surge in the adoption of robots. Column (2) of Table 3 shows that, if anything, the estimated effect
becomes slightly larger, with the coefficient of interest going from 0.48 to 0.50. Column (3) goes
a step further and controls rather for the 1970-1990 change in college attainment interacted with
birth cohort fixed effects. Once again, the point estimate becomes slightly larger in magnitude and

remains highly significant.

State-specific pretrends. Another way to investigate whether pre-existing mean-reverting dy-
namics could explain our findings is to directly control for pre-robot state-specific linear trends. To
do so, we first estimate state-specific linear trends using data covering the pre-robot cohorts, which
leads us to estimate a slope coefficient &, for each state. We then extrapolate the pre-robot trends
in our baseline specification using the following augmented specification:

state-specific pre-trends
"

Sist = @ + [ Robot penetrationg x Post; + Z Rsllyv =s]-t
SEO (4)

+ X[ + ) ®.(2 x FE) + FE, + FE; + &gy
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By including state-specific pre-trends, we account for underlying linear time trends in college at-
tainment potentially correlated with the exposure to robots across states.?® As shown in column (4)
of Table 3, the inclusion of these pretrends has virtually no impact on our results, with both the

coefficients and standard errors nearly identical to the baseline. This is perhaps unsurprising given

28 An alternative approach is to control for the interaction between a cohort trend and state-of-birth dummies. We
do not consider this approach because these trends may mechanically bias our estimates in the presence of varying
treatment effects across birth cohorts (Lee and Solon, 2011; Wolfers, 2006).
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the essentially flat pre-robot trends documented in Figure 3.

4.2 Examining Within Region Variation

While the results above are very reassuring, one could still be concerned that they are simply
capturing that on average northern states are more exposed to robots and that the north diverged
from the rest of the United States for other reasons. As a robustness check, we incorporate a rich
set of region-of-birth x birth-cohort fixed effects (column 5, Table 3). With this more demanding
specification, the impact of robots is identified not from comparisons between northern states and
other regions but rather from differences between states within the same region. Therefore, we can
rule out any form of mean-reverting (or diverging) trends across regions. While the inclusion of this
detailed set of fixed effects substantially reduces the variation in the data, which is natural as there
are fewer states within each region, the results are strikingly similar to the baseline. Although the
precision of the estimation is substantially reduced as expected, the coefficient of interest remains

almost unchanged and statistically significant at the 5 percent level.

4.3 Other Coincident Shocks

The results from the previous subsections are striking and support a causal interpretation of our
estimates. However, the identification condition could still be violated if there were other impor-
tant changes coinciding with the recent advances in robotic technology. We now consider several
important contemporary shocks and provide direct evidence that they are unlikely to generate the

specific pattern of exposure effects we document.

Import competition and offshoring. While our baseline specification controls for exposure
to imports from China, the United States also experienced an unprecedented increase in imports
from Mexico during the 1990s with the signing of the North American Free Trade Agreement
(NAFTA) in 1994. Previous studies have shown that the NAFTA had important consequences
for US labor markets (Hakobyan and McLaren, 2016). As a robustness check, we control for
interactions between the exposure to imports from Mexico and birth cohort fixed effects (Table
4, column 2). The coefficient of interest remains virtually unchanged. Another major factor
affecting US labor markets is offshoring —the practice of reallocating production processes to other
countries—, which expanded significantly during the 1990s and 2000s with the development of
communication technologies (Hummels et al., 2018). To investigate the sensitivity of our results to
this phenomenon, we use the degree of task “offshorability” in an industry from Autor and Dorn
(2013) and baseline industrial composition of employment across states to construct a Bartik-like
measure of exposure to offshoring. We then repeat the baseline specification controlling for the
exposure to offshoring, interacted with birth cohort fixed effects (Table 4, column 3). Both the

point estimate and its standard error remain strikingly unaltered.
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Other technologies. The remarkable progress in robotics technology we study coincided with
other important routine-biased technological advancements. These include information and com-
puter technologies. To control for these trends, we generate Bartik measures of exposure to in-
formation technology capital and computer intensity across states, as in Acemoglu and Restrepo
(2020). Controlling for the exposure to these technologies (interacted with birth cohort fixed ef-
fects) has no material impact on our results. If anything, the magnitude of the results becomes
slightly larger. It seems unlikely that our results are simply reflecting the effects of these major

technological shocks.

1980-82 recession. Many of the post-robot cohorts were in their early childhood years during
the recession between 1980 and 1982, whose severity varied substantially across regions. The
illuminating work of Stuart (2022) shows that exposure to this recession in the first years of life
led to poorer adult outcomes later in life, including reduced educational attainment. In light of
this evidence, for the recession to be a threat to our identification strategy, it would need to have
differentially affected states that were less exposed to robots. In practice, the correlation between
robot exposure and recession severity as a measure in Stuart (2022) is fairly weak, and if anything,
the recession was slightly more severe in states with greater exposure to robots. Not surprisingly,
considering this pattern in the data, the inclusion of the recession severity measure interacted with

birth-cohort effects yields coefficients of 8 very close to the baseline (column 3, Table 4).

Social reforms. A final consideration is the adoption of major reforms and safety net programs
during the second half of the 20th century, many of which have been shown to have important
implications for educational attainment. A major change in educational policy was the school fi-
nance reforms across states that began in the early 1970s and accelerated in the 1980s, which led
to a substantial increase in K-12 education spending and improvements in educational attainment
(Jackson et al., 2016). Other important social reforms include the war on poverty programs im-
plemented during the late-1960s and 1970s, including Head Start, Food Stamp, and Community
Health Centers.??During this period, Medicaid was also introduced for the first time in some states
and Goodman-Bacon (2021) documents that it had important long-run consequences for human
capital.

While the adoption of these programs differed across states and affected many of the cohorts in
our estimation sample,?’ Appendix Table E.9 documents that the post-robot cohorts from states
with greater robot penetration are not significantly more likely to have been exposed to these pro-

grams in childhood. Thus, these programs cannot explain much of the gains in bachelor attainment

29 Johnson and Jackson (2019) and Hoynes et al. (2016) document that Head Start and Food Stamp respectively lead
to improvements in long-run adult outcomes. Bailey and Goodman-Bacon (2015) provide evidence that Community
Health Centers of improvements in health outcomes, particularly of the elderly, but they do not examine other
socioeconomic outcomes such as education or labor market outcomes.

39The shares of the population exposed in the relevant childhood years of individuals in our sample range from 17 to
58 percent depending on the program. Data on Community Health Centers come from Bailey and Goodman-Bacon
(2015), Head Start from Bailey et al. (2021), Food Stamp from Hoynes et al. (2016), and School Finance Reforms
from Jackson et al. (2016).
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we report in Table 1. Consistent with this notion, controlling for the exposure to these programs has
very little impact on our estimates (columns 4-6, Table 4). In Appendix Table E.10, we control for
the influence of these programs in a more flexible fashion by including program-year x birth-cohort

fixed effects. Once again, these controls do not materially affect our results.

4.4 FEvidence from IPEDS

In our final robustness exercise, we use data from the Integrated Postsecondary Education Data
System (IPEDS). The IPEDS is a comprehensive source of information on enrollments and other as-
pects of postsecondary education, managed by the National Center for Education Statistics (NCES).
An important benefit of the IPEDS relative to ACS is that, since they come from administrative
registers, measurement error is less likely to be an issue. However, a major drawback of IPEDS
is that it is not possible to precisely measure childhood exposure to robots using this database
because it does not record information on an individual’s place-of-birth, but only the number of en-
rollments in an institution. Therefore, we assume that the childhood place of residence of enrollees
corresponds to the location of the institution where they are currently enrolled. This naturally
introduces measurement error, but as discussed in Section 2 this is likely to be less of an issue at
the state level.

Using these data, we estimate the following first-difference model of changes in bachelor’s degree

enrollment rates:
Ays90—08 = @ + YRobot penetration, + Z.Q + & (5)

where s indexes state and Z represents controls for baseline state characteristics, manufacturing
shares, the share of employment in routine jobs, and the exposure to imports from China. We use
standard errors robust to heterokedasticity and the observations are weighted by population size.

The results from estimating the specification from equation (5) are presented in column 1
of Table 5. Consistent with our baseline results, we find that states with greater exposure to
robots experienced a differential increase in bachelor’s degree enrollments. While this result is less
precise when compared to those obtained from the ACS, it is statistically significant at conventional
levels. As a falsification exercise, we regress past changes in bachelor enrollment rates on future
exposure to robots. The estimated coefficient is about 8 times smaller in magnitude and far from
significant (column 2), showing that relationship between robots and bachelor enrollment was absent
immediately before the advance in robotics technology.

Overall, these results support the basic picture presented so far. While the estimated coefficient
is not directly comparable to our baseline approach, it implies that the change in the bachelor’s
degree enrollment rate in a highly affected state like Ohio was 5.3 percentage points more positive

compared to the change in a more mildly affected state like Montana.
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5 Effects on Labor Market Earnings

An important question is whether robots affected the path of income of cohorts exposed to them in
childhood. Answers to this question may shed light on whether and by how much college education
mitigates the displacement effects of robots. To examine this question systematically, we estimate
our model (2) for several measures of income as dependent variables. A complication with this
exercise is that the introduction of robots contemporaneously affected the labor market outcomes
of both younger and older adults. As such, late cohorts were the ones feeling the bulk of the
displacement effects created by robots and they might still be experiencing the scarring effects
from job losses they incurred during their earlier working life. In this case, our estimates would
be biased toward finding a relative improvement in the labor market incomes of younger cohorts,
even in the absence of a causal relationship. To mitigate this concern, we control for a detailed set
of state-of-residence x birth-cohort fixed effects. With these additional controls, the parameter of
interest is identified from the comparison between individuals within the same labor market but
that grew up in different places during their education years.

These results are presented in Table 6. Columns (1)-(2) look at the log total personal income
from all sources in the previous year. Columns (3) and (4) focus on log earned income, which
includes the income earned from wages or a person’s own business in the previous year. Columns
(5) and (6) present results with the log income wages as the dependent variable, which is each
respondent’s total pre-tax wage and salary income received as an employee in the previous year.
As one can infer from the table, cohorts exposed to robots in childhood see an increase (or a smaller
decline) in their labor market income relative to older cohorts exposed later in the life cycle. The
change in the income from older-exposed to younger-exposed cohorts in a highly affected state like
Ohio was 2.3-2.6 percent more positive (or less negative) compared to the change between the same

cohorts in a more mildly affected state like Montana.

Role of education. It is inherently interesting to understand to what extent education shapes the
income effects we find. In principle, education is the most plausible explanation behind these results
but they could also have arisen in the absence of an educational response if, for example, reallocation
to less robot-exposed sectors is easier for individuals in the early stage of their labor market careers.
To explore the role of education, we perform a mediation-style analysis by controlling for bachelor
attainment in the income regressions and establishing the extent to which the estimated coefficient
of interest is reduced. The results from this exercise are presented in the even-numbered columns
of Table 6. Once the association between robots and education is accounted for, the magnitude of
the income effects drops massively and loses all of its statistical significance. While this exercise
must be interpreted with caution since education is a “bad control” affected by the exposure to
robots, the picture is striking and suggests that education is likely the most important driver of
the income effects.

In summary, cohorts exposed to robots at the beginning of the life-cycle experienced an increase

in their incomes relative to late-exposed cohorts. Note that this does not imply that automation
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is good on net for younger cohorts. The introduction of robots had negative impacts on the labor
market income of everyone, but this negative effect is smaller for younger cohorts who could alter

their educational decisions.

6 Mechanisms

This section provides evidence on the likely mechanisms behind the college response to robots.
The patterns in the data suggest that changes in the college premium and opportunity costs of

attending college are at work.

6.1 Market Incentives

The adoption of industrial robots may alter the incentives to attend college by altering their op-
portunity costs and expected labor market premium. Robots may reduce the opportunity costs of
attending college by reducing the average earnings a young unskilled person would receive in the
market. At the same time, since the effects of routine-biased technological changes are persistent
over time and felt heterogeneously across the skill distribution, it has the potential to affect the
college premium and thus the attractiveness of college attendance.

To investigate these hypotheses, we measure log-changes in earnings and college premium using
the census for 1990 and the ACS pooled across the years 2006-2008. We refer to the time window
in the pooled ACS data simply as 2008. We assume that individuals attending college in a given
year forgo immediate income gains equivalent to the average earnings of individuals aged 18-21
without any college training.?! We measure the college premium as the earnings gap between older
working adults (ages 22-65) with and without college training. We compute the average of these
labor market measures within about 220,000 cells defined by demographic x state groups. The
demographic groups are defined by gender (x2), age (x48), race (x9), and place-of-birth (x52).3?
For a given outcome y of demographic group g in state s, we estimate the following first-difference

specification:
Aygs90—0s = @ + YRobot penetration, + Z,Q + oy + &gs (6)

where Aygs90—08 is the log-change in the labor market measure between 1990 and 2008. The «y
represents a detailed set of demographic group fixed effects, which help reduce concerns about
possible compositional changes. Standard errors are clustered at the state level, and all regressions
are weighted by the 1990 cell size.

The results from estimating (6) are presented in Table 7. Column (1) shows that states expe-
riencing greater exposure to robots have seen a decline in the average earnings of young workers.

The magnitude of this effect suggests a sizeable decline in the opportunity cost of attending college.

31We exclude currently enrolled students, as they have on average lower earnings than those already fully in the
labor market.

32The place of birth corresponds to a state for US-born individuals and to a country for foreign-born people. We
group the place of birth within a same category for individuals born outside of the United States.
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The point estimate of -0.076 implies that the state in the 75th percentile of the exposure to robot
distribution experienced a decline of approximately 17 percent in the labor market income a young
adult worker receives.

Columns (2) to (5) also document a decline in the average earnings of older adult workers across
all education groups (high school, associate’s degree, and bachelor’s degree).?® This effect is smaller
for workers with a bachelor’s degree, so the exposure to robots increased the premium from having
a bachelor’s degree relative to high school and associate’s degree. The increase in the skill premium
from having a bachelor’s degree relative associate’s degree is significantly larger than that relative
to high school. This is consistent with our findings in Table 2 showing that part of the increase in
bachelor’s degree attainment stems from individuals in the middle of the skill distribution.

We interpret the findings of this section as evidence supporting the hypothesis that the adoption
of industrial robots altered the market incentives to invest in Bachelor’s-level training by raising

its relative returns and reducing its opportunity cost.

6.2 Parental Resources

Since the widespread adoption of robots led to a sizable decline in average income, it is natural to
ask if this shock was large enough to translate into lower parental income. A decline in parental
resources may limit the ability of credit-constrained parents to finance college, generating an effect
that must work against the observed increase in college attainment we document. To explore the
empirical importance of this effect, we estimate equation (6) using the log-change in total family
income as the dependent variable. We limit the sample to families where parents co-reside with
children aged 17-18, the timing of initial college decisions. We collapse the log-total income in
1990 and 2008 in each state by education categories in addition to the demographic cells defined
in the previous subsection. We then control for the full set of demographic-cell fixed effects in our
estimation.

The results are shown in column (7) of Table 7. As one can see, there is no evidence of
an effect on parental income. The estimated coefficient is statistically insignificant and small in
magnitude. A possible reason for this null result is that parents could have been able to offset the
robot-induced income loss by increasing their overall labor supply or by enrolling in government
assistance programs.®* Identifying the importance of these responses is beyond the scope of this
paper and a possible direction for future work. In any case, the evidence suggests that the null
change in overall parental resources is not a mechanism working against the observed increase in

college attainment we document.

33The fact that we observe a significant decline even in the earnings of individuals with a Bachelor’s degree (though
to a much lesser degree than other education groups) suggests that college education is not completely protective
against the displacement consequences created by robots.

34 Acemoglu and Restrepo (2020) provide evidence consistent with the latter. Specifically, they document that
areas with greater exposure to robots saw a larger increase in the use of Social Security Administration retirement,
disability benefits, and other government transfers.
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6.3 Supply-Side Responses

One less apparent mechanism is changes on the side of supply. Institutions awarding bachelor’s
degrees may have responded to changing labor market conditions by altering tuition costs. Addi-
tionally, local and state governments may help facilitate access to college in response to a growing
mass of young adults failing to find a job in affected labor markets. As a consequence, state ad-
ministrations may have increased their investments in education and training programs or directly
provided grants to students.

To explore these possibilities, we use state-level data on college tuition and fees as well as data
on revenue from state and local appropriations available in the IPEDS database. We also use
data on government expenditure on education and training assistance programs from the Regional
Economic Information System. With these data, we estimate the effects of robots on tuition,
revenue, and expenditure using a state-level first difference version of equation (6). As can be seen
from Appendix Table E.11, there is no systematic evidence of statistically meaningful effects on
these variables. We conclude that there is limited support for the interpretation that supply-side

responses play an important role in explaining the improvements in college attainment.

7 Implications for Earnings Dynamics and Policy

The key message we take from the results presented thus far is that individuals tend to adjust
to routine-biased technological shocks by redirecting their human capital investments toward skill
areas that are less susceptible to automation. However, it is far from straightforward to interpret
the magnitude of this finding based only on the reduced-form analysis. Ideally, one would like
to understand whether these effects are of the right order of magnitude to significantly alter the
adjustment of the economy to changes in technology: how big would the long-term effects of robots
on earnings be in the absence of the endogenous educational response? Is this mechanism going to
gain or lose relevance over time as more people become educated and enter the workforce? What
is the role of policy in terms of subsidies in enhancing this endogenous response and determining
the path of earnings? To interpret the magnitude of the findings, we develop and estimate a simple
model of human capital investments where changes in the demand and supply of skills shape the
evolution of earnings. We view this exercise as exploratory in nature since we are abstracting from
other more complex forms of general equilibrium effects. Nevertheless, our analysis can be taken

as a natural starting point for further research.

7.1 Model

This section introduces the model of human capital investments and key variable definitions. In the
model, individuals are heterogeneous in terms of preferences and parental income. Additionally,
individuals differ in their labor market of residence, defined as the state where they were residing

at the time of their college decisions. We omit individual and state subscripts for simplicity and
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ease of readability.

7.1.A Human Capital

The model consists of two parts. In the first part, individuals are young adults (from 18 to 21
inclusive) and must decide whether to attend bachelor’s-level college or enter the labor force. We
can also think of this binary decision as individuals choosing between attending bachelor’s-level
college or pursuing a shorter post-secondary training and entering the labor force earlier. In the
second part, all individuals enter the labor force and receive a labor market income that depends
on their educational attainment. Therefore, the educational decisions made in the first period are
irreversible.?> To match the typical working life of 48 years and use periods of equal length, time
is divided into 12 periods of 4 years each. Individuals are credit-constrained and can only borrow
to finance the costs of college attendance. There are no savings, so consumption is equal to income
in each period.?® The choice of college attendance is represented by s = {0, 1}, where 1 indicates

attendance and 0 otherwise. Periods are represented by ¢t = {0,1,...,11}.

Preferences. The utility is intertemporally separable and depends on consumption (c¢) and pref-
erences for college education. The discount factor is 8 = 1/(1 + p), with a discount rate of p. The
instantaneous utility function over consumption is CRRA:

7
ules) = 725 (7)

The parameter v is the inverse of the intertemporal elasticity of substitution of consumption. A

higher value of v implies that individuals place a higher value on immediate consumption and are
thus less willing to delay consumption today to pursue college. Individuals face a heterogeneous
disutility shock from attending college, denoted by 7. Omne can interpret this heterogeneity as
differences in the psych cost of learning or capacity of individuals to adapt to the academic and
college social environment. For example, students who struggle with academic coursework may
find it difficult to keep up with the demands of college-level work, leading to stress, and anxiety,
resulting in a greater disutility associated with attending college. Similarly, some students may have
difficulty adapting to the social environment of college, such as making new friends, joining clubs
or organizations, or participating in extracurricular activities. These students may feel socially
isolated or excluded from the college community, increasing the disutility from attending college.
We assume that each individual draws an idiosyncratic disutility shock from a normal distribution

with mean p, and standard deviation o,.

35 An interpretation of this assumption is that there are important psych costs of learning that become growingly
important with age. This is consistent with data showing that educational attainment changes little with age once
an individual completes her formal education decisions.

36The assumption of no saving is unlikely to significantly affect our quantitative analysis, as we are studying an
“once-for-all” decision that is made at the beginning of the life cycle, when individuals rarely save. This assumption
is fairly standard in the literature whose focus is to understand educational decisions, including the prominent studies
by Arcidiacono et al. (2012) and Wiswall and Zafar (2015).
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Budget constraint. The total costs of attending college include both tuition and fees as well as liv-
ing expenses such as housing, food, transportation, and personal items. These costs can be covered
by a combination of government grants and transfers from parents. Grants are distributed based on
predetermined rules that consider the recipient’s parental income, G(I). Similarly, parental trans-
fers are a function of family income and college attendance, such that T(1) = AsI with As € (0, 1).
Students who are unable to cover their full college expenses through grants and parental transfers
can take out loans A up to make up the difference to an interest rate r. Individuals repay the loan
during the two first periods after graduation under a plan with equal payments. Then, consumption

in each period for s = 1 can be written as follows:

MI—(e—g(I)+c,+A ift=0
c1t = { wiy — debt if t ={1,2}
W1t ift>3
where e — g(I) represents tuition and fees net of grants, ¢, living expenditures while in college, A

college loans, dept payment of the loan, and wi; labor market income of college-educated people.

Since there are borrowing constraints, students can only borrow up to limit A:
(e—gI)+ecu—MI<A

in practical terms, consumption of students who require loans to finance college attendance will be
equal to ¢,. For individuals who do not enroll in college, consumption is equal to income in each

period, except in the first period, where they also receive transfers from their parents.

Earnings process. The earnings wg; for an individual at period ¢ with education s is given by:

1nwst = gs(Z) + Ko + gst (8)

where g4(-) is an education-specific function measuring the importance of demographic and back-
ground characteristics, &5 a stochastic shock, and R is the robot penetration in the market.
The semi-elasticity of wages with respect to robots, denoted as k4, is allowed to vary between
young and old workers, as well as between college-educated and non-college-educated people, with
a € {young,old}. This captures the possibility that skilled workers who are less prone to en-
gage in routine-related jobs or those with more experience are less susceptible to the displacement

consequences of industrial robots, as suggested by the evidence in Section 6.

Decision problem. An individual will attend college if the utility gains in consumption due to

college are greater or equal to the disutility of attending college n:

11
> E|uler) ~ )| 2 0 )
t=0

under this framework, the proportion of individuals who attend college is simply the proportion of

individuals who draws a sufficiently low value of 1. Therefore, the normal cumulative distribution
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function, F'(-), determines aggregate college attainment of a given cohort. Increased robot penetra-
tion makes college education more attractive by reducing the labor market income a person would
receive in the first period and by leading to a larger decline in the income of non-college-educated

people.

7.1.B Production

Final goods are produced by a representative firm combining high-skill labor (¢f), low-skill labor
of younger workers (¢r,), low-skill labor of older workers (¢,), and robots (R). By high- and low-
skill labor, we mean bachelor’-level college and non-bachelor’s-level college labor. The production

function takes the following constant elasticity of substitution form:

e
e—1

Q= [Z(ajej)il +(agR)=

JEX

(10)

where x = {H, Ly, Lo} is the set of labor categories, a’s are effective share parameters, and ¢ €
(0,00) is the elasticity of substitution. This production function can be viewed as a reduced-
form version of the task-based model developed by Acemoglu and Autor (2011) and extended in
Acemoglu and Restrepo (2018), where capital competes against labor in the production of tasks.
Increases in agr are interpreted as a task-replacing technological change that expands the range of
tasks that capital can perform. This expansion in turn reduces the effective share parameters of
labor.

Workers are paid their marginal products, so the automation-induced log-change in the price

of labor j € x can be expressed as follows:

—1 1 1
dinw; = = =dlna; + ~dnQ — =dlnt; (11)
S £ £
——
net demand supply
effect effect

Equation (11) determines the equilibrium path of earnings after a technological shock. The first two
terms on the right-hand side represent a net demand effect. A skill-replacing technological change
will reduce the demand for labor via a displacement effect, as captured by a decline in a;. But this
technological change also creates a productivity effect (dln@) that increases the demand for labor,
so the overall demand effect ultimately depends on the relative importance of these forces. The last
term on the right-hand side represents a labor supply effect. As more individuals invest in college
education and become high-skill workers, the supply of low-skill labor declines, and this will drive

up labor earnings of low-skill workers.

Definition 7.1 (Aggregate earnings). Aggregate labor market earnings w in a given moment in

time 1s:

?.:

w = Zﬂjwj, with (9j = J
JEX Zeﬂ'

Jex

In words, overall labor market earnings are calculated as a weighted average of earnings cate-
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gories. In our simulation exercises below, we use this definition to track aggregate earnings over

time.

7.2 Identification and Estimation

We implement a three-step procedure to take the model to the data. First, we estimate the key
earnings parameters {K1iod, Koold, Kyoung} Separately from the rest of the structure of the model,
following the first-differences model used in Section 6. Second, we set some parameters externally.
The curvature coefficient of the utility function, =, is fixed to 1.5, following Abbott et al. (2019).
We assume that the discount rate p is equal to the interest r, and set the latter to 5 percent per
year, as in Heckman et al. (1998). As each period corresponds to 4 years, an annual interest rate of
5 percent is equivalent to an interest rate of 20 percent per period. This implies a discount factor
B of approximately 0.83 (= 1/1.2). The parameters that determine parental transfers in the first
period, \s, are computed separately for enrollers and non-enrollers based on estimates reported by
Abbott et al. (2019).37 The costs of college attendance, including tuition and fees as well as living
expenses while in college, come from the National Center for Education Statistics (NCES, 2004)
for the academic years of 1989-90. Individuals make college decisions based on “expected” grants,
calculated as G(I) = mypq(e + ¢,) for a youth from quartile ¢ of the family income distribution,
where 7, and ¢, are respectively probability of receiving grants and the share of college costs
covered by grants. We calculate 7, and ¢, using information on college grants by family income
reported in NCES (2004).

We estimate expected income for a worker with college attendance status s at period t of the
working life as the average earnings of workers in that group observed in the 1990 census. These
expected earnings profiles are allowed to differ across states. The elasticity of substitution coefficient
e is set to 1.4, based on the evidence in Katz and Murphy (1992). Table 8 summarizes the earnings
coefficient estimated in the first step and the parameters set externally.

In the third step, we use the simulated method of moments to estimate the remaining param-
eters, ¥ = {u,, 0y}, by exploiting the variation provided by the robot-induced shock. Our target
moments are the baseline bachelor’s degree rate and the reduced-form coefficient of the effects of
robots on bachelor attainment. The estimation sample consists of all individuals aged 18 in the
1990 census, the pivotal age when young adults make their college decisions. Recall that these
individuals vary in terms of parental income, preferences, and expected earnings profile, with the
latter determined by an individual’s state of residence. We first solve the college decision of each
individual before the arrival of robots for any given candidate parameters @ and compute the simu-
lated bachelor’s degree attainment rate gjo(1).® We then solve the model after the introduction of

robots and obtain the corresponding post-robot bachelor’s degree rate g1 (). Under this scenario,

37In Appendix Table G.1, Abbott et al. (2019) report yearly transfers by college enrollment status using data from
the National Longitudinal Survey of Youth 1997. We divide these amounts by total family income to compute the
corresponding share parameters, As.

38Specifically, individuals randomly draw a disutility shock 7; from a normal distribution with a given value for
parameters p, and o,. Using these draws, the college decision of each individual is solved using equation (9).
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the adoption of robots represents a shock to the income profile that individuals expect to receive
in their state. Since the penetration of robots varies across states, individuals from different states
were exposed to this shock with varying degrees of intensity.?? The average effect of robots is then
calculated as Ag(v)/R, where Ag(v¢) = 91(¥) — 9Jo(¢p) and R is the average robot penetration
observed in the data. We repeat this process iteratively for different values of @ until the difference
between the simulated and empirical moments is as small as possible. Formally, 1 is estimated as

the vector that minimizes the criterion function:

where m(v)) is the vector of moments simulated from the model evaluated at v, 1m the vector
of empirical moments to be matched, and €2 a diagonal matrix containing the inverse of squared
moments. In practice, this definition of €2 implies that the estimation strategy minimizes the
sum of squared percentage deviations between the set of moments in the model and in the data.
The standard errors for the estimated parameter vector are computed using bootstrap. We first
randomly draw 500 samples stratified by state and then estimate the parameters in each of these

samples. The standard errors are derived from the distribution across these 500 estimations.

Identification. While the parameters are estimated simultaneously, it is useful to discuss the
moments that best identify each of them. The mean of the disutility parameter, ), is pinned down
by seeking the values consistent with the baseline college attainment rate. Holding all else equal,
the simulated college attainment rate declines monotonically as j, increases. On the other hand,
the response of college attainment to robots provides information to identify the parameter o,.
For values of o, close to zero, college attendance is either a rare or universal phenomenon for low
or high values of u,, scenarios that are inconsistent with the data.®? For a less extreme value of
fn, such that the model matches the baseline bachelor attainment perfectly, values of o, close to
zero imply an unrealistically large college response to robots.*! It follows that there needs to be
sufficient dispersion in the disutility from attending college for the model to rationalize the data.
For values of o, that are not very close to zero, the predicted college response is monotonically
decreasing in o, with a unique value matching the model’s moments to the empirical ones. Figure 4
illustrates this visually. Appendix Figure F.1 provides further evidence that the targeted moments
effectively inform the estimated parameters by plotting how the criterion function changes around

the estimated value of the parameters.

398pecifically, for an individual residing in state g with college attainment s and age group a, we approximate the
expected earnings after the robot shock as wgsqa = Wsag * €xp{Asa Ry }. In this expression, Ry is the robot penetration
observed in state g, computed as discussed in Section 2, and wgys, is pre-robot earnings.

“OIntuitively, for low values of u,, college attendance becomes nearly universal for a value of &, close to zero, as few
individuals receive disutility shocks sufficiently high to counterbalance the benefits of going to college. The opposite
holds for high values of p,,.

41n particular, when p = 0.0097 and oy, ranges between 0.0001 and 0.0002, the model closely replicates the baseline
bachelor’s degree completion rate. However, the predicted reduced-form coefficient of the effects of robots on college
attainment is 30 times as large as the one observed empirically.
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7.3 Parameter Estimates and Model Fit

Table 9 presents the estimated parameters along with their targeted moments. The model nearly
replicates the reduced-form effect of robots on bachelor’s degree attainment as well as the bachelor’s
degree attainment rate, with the simulated moments well within 1 percent of the observed moments.
This tight fit is unsurprising given that the model is exactly identified. The mean and standard
deviation of the disutility from attending college are estimated at 0.038 and 0.064 respectively and
statistically distinguishable from zero at less than 1 percent level.

To interpret the magnitude of these parameters, we can simulate how bachelor attainment
changes in response to a shock in labor market earnings. Our model predicts that a 10-percentage
point increase in the lifetime college premium would generate a 5-percent increase in bachelor
attainment. This corresponds to a semi-elasticity of 0.5 and an elasticity of 0.7. The magnitude of
this result is comparable to the findings reported in Abramitzky et al. (Forthcoming), perhaps the
best quasi-experimental evidence on the effects of changes in skill returns on bachelor attainment.
They show that a pay reform in Israel that increased the returns to bachelor’s degree from 0 to
50 percent led to a 40-percent increase in bachelor attainment —a semi-elasticity of 0.8. We also
simulate the effects of an increase in the opportunity cost of college attendance and find an elasticity
of bachelor attainment with respect to initial earnings of -0.21. This smaller elasticity (in absolute
value) is plausible and consistent with early work suggesting that future lifetime earnings is more
important than initial earnings for human capital investment decisions (Berger, 1988).

In Appendix F.2, we explore the robustness of the results to alternative assumptions about the
model. Our benchmark model sets the curvature coefficient of the utility function to 1.5. Appendix
Table F.1 documents that the results are robust to assuming different curvatures for the utility
of consumption, including values of v equal to 1 (log utility) or 2. The estimated parameters are
larger for smaller values of v because the marginal utility of consumption is decreasing in v and thus
the disutility from attending college must be larger to counteract the benefits of attending college.
However, the fit of the model remains tight. Our baseline analysis uses an annual interest rate of 5
percent, which is somewhat larger than the free-risk interest rate used in some studies analyzing the
college decisions of recent cohorts (Lawson, 2017). Using interest rates that range between 1 and
4 percent (or 4 and 16 percent per period), we find estimates of the disutility parameters that are
similar to the baseline (Appendix Table F.2). In our analysis, we have assumed that the life of the
loan is 2 periods, which corresponds to 8 years. As a robustness check, we re-estimate the model
exploring different repayment periods, ranging from 16 to 32 years (or 4 to 8 periods). This alters
the value of the payments per period but has little impact on the estimated parameters (Appendix
Table F.3).

7.4 Simulations

Having estimated the model, we can proceed to perform simulations to gain insights into the long-

run evolution of earnings and the role of policy. We carry out two counterfactual exercises. First,
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we trace the effect of a technological shock on earnings in a world where people do not alter their
human capital investments. In the second counterfactual, we simulate the dynamics of earnings and
supply of skills in a scenario where the government subsidizes college attendance more generously.

We start in a steady state where approximately 30 percent of workers have a bachelor’s degree,
the pre-robot shock period. We then assume that each state experiences a permanent shock in
robotics technology equivalent to the robot penetration observed in the data. This generates an
initial “net demand effect” on the earnings of workers with college attendance status s and in age
category a, as captured by the first term on the right-side of equation (11). For simplicity, we
approximate these net demand effects as the reduced-form coefficient of the effect of robots on
earnings, & = {K1old, K0old> Fyoung }, multiplied by the robot penetration observed in each state.*?
These changes in earnings alter the incentives to invest in college education, and individuals respond
accordingly. This alters the supply of high- and low-skill workers. These changes in the supply
of skills in turn influence the dynamic of earnings, as captured by the last term on the right-
side of equation (11). We assume that these supply effects on earnings are materialized after the
initial generation of workers retires and is replaced by the incoming generation of workers who

made different educational choices.*3

In each moment in time, overall earnings are computed
using definition 7.1. We perform these simulations separately for each state and then compute the
population-weighted mean value across all states.

Figure 5 shows the long-run evolution of bachelor attainment and earnings, which are normalized
to zero in the initial period. As one can infer from the figure, the introduction of robots leads to
an increase in college attainment among the first generation of affected workers. However, as the
supply of high-skill workers increases, the returns to skill fall and incoming cohorts adjust their
educational investments accordingly. Over the long term, the effect of robots on college attendance
is approximately two-thirds the effect observed among the first affected generation. Another key
insight we gain is that this endogenous educational response is not of the first order of magnitude
to fully offset the negative demand effect induced by the adoption of robots. The increase in college
attendance reduces the effect of technology on earnings by 53 percent in the short run. But over

the long run, as earnings adjusts to changes in the supply of skills, this number falls to 33 percent.

Policy experiments. We next turn to our counterfactual policy analysis. We consider policies
that alter the subsidies for students in the first and second quartiles of the income distribution,
denoted as the target population. We first consider a policy that increases the value of grants such
that college costs for the target population are zero, while keeping fixed the coverage of students

who receive such grants. The second counterfactual policy we consider is an increase in the coverage

42This is imperfect because these reduced-form coefficients likely incorporate some of the effects of the endogenous
increased supply of skills on earnings. Under the assumption that the earnings adjustment to an increased supply of
skills takes a long time to materialize, then our approach provides a reasonable characterization of the net demand
effects.

43We adopt this assumption for simplicity, but we believe that it is reasonable to assume that a single birth cohort
who just completed their educational investments is unlikely to significantly impact market earnings. Rather these
effects materialize slowly over time after many cohorts with different educational choices have entered the market.
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of existing grants to 100 percent among the target population. Analogously, the share of college
costs covered by grants remains fixed under this alternative intervention. Put differently, the first
policy affects the intensive margin of subsidies by increasing the recipient’s grants, whereas the
second policy experiment affects the extensive margin by increasing the number of students who
can receive grants.

Panel A of Figure 6 shows that these policies encourage a large response of bachelor attainment
to robots. Comparing both types of policies, increasing the share of the population receiving existing
grants is significantly more effective than increasing the value of grants. The key reason for this is
that the value of grants is already high for students at the bottom of the income distribution, so the
scope for gains is more limited. By contrast, the baseline share of the population covered by grants
is far from universal and thus the scope of impact is larger. When both policies are implemented
combinedly, the baseline increase in college attainment is more than doubled over the long term.

Panel B documents that the effect of endogenous human capital accumulation on earnings is
magnified by both policies. Unsurprisingly, given the pattern observed in Panel A, the policy in-
creasing the coverage of grants is more effective in dampening the net demand effect brought by
automation. According to our calculations, this policy reform would dampen the robot-induced
decline in earnings by approximately 60 percent. When both policies are implemented simultane-
ously, the long-run effects of robots on earnings are substantially reduced by 92 percent. Taken in
its entirety, these exercises suggest that endogenous human capital accumulation cannot undo most
of the earnings effects of automation unless there are sufficiently generous educational subsidies.

While these findings are striking, it is important to stress that they could miss important
unmodeled features of the economy. A such aspect is migration. Acemoglu and Restrepo (2020)
provide evidence that workers move away from commuting zones differentially exposed to robots.
This endogenous migration response is likely to be less important in our state-level analysis. But to
the extent to which it is important, our counterfactual analysis could underestimate or overestimate
the aggregate effects of endogenous human capital accumulation. Another aspect is that we assume
that workers supply labor inelastically in the second part of the life cycle, but if workers adjust their
labor supply endogenously, then this could affect the path of earnings over the long run. Finally,
our model does not incorporate behavioral responses of parents to policy. If parents respond by
reducing financial transfers, then the impact of increased subsidies would be smaller. Therefore,
our counterfactual exercises correspond to scenarios where these forces are absent. Developing and
estimating a richer model that incorporates these and other forms of general equilibrium responses
is beyond the scope of this paper. Nevertheless, we believe the quantitative analysis presented
above is useful because it provides an intuitive way to interpret the magnitude of the reduced-form

findings while highlighting avenues for future research.
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8 Concluding Remarks

The last few decades have seen an intense debate on the impacts of automation technologies on
workers. While a vast literature has studied this question both empirically and theoretically, much
less evidence is available on whether and how individuals respond to automation. In this paper,
we consider one of the most natural margins of adjustment —human capital. We investigate the
extent to which the adoption of industrial robots affected individuals’ college decisions in the United
States. By exploiting variation in the baseline industrial mix of each state interacted with plausibly
exogenous changes in sector-specific robot penetration rates, we find strong evidence that growing
up in labor markets heavily exposed to industrial robots leads to greater investments in bachelor’s-
level education. This effect is large enough to have consequences for the labor market income. Our
estimates suggest that cohorts exposed to robots in childhood experienced an increase (or a smaller
decline) in their labor market income relative to those cohorts exposed later in the life cycle who
could not alter their educational decisions. The data suggest that changes in the college premium
and opportunity costs of college-going are the key drivers of these results.

To interpret the magnitude of the findings, we develop and estimate a simple model of human
capital investments where changes in the demand and supply of skills shape the evolution of earn-
ings. Mapping this model to the data, we find that the endogenous educational response is not
of the right order of magnitude to fully counterbalance the decline in earnings induced changes in
technology. Our simulations suggest that this mechanism mitigate these automation-induced effects
by only 33 percent over the long run. We also conduct policy counterfactuals to explore the role
of subsidies to college attendance. We find that a reform that increases the coverage and value of
grants can offset the earnings effects by approximately 92 percent. In sum, these exercises suggest
that endogenous human capital accumulation has little effect unless the government significantly
subsidizes college attendance. Our quantitative analysis is exploratory in nature, and we believe
that incorporating more complex general equilibrium effects represents an interesting avenue for

further investigation.
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Figure 1: Trends in the robot market

P
FO
< | -
<
(%)
28 < | 83
£5 © !
o =
I =
PLe °
£3 ]
@eT =
00 < c
24 . ] L9 D
g o ©
~
- Ne)
T T T T T ~
1987 1990 1993 1996 1999
Year
Robots installed @————- Unit robot price index

Notes. Data on newly installed robots come from the World Robotics (2001), whereas the robot price index is from the
International Federation of Robotics (2006). The robot price index is calculated as an unweighted arithmetic average
price index across the countries with available annual price data: United States, Germany, France, Italy, United Kingdom,

and Sweden.
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Figure 2:

Adjusted Penetration of Robots across States
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Notes. This figure plots the exposure to robots across states based on the adjusted penetration of robots in the United
States and top 5 countries (excluding Germany). The adjusted penetration of robots is measured for the 2004-2007 period
(rescaled to a 14-year equivalent change) for the United States, and for the 1993-2007 period for the United States.
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Figure 3: Flexible Estimates
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Notes. This figure plots estimates of the interaction between the robot exposure variable and indicators for birth years,

0
)

using the flexible model (3). Panel A presents the main results, whereas Panel B a falsification exercise using data from
the 1990 Census. The covariates include those from column 5 of Table 1. For Panel B, baseline state characteristics
are constructed using the 1970 Census. See notes to column (5) of Table 1 for details on sample and specification. The

dashed lines represent 95 percent confidence intervals based on standard errors clustered at the state-of-birth level.
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Figure 4: Identification of the Structural Parameters
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Notes. These figures illustrate the identification of the structural parameters with respect to the observed and simulated
moments. The z—axis is the respective parameter of interest, which we vary while fixing the other parameter to its
estimated value. The y—axis represents the corresponding observed and simulated moments. The solid lines indicate
the observed value in the data, while the dashed ones indicate the value simulated from the estimated model. Each

parameter is identified by finding the point on the x—axis where the solid and dashed lines intersect.
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Figure 5: Long-Run Evolution of Bachelor Attainment and Earnings
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Notes. These figures shows the long-run evolution of bachelor attainment and earnings. Initial earnings and bachelor
attainment are normalized to zero. We start in a steady state where approximately 30 percent of workers have a bachelor’s
degree, the pre-robot shock period. We then assume that each state experiences a permanent shock in robotics technology
equivalent to the robot penetration observed in the data. In each moment in time, overall earnings are computed using
definition 7.1. We perform these simulations separately for each state and then compute the population-weighted mean

value across all states.
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Panel A. Bachelor attainment

Figure 6: Counterfactual Policies
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Notes. These figures shows the long-run evolution of bachelor attainment and earnings under different counterfactual
policies. Initial earnings and bachelor attainment are normalized to zero. We start in a steady state where approximately
30 percent of workers have a bachelor’s degree, the pre-robot shock period. We then assume that each state experiences
a permanent shock in robotics technology equivalent to the robot penetration observed in the data. In each moment
in time, overall earnings are computed using definition 7.1. We perform these simulations separately for each state and

then compute the population-weighted mean value across all states.
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Table 1: Childhood Exposure Effects on Bachelor Completion (in % pts)

Dependent variable is
Bachelor’s degree completion
©)) () ®3) (4) (5) (6)
Robot penetration x post 0.320 0.3632 0.4172 0.3994 0.4828 0.5053
[0.0683] [0.1569] [0.2009] (0.1800] [0.1338]  [0.1428]

R? 0.669 0.670 0.670 0.671 0.673 0.689
Mean Dep. Variable 32.51 32.51 32.51 32.51 32.51 34.39
Observations 15372069 15372069 15372069 15372069 15372069 5110175
1990 state demographicsxbirth-year FE v v v v v v
1990 manufacturing sharesxbirth-year FE v v v v v
Exposure to tradexbirth-year FE v v v v
1990 share of routine jobsxbirth-year FE v v v
1990 state college level xbirth-year FE v v
Keep ACS 2015-19 v
Birth-year FE v v v v v v
State-of-birth FE v v v v v v

Notes. This table reports estimates of 3 in equation (2). Coefficients shown in percentage points for ease of read-
ing. The sample is limited to individuals who are over age 30 at survey time and born in one of the States covering
the mainland of the United States. Post is an indicator for individuals born in 1974 onward. Robot penetration
is the intensity of exposure to robots in one’s state of birth, as described in Section 2. All regressions control for
race, gender, state-of-birth, and survey-yearxbirth-year fixed effects. Column (1) includes interactions between
birth-year fixed effects and 1990 state demographics: log of population, the share of the population over 65 years
old, the share of the population under 5 years of age, the share of blacks, and the share of population that is ur-
ban. Column (2) includes interactions between birth-year fixed effects and 1990 state industry shares: the share
of manufacturing employment, and the share of light manufacturing employment (textile industry and the paper,
publishing, and printing industry). Column (3) includes interactions between birth-year fixed effects and exposure
to Chinese imports. Column (4) includes interactions between birth-year fixed effects and the share of employ-
ment in routine jobs. The share of employment in routine jobs is defined as in Autor and Dorn (2013): routine
occupations that are in the top employment-weighted third of routine task-intensity. Column (5) includes interac-
tions between birth-year fixed effects and state college level in 1990. Column (6) restricts the sample to the ACS

conducted between 2015 and 2019. Robust standard errors in brackets are clustered at the state-of-birth level.
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Table 2: Childhood Exposure Effects on Different Education Groups (in % pts)

Dependent variable is

High school degree

High school +

High school+ more than Bachelor’s
Less than less than 1 yr. college Associate’s degree
high school High school 1 yr. college but no degree degree completion
©)) 2 (3) (4) (5) (6)
Robot penetration x post 0.0625 -0.2695 -0.0196 0.1239 -0.38 0.4828
[0.1164] [0.1640] [0.0386] [0.0647] [0.0973] [0.1338]
R? 0.458 0.517 0.120 0.267 0.246 0.673
Mean Dep. Variable 7.34 27.82 7.51 14.98 9.85 32.51
Observations 15372069 15372069 15372069 15372069 15372069 15372069
Baseline covariates v v v v v v

Notes. This table reports estimates of 3 in equation (2). Coefficient shown in percentage points for ease of reading. The
sample is limited to individuals who are over age 30 at survey time and born in one of the States covering the mainland
of the United States. Baseline covariates correspond to those reported in column (5) of Table 1. See notes to Table 1 for

details on the sample and baseline covariates. Robust standard errors in brackets are clustered at the state-of-birth level.
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Table 3: Childhood Exposure Effects on Bachelor Attainment (in % pts)
(Mean Reversion, Pre-cohort Trends and Within-Region Variation)

Dependent variable is
Bachelor’s degree completion
©) &) (3) (4) (5)
Robot penetrationxpost 0.4828 0.5022 0.5022 0.4807 0.4701
[0.1338] [0.1430] [0.1430] [0.1344] (0.1996]

R? 0.673 0.673 0.673 0.5097 0.674
Mean Dep. Variable 32.51 32.51 32.51 32.51 32.51
Observations 15372069 15372069 15372069 15372069 15372069
1970 state college level (x birth-year FE) v

1970-1990 change in state college level (x birth-year FE) v

State-specfic pre-cohort trends v
Region-of-birth x birth-year FE v
Baseline covariates v v v v v

Notes. This table explores the robustness of the baseline estimates to additional controls for mean reversion (columns
2-3), pre-cohort linear trends (column 4), and region-of-birth x birth-year fixed effects (column 5). The sample is limited
to individuals who are over age 30 at survey time and born in one of the States covering the mainland of the United
States. Robot penetration is the intensity of exposure to robots in one’s state of birth, as described in Section 2. All
regressions include the baseline controls included in column (3) of Table 1 (see footnotes to that table for details). The
regions are defined by the US Census Bureau: the Northeast, the Midwest, the South, and the West. Robust standard
errors in brackets are clustered at the state-of-birth level.

1 note that the R? in column (4) is not comparable with that of the other columns given the two-step procedure de-

scribed in Section 4.1.

45



97

Table 4: Childhood Exposure Effects on College Attainment (in % pts)
(Controlling for Other Labor Market Shocks, and Social Reforms)

Dependent variable is
Bachelor’s degree completion

(1) (2) (3) (4) (5) (6) ) (8) 9) (10)
Robot penetrationxpost 0.4828 0.4826 0.4844 0.5116 0.484 0.5047 0.4512 0.4839 0.4456 0.6123
(0.1338]  [0.1483]  [0.1310]  [0.1393]  [0.1374]  [0.1222]  [0.1346]  [0.1341]  [0.1197]  [0.1418]
R? 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.674
Mean Dep. Variable 32.51 32.43 32.51 32.51 32.51 32.51 32.51 32.51 32.51 32.43
Observations 15372069 15274531 15372069 15372069 15372069 15372069 15372069 15372069 15372069 15274531
Adding controls for:
Mexican import competition v v
Offshoring v v
IT capital v v
Computer technology v v
1980-82 recession v v
War on poverty programs v v
Medicaid v v
School finance reforms v v
Baseline covariates v v v v v v v v v v

Notes. This table reports estimates that evaluate the robustness of our baseline results to controlling for other labor market shocks and social reforms.

Column (1) repeats the baseline specification reported in column (5) of Table 1 (see footnotes to that table for details). Column 2 includes interactions

between birth-year fixed effects and the exposure in Mexican import competition in the state of birth. Column (3) controls for interactions between

birth-year fixed effects and a Bartik measure of exposure to offshoring in the state of birth. Column (4) controls for interactions between birth-year fixed

effects and the exposure to information technology capital in the state of birth. Column (5) controls for interactions between birth-year fixed effects

and the exposure to computer technology in the state of birth. Column (6) controls for interactions between birth-year fixed effects and the measure of

exposure to the 1980-82 recession in the state of birth (Stuart, 2022) . Column (7) includes the fraction of childhood years exposed to war-on-poverty

programs for each birth cohort in the state of birth: Head Start, Food Stamp, and Community Health Centers. Column (8) includes the fraction of

childhood years exposed to Medicaid in the state of birth. Column (9) adds the fraction of school-going ages (5 to 17) exposed to a school finance reform

in the state of birth. The measures of exposure to Mexican imports, offshoring, IT capital, and computer techonology are measured as in Acemoglu and

Restrepo (2020). Robust standard errors in brackets are clustered at the state-of-birth level.



Table 5: Effects on Bachelor’s Degree Enrollment (in % pts)
(Evidence from IPEDS)

Dependent variable is
change in bachelor’s
degree enrollment rate

1987-1990
1990-2008 (placebo)

(1) (2)

Robot penetration 1.681 -0.187
[0.755] [0.278]
R? 0.263 0.706
Mean enrollment rate in 1990 23.98 23.98
Observations 48 48
Baseline covariates v v

Notes. This table reports estimates of v in equation (5).
Coeflicient shown in percentage points for ease of reading.
The sample is limited to the States covering the mainland
of the United States. Baseline covariates include: 1990 state
college enrollment, 1990 state demographics (log of popula-
tion, the share of the population over 65 years old, the share
of the population under 5 years of age, the share of blacks,
and the share of population that is urban), 1990 state indus-
try shares (the share of manufacturing employment, and the
share of light manufacturing employment), exposure to Chi-
nese imports, and the share of employment in routine jobs.
Standard errors in brackets are robust to arbitrary forms of

heterokedasticity.
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Table 6: Childhood Exposure Effects on Income (in logs)

Dependent variable is

Log total income Log earned income Log income wages
(1) 2) (3) (4) (5) (6)
Robot penetration xpost 0.0085 0.0041 0.0076 0.0037 0.0079 0.004
[0.0033] [0.0027] [0.0030] [0.0023] [0.0030] [0.0023]
Bachelor’s degree completion 0.7672 0.7072 0.7021
[0.0101] [0.0091] [0.0095]
R? 0.416 0.479 0.418 0.477 0.43 0.49
Observations 14156782 14156782 12576491 12576491 11800877 11800877
Baseline covariates v v v v v v

Notes. This table reports estimates of 8 in equation (2) for different income measures as outcomes. Sample
sizes vary across outcomes because of missing observations. All regressions control for the baseline demo-
graphic and socioeconomic state characteristics described in Table 1. In addition, all regressions control for
state-of-residence x birth-year fixed effects. Robust standard errors in brackets are clustered at the state-of-

birth level.

48



Table 7: Effects on Market Earnings and Family Income
(in logs)

Long differences, 1990-2008

ages 18-21 ages 22-65
High school
+
No college Associate’s  Associate’s Bachelor’s Log family
attendance High school degree degree degree income
(1) 2) ®3) (4) () (6)
Robot penetration -0.07682 -0.01688 -0.0309 -0.01898 -0.01497 -0.01922
[0.01676] [0.00486] [0.00813] [0.00468] [0.00429] [0.01992]
R? 0.250 0.210 0.248 0.218 0.127 0.715
Observations 6483 130064 39511 139487 101517 24295
Baseline covariates v v v v v v

Notes. This table reports the results from estimating equation (6). The dependent variable in columns (1)
to (5) is the log-change in market earnings for different subgroups. The dependent variable in column (6) is
the log-change in family income. In column (6), the sample is limited to families where parents co-reside with
children aged 17-18. The outcomes are computed within cells defined by demographic x state groups, where
the demographic groups are gender, age, race, and place-of-birth. In column (6), these cells are defined by the
demographic characteristcis of the household head and also include education level categories. All regressions
control for the baseline demographic and socioeconomic state characteristics described in Table 1. In addition,
all regressions control for the full set of demographic cell fixed effects. All regressions are weighted by the 1990

cell size. Robust standard errors in brackets are clustered at the state level.
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Table 8: Earnings Coefficients and Preset Parameters

Description Parameter Value Source

Panel A: Estimated earnings coefficients

Young workers without college education: aged 18-21 Kyoung -0.07682 Table 7, column 1
Adult workers without a bachelor’s degree: aged 22-65 Koold -0.01898 Table 7, column 4
Adult workers with a bachelor’s degree: aged 22-65 Klold -0.01497 Table 7, column 5

Panel B: Preset parameters

Curvature parameter of utility function vy 1.5 Abbott et al. (2019), Attanasio and Weber (1995)
Interest and discount rate per period r=p 0.2 Heckman et al. (1998)

Parental transfers shares {Ao, A1} {0.048, 0.098} Abbott et al. (2019)

Annual tuition and fees (1990 dollars) e 4014.65 NCES (2004)

Estimated annual living expenses while in college (1990 dollars) Cu 4725.42 NCES (2004)

Probability of receiving grants by family income:

Lowest quarter m 0.556 NCES (2004)
Lower middle quarter o 0.453 NCES (2004)
Upper middle quarter T 0.381 NCES (2004)
Highest quarter s 0.329 NCES (2004)

Share of college costs covered by grants by family income:

Lowest quarter o1 0.811 NCES (2004)
Lower middle quarter b2 0.583 NCES (2004)
Upper middle quarter b3 0.495 NCES (2004)
Highest quarter b4 0.294 NCES (2004)
Elasticity of substitution in production function € 1.4 Katz and Murphy (1992)

Notes. This table summarizes the earnings coefficient estimated in the first step and the parameters set externally. The earnings coefficients are esti-

mated using the first-difference model (6). The model is estimated for each worker group separately.
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Table 9: Estimated Parameters for the Structural Model

Description Parameter Estimate Target moment Data  Model

Mean of disutility from college attendance iy 0.0379  Bachelor completion (% pts.) 32.506  32.547
[0.0023]

Standard deviation of disutility from college attendance oy 0.064 Reduced-form effect of robots 0.482  0.486

[0.0024]  on bachelor completion (% pts.)

Notes. This table shows parameter estimates obtained using the simulated method of moments. The estimation sample consists of all
youths aged 18 in the 1990 census, when they are ready to make college decisions. For a vector of possible values of structural parame-
ters ¢, we simulate a value n; for each individual ¢ based on the cumulative normal distribution function F(-) and then solve for their
college decision under a scenario with and without robots. For the latter scenario, the corresponding updated earnings profiles are simu-
lated using the estimates of ks, obtained in the first step. The parameters are estimated by minimizing the distance between the target
empirical moments and simulated moments as predicted by the model for a given vector of free parameters. The target moments are
the bachelor attainment rate and the reduced-form effect of robots on bachelor attainment reported in column (5) of Table 1. The esti-
mated coefficients and respective standard errors are reported in the third column. The empirical and simulated moments are reported

in the last two columns. Standard errors reported in brackets are obtained through a bootstrap of the structural estimation.
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A Data

A.1 Details on ACS and Variable Definitions

Our basic sample uses data from all the available rounds of the annual American Community Survey
(ACS), ranging from 2001 to 2019. These data are publicly available from the Integrated Public
Use Microdata Series (IPUMS). The samples are limited to native-born in the 1953-83 birth cohorts
who are above age 30 at the time of the survey. This restriction excludes individuals from Hawaii
and Alaska, so the resulting sample includes all individuals born in one of the remaining 48 states
or the District of Columbia. In the ACS, the District of Columbia is considered a separate state.
This sample restriction also excludes immigrants (about 10 percent of the observations), as it is not
possible to infer whether or not they were exposed to automation technologies in the United States.
In addition, we exclude individuals residing in institutional group quarters to increase consistency
between the different rounds of the ACS. The basic sample consists of approximately 15.3 million
records.

In terms of labor market outcomes, we consider total personal income, earned income, and
income wages. Total personal income (INCTOT) refers to pre-tax personal income or losses from
all sources for the previous year. Earned income (INCEARN) is the income earned from wages
or a person’s own business or farm for the previous year. Income wages (INCWAGE) represent
the pre-tax wage received as an employee for the previous year. Income observations at the top of
the distribution (typically 99 percentile) are top coded, with the top code value often defined as
the state means of values above a given income cutoff. Following Acemoglu and Autor (2011), we
replace the top code values for 1.5 times the value of the respective top code values. To render the
income variables comparable across time, we convert them to constant 1999 dollars applying the
CPI-U to the relevant year.

A.2 Construction of Robot Exposure

Our main analysis relies on the measure of robot exposure developed by Acemoglu and Restrepo
(2020):

Industry share

~~ /AM:; M.
Robot penetration, = Z lsj ( J J >

— —gi——
= ij J ij (Al)

Robot Penetration
where /; is the initial employment share of industry j in state s, which we calculate using the census
conducted in 1970 to capture the long-term industrial composition that was prevailing before the
major advance in automation. The variable AM; = M;, —Mj, is the change in the number of robots
in each industry between the base year b and final year 7, normalized by the number of workers L .
In the model of automation developed by Acemoglu and Restrepo (2020), the labor market effects

are related to the change in the number of robots per thousand workers after adjusting for the
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growth rate of output g; of each industry (captured by the expression g;Mj,/Lj;,). For consistency
with their conceptual framework and ease of comparison, we keep this adjustment term in equation
(1).

Data on robots come from the International Federation of Robotics (IFR), which are available
since 1993 based on yearly surveys of robot suppliers. These data cover 50 countries, including
the United States, and are consistently available for 13 manufacturing and 6 non-manufacturing
industry categories. The manufacturing sector is disaggregated into 13 categories (automotive,
plastics and chemicals, metal products, industrial machinery, food and beverages, basic metals,
electronics, miscellaneous manufacturing, minerals, wood and furniture, shipbuilding and aerospace,
textiles, and paper and printing), while the remaining non-manufacturing corresponds to six broad
groups (mining, education and research, agriculture, utilities, construction, and services). We use
the 1993 to 2007 period to measure the adjusted penetration of robots, using data on average robot
adoption in the top 5 non-US countries with greater advances in robotics (Denmark, Finland,
France, Italy, and Sweden). This group excludes Germany, which is well ahead of the United
States and thus is less relevant for robot adoption trends in the latter. In robustness exercises, we
use measures of robot penetration expanding the top 5 to include Germany and other European
countries with available data on robots. We also present results using a measure of robot penetration
in the United States.

To compute the measure of adjusted penetration of robots by industry, we use industry-level data
on employment from the European Union-level analysis of capital, labor, energy, materials, and
service inputs (EUKLEMS) Growth and Productivity Accounts (Jager, 2016). We use a “crosswalk”
between the US industry codes in the census and IFR industry codes to match the robot penetration
variable to the baseline employment shares in each state. We collapse the 199 detailed industry
categories in the census into the 19 IFR industries, as detailed in Table A.1.

To sum up, we construct the overall measure of robot exposure in each state using the following

step-by-step procedure in which we:
e Step 0: collapse the 199 detailed industry codes in the census to the 19 IFR industries.

e Step 1: construct the initial employment share of each industry in state s using the 1970

census.

e Step 2: compute the adjusted penetration of robots for each industry using data from the
IFR and EUKLEMS database.

e Step 3: combine the results in steps 1 and 2 using equation (A.1) to generate the measure of

robot exposure.

Table A.2 provides descriptive statistics for the main measure of exposure to robots, displaying

the substantial variation in the adjusted penetration of robots across industries.
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Cross-sectional Variation in Robot Exposure Intensity. Figure A.4 shows that there is
substantial variation in the data, with a standard deviation of about 1.35 robots per thousand
workers (relative to the mean of 2 robots per thousand workers). This variation stems not only
from differences in robot adoption rates across industries but from substantial differences in the
baseline industrial composition of employment across states. Figure A.5 shows this substantial
variation in initial employment share across states.

The labor market analysis of Acemoglu and Restrepo (2020) relies on data at the commuting-
zone level. Because we have no information on an individual’s birthplace detailed at the commuting
zone level, our analysis focuses on state-level data. While this comes at a cost in terms of loss of
variation, much of the variation in the commuting-zone level data in fact stems from differences
between (rather than within) states. Figure A.7 illustrates this visually. Remarkably, state fixed
effects account for about 75 percent of the overall cross-commuting zone variation in robot exposure
intensity. This suggests that our state-level analysis captures a substantial portion of the relevant

identifying variation.
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Figure A.1: Birth Cohorts in the ACS
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Figure A.2: Observations by Survey Year
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Figure A.3: Composition of Birth Cohorts by Survey Year
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Figure A.4: Robot Exposure Intensity by State

Robots per thousand workers
(2.6-8.8]
(2.1-2.6]
(1.7-2.1]
(1.5-1.7]
(1.4-1.5]
(1.0-1.4]
[0.0-1.0]

Notes. This map displays the intensity of robot exposure across states.
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Figure A.5: Baseline Industrial Shares across States
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Notes. This figure shows the variation in initial industrial shares by state. This figure is constructed using data from
the 1970 census.
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Figure A.6: Robot Exposure in Selected States and Industries
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share of employment in Louisiana and Michigan. Panel B shows the adjusted penetration of robots in each industry.
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Figure A.7: Robot Exposure across Commuting Zones after Removing State Effects
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fixed effects.
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Table A.1: Crosswalks between 1990 Census Bureau industrial classification and IFR Industries

IFR Industry

Census Industry Code

Number of Groups

Manufacturing:

Food and Beverages 100-130 10
Textiles 132-152, 220-222, and 450-472 6

Paper and Printing 160-172 )

Petrochemicals 180-192 and 200-212 10
Wood and Furniture 231, 241, and 242 3

Minerals 250-262 5

Basic Metals 270-272, 280, and 301 5

Metal Products 281-300 6

Industrial Machinery 310-312, 320, 331, and 332 6

Electronics 321-350 and 371-381 10
Automotive 351 1

Miscellaneous Manufacturing 391 and 392 2

Nonmanufacturing:

Agriculture 10-32 and 2030 6

Mining 40-42 and 50 4

Construction 60 1

Shipbuilding and Aerospace  352-370 4

Services 400-442, 500-842, 870-890, and 892 101
Utilities 450-452 and 470-472 6

Education and Research 850-860 and 891 4

Notes. This table shows the crosswalks between the industry codes in the 1970 census and
that in the IFR data.
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Table A.2: Robot Exposure

Observations

Mean Standard Deviation N  Aggreg. Level

Robots per thousand workers 2.09 1.35 49 States
Adjusted penetration of robots per thousand workers (overall)  4.77 8.46 19
Adjusted penetration of robots per thousand workers...
Manufacturing

Automotive 32.94

Petrochemicals 21.46

Metal Products 8.01

Industrial Machinery 1.01

Food and Beverages 5.20

Basic Metals 5.70

Electronics 3.46

Miscellaneous Manufacturing -1.20 IFR industries

Minerals 2.66

Wood and Furniture 3.65

Shipbuilding and Aerospace 2.83

Textiles 1.06

Paper and Printing 0.61
Nonmanufacturing

Mining 2.69

Education and Research 0.30

Agriculture 0.16

Utilities 0.02

Construction 0.07

Services 0.00

Notes. This table provides descriptive statistics for the main measure of exposure to robots, displaying the variation in

the adjusted penetration of robots across industries.
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B Timing of Effects on Labor Markets

Figure 1 provides compelling evidence that robot adoption rose sharply and discontinuously in the
early 1990s. In this section, we show that this sudden and large increase in robot adoption had
immediate and first-order consequences on labor markets.

To estimate the dynamic effects of robots on labor markets, we use high-precision data on
employment from the Bureau of Labor Statistics Quarterly Census of Wages and Employment
(QCEW) at the state-year level. These data are derived from administrative tax reports submit-
ted to state employment security agencies by all employers covered by unemployment insurance
laws, accounting for about 95 percent of total administrative employment records. These data
are collected since 1975. Starting in 1976, unemployment insurance laws were extended to cover
a greater number of industries and establishments. This resulted in a staggered expansion of the
coverage of employment in the QCEW across states between 1976 and 1980, introducing significant
measurement challenges during this period (see Chodorow-Reich and Wieland (2020) for further
discussion). Therefore, we exclude the 1975-1980 period from our analysis.

With these data, we estimate the following first-difference equation:

(emp/pop)s+—(emp/pop)s 1989 = o + Y Robot penetration, +Z.0 + st (B.1)

where emp/pop is the employment-to-population ratio in each state s at time ¢ € {1981, 1984. ..,2007}.
The parameter of interest is 7;, which measures the impact of robots at different moments in time.
The path of these year-specific coefficients provides a detailed depiction of the dynamic effects of
robots on employment. The regression control for baseline state characteristics and standard errors
are adjusted to account for arbitrary heteroskedasticity.

Appendix Figure B.1 plots the set of coefficients 7; from equation (B.1) for each year, along
with 95 percent confidence intervals. The figure shows that the intensity in robot exposure is not
associated with statistically meaningful changes in employment prior to 1990. These estimated
coefficients are small in magnitude and statistically indistinguishable from zero. After 1990, the
coefficients begin to be negative and statistically significant. By the mid-1990s, the estimated

relationship becomes sizeable and rapidly increasing in magnitude.

15



For Online Publication

Figure B.1: Timing of Robot Impacts on Labor Markets
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C Long-Run Labor Market Pre-Trends

Table C.1: Labor Market Pre-Trends 1970-1990:
State Level

Long differences, 1970-1990

Employment
Manufacturing to
Employment  employment population
to to ratio
population population (include public sector Non-participation Unemployment
ratio ratio and self-emp.) rate rate Log wages

(1) (2) (3) (4) (5) (6)

Robot penetration 0.001 0.0013 0.0003 -0.0014 0.0009 -0.0061
[0.0016] [0.0012] [0.0013] [0.0016] [0.0013] [0.0048]

R? 0.371 0.797 0.508 0.544 0.584 0.717
Observations 48 48 48 48 48 7070
Baseline covariates v v v v v v

Notes. This table reports the results from estimating the change in labor market outcomes between 1970 and 1990 on the robot

penetration. The unit analysis is a state. Baseline covariates include: 1970 state college enrollment, 1970 state demographics

(log of population, the share of the population over 65 years of age, the share of the population under 5 years of age, the share

of blacks, and the share of population that is urban), 1970 state industry shares (the share of manufacturing employment, and

the share of light manufacturing employment), exposure to Chinese imports, and the share of employment in routine jobs. The

specification in column (6) is estimated at the demographic cellx state level, where demographic cells are defined by age, gender,

education, and race. All regressions are weighted by population in 1970. Robust standard errors in brackets are clustered at the

state level.
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D Defining Post-Robot Birth Years

Given the timing of robot penetration, one would expect the effects to begin to emerge around
the mid-1970s birth cohorts and the evidence above is consistent with this prediction. However, to
parsimoniously and precisely summarize our findings in table format, it is necessary to define Post;
in a way that best captures the basic picture presented in Figure 3. Theory suggests that this college
response should naturally be stronger for younger cohorts, but there is no precise prediction about
when exactly these effects could begin to manifest. To guide our definition of Post; and summarize
our findings in table format parsimoniously, we adopt a hands-off approach that is similar in spirit
to Goodman-Bacon (2021). In particular, we estimate model (2) for all possible definitions of Post;
and choose the one that maximizes the R2, following the idea of structural break tests (Hansen,
2001).

Figure D.1 presents these results. They confirm the visual inspection of the flexible estimates
reported in Figure 3. These tests suggest that the breakpoint that best captures the pattern of
college responses in the data is the 1974 birth cohort. Thus, we use this definition throughout the

paper.

Figure D.1: R? on Different Definitions of Post;

.67275
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Notes. This figure presents the R? from estimating equation (2) for different definitions of Post;. The covariates

67255

include those from column 5 of Table 1. See notes to column (5) of Table 1 for details on the sample and specification.
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E Additional Results and Robustness Checks

E.1 Gender Differences

In Appendix Table E.1, we explore heterogeneous effects with respect to gender. We do not observe
statistically meaningful differences in the estimated coefficients between males and females. At
first glance, this lack of heterogeneous effects could seem surprising, given that the labor market
impacts of robots on males tend to be somewhat larger (though not always statistically significant).
However, a possible interpretation is that the educational responses to a same change in labor
market conditions may be larger for females than males. This is in line with the recent evidence by
(Charles et al., 2018) documenting that a labor market shock, which similarly affected male and
female employment opportunities, had larger effects on female education. This interpretation is

also consistent with the rapid growth in female schooling during our study period.

Table E.1: Childhood Exposure Effects on Bachelor Completion (in % pts)
(Gender Heterogeneity)

Dependent variable is

Bachelor’s degree completion

(1) (2)

Robot penetration xpost 0.4828 0.37717
[0.1338] [0.14950]
Robot penetration x post xfemale 0.07377
[0.06107]
R? 0.673 0.699
Mean Dep. Variable 32.51 32.51
Observations 15372069 15372069
Baseline covariates v v

Notes. This table tests for heterogeneity in the estimated effects
by gender. We estimate model (2) interacted with a female indi-
cator. Coefficient shown in percentage points for ease of reading.
The sample is limited to individuals who are over age 30 at survey
time and born in one of the States covering the mainland of the
United States. Baseline covariates correspond to those reported in
column (5) of Table 1. See notes to Table 1 for details on the sam-
ple and baseline covariates. Robust standard errors in brackets are
clustered at the state-of-birth level.
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E.2 Weighted versus Unweighhted Regressions

Because the underlying variation that we exploit is across states and birth cohorts, the use of
individual-level data in the analysis effectively weights state-cohort cells by population size. As
discussed by Solon et al. (2015), such weighting is appropriate in the presence of heteroskedasticity.
Otherwise, it is thought to be counterproductive. We follow their practical recommendations and
report both weighted and unweighted estimates. To estimate the unweighted version of model (2),
we first estimate a regression of bachelor’s degree attainment against individual-level characteris-
tics (gender, race) and then collapse the residuals into state-of-birth and year-of-birth cells. We
then estimate model (2) using these state-cohort level data. Appendix Table E.2 shows that the
unweighted estimate is extremely similar to the weighted one (0.48 versus 0.44) but notably less

precise, confirming the strengths of our main approach.

Table E.2: Childhood Exposure Effects on Bachelor Completion (in % pts)
(Weighted vs. Unweighted Estimates)

Dependent variable is
Bachelor’s degree completion

Data collapsed by
state-birth-year cells

Baseline Weighted Unweighted
(1) (2) (3)

Robot penetrationxpost  0.4828 0.4849 0.4407
[0.1338] [0.1568] [0.2108]
R? 0.673 0.978 0.962
Mean Dep. Variable 32.51 32.51 32.51
Observations 15372069 1519 1519
Baseline covariates v v v

Notes. This table presents weighted and unweighted estimates. Col-
umn (1) repeats the baseline results for ease of comparison. To obtain
the results displayed in columns (2) and (3), we first estimate a regres-
sion of bachelor’s degree completion on gender and race indicators. We
then collapse the residuals into state-of-birth and year-of-birth cells.
These collapsed residuals are used as the dependent variable of inter-
est. Column (2) estimates equation (2) weighing the observations by
cell group size. Column (3) estimate equation (2) without weighing
the observations. Baseline covariates correspond to those reported in
column (5) of Table 1. See notes to Table 1 for details. Robust stan-

dard errors in brackets are clustered at the state-of-birth level.
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E.3 2SLS Estimates

We next present two-stage least squares (2SLS) estimates where our baseline, European-based robot
penetration measured is used as an instrumental variable for the observed US robot penetration.
These results are presented in Appendix Table E.3. Column (1) documents a powerful first-stage
relationship, as had already been noted in Figure 2, with the F-statistics well above the conventional
weak instrument threshold of 10. Notably, the F-statistics is also well above 100, which is important
in view of the evidence in recent advances in instrumental variable estimation suggesting that it
may be the relevant threshold for weak instruments (Lee et al., 2022). Turning to the second stage,
we find that the 2SLS estimate is comparable to the reduced-form coefficient and corresponding

OLS estimates, both in magnitude and statistical significance.

Table E.3: Exposure Effects on Bachelor’s Degree (in % pts)
(2SLS Estimates)

Dependent variable is:

US robot penetration x post Bachelor’s degree completion
(First stage) (Reduced-form)  (OLS) (2SLS)
(1) @) 3) 4
US robot penetration x post 0.373 0.4693
[0.1506] [0.1386]
Robot penetration x post 1.0288 0.4828
0.0687] 0.1338]
Cragg and Donald (1993) F statistic 224.08
Mean Dep. Variable 0.31 32.51 32.51 32.51
Observations 15372069 15372069 15372069 15372069
Baseline covariates v v v v

Notes. This table reports 2SLS estimates of the effect of exposure to robots on Bachelor’s degree attainment. We
instrument the US exposure to robots using exposure to robots from the top 5 European countries in terms of robot
penetration. The sample is limited to individuals who are over age 30 at survey time and born in one of the States
covering the mainland of the United States. All regressions include the baseline controls included in column (5) of
Table 1 (see footnotes to that table for details). Robust standard errors in brackets are clustered at the state-of-
birth level.
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E.4 Alternative Constructions of Exposure to Robots

Table E.4: Exposure Effects on Bachelor’s Degree (in % pts)
(Alternative Definitions of Robot Exposure)

Alternative constructions of robot penetration

Include
Employment all European
shares in Include  countries with Unadjusted
Baseline 1990 Germany data definition
(1) 2 3) (4) (5)

Robot penetration xpost 0.4828 0.7817 0.3497 0.3225 0.3371

[0.1338] [0.2683] [0.1035] [0.0985] [0.0947]
Rescaled coefficient 0.4828 0.4806 0.4559 0.4006 0.4969
R? 0.673 0.673 0.673 0.673 0.673
Mean Dep. Variable 32.51 32.51 32.51 32.51 32.51
Observations 15372069 15372069 15372069 15372069 15372069
Baseline covariates v v v v v

Notes. This table presents results from alternative ways to construct the measure of exposure to
robots. For ease of comparison, the table also reports rescaled coefficients. The rescaled coefficients
are obtained by dividing the point estimates by the ratio of the standard deviations of the baseline
to alternative measures of robot penetration. Column (1) repeats the baseline estimates reported
in column (5) of Table 1. Column (2) uses the 1990 rather than the 1970 census to construct the
initial industrial composition of employment in each state. Column (3) includes Germany to con-
struct the adjusted penetration of robots. Column (4) uses data from all European countries to
construct the adjusted penetration of robots. Column (5) uses the unadjusted penetration of robots
to construct the overall measure of robot exposure. See notes to Table 1 for details on the sample

and specification. Robust standard errors in brackets are clustered at the state-of-birth level.
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E.5 OQOutlier Analysis

Table E.5: Exposure Effects on Bachelor’s Degree (in % pts)
(Outlier Analaysis)

Exclude
Exclude  Exclude Exclude Exclude  highly influential
3-sigma 2-sigma l-sigma  0.5-sigma observations
Baseline  outliers outliers outliers outliers  (Cook’s distance)
(1) (2) 3) (4) (5) (6)
Robot penetrationxpost — 0.4828 0.4861 0.4715 0.4717 0.5484 0.5017
[0.1338] [0.1347] [0.1319] [0.1257] [0.1215] [0.1074]
R? 0.673 0.689 0.732 0.783 0.832 0.849
Mean Dep. Variable 32.51 32.49 32.45 32.39 32.47 32.47
Observations 15372069 15367892 15350905 15270926 14979839 14665860
Baseline covariates v v v v v v

Notes. This table evaluates the robustness to outliers. Column (1) repeats the baseline results reported in
column (2) of Table 1. Columns (2)-(5) exclude observations that are 3, 2, 1, and 0.5 standard deviations
away from the residual mean respectively. Column (6) excludes observations that shift the baseline esti-
mate at least to 4/N (Cook’s distance). See notes to Table 1 for details on the sample and specification.
Robust standard errors in brackets are clustered at the state-of-birth level.
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E.6 Decomposing Variation: Rotemberg Weights

We next investigate the relative importance of each industry for our results by computing the
“Rotemberg” weights, as recommended by Goldsmith-Pinkham et al. (2020). Here the concern
is that the positive effects on college attainment we find are completely driven by a particular
industry, which would suggest that the results may be the product of unobservable shocks differen-
tially affecting regions disproportionately specialized in certain types of industries. The Rotemberg
weights decompose the Bartik difference-in-differences estimator into a weighted sum of estimates
that use each industry share, along with the robot penetration in each industry, as a separate source
of variation. Let z;5 and ;5 denote Robot penetrations x Post; and the outcome variable after
removing the basic sext of fixed effects and the rest of the control variables. Let also z;;s; denote
ls;- Robot penetration; x Post;, which is the robot exposure variable separately for each industry
after filtering out the baseline covariates. Finally, let u; be the adjusted penetration of robots in

each industry. In this case, the Rotemberg weights can be computed as follows:
g= Zj ;3
5 -1 -
where B = (ZZ Zijst * sz‘st) > i Zigst " Yist
-1
o = (Zj I D Zigst * Cl?ist) 1g D Zijst - Tist

Under this framework, BN]- is obtained in a 2SLS regression where the measure of robot exposure
based only on industry j is used as an instrumental variable for the overall robot exposure variable.
The weights {c;} sum to one, but not all need to be positive.

Appendix Table E.6 reports thr Rotemberg weights. We find that the automotive industry
has the largest share of the overall weight, with a weight above 80 percent. This is what one
could expect given that the trends in robot adoption of this industry are almost of incomparable
magnitude to that of any other industry. But most importantly, the automotive industry is not the
only reason why we observe the positive effects of robots on college attainment. As shown in the

table, the estimated coefficient 3 is in fact larger when we exclude the automotive industry.
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Table E.6: Exposure Effects on Bachelor’s Degree
(Rotemberg Weights)

Estimate of 8 (in % pts)

excluding
Rotemberg weights each industry in row
Raw data Baseline covariates (Baseline covariates)
(1) (2) (3)
Automotive 0.8496 1.0125 1.1618
Plastics and Chemicals 0.1060 0.0826 0.5252
Basic Metals 0.0367 -0.0130 0.4550
Metal Products 0.0291 -0.0130 0.4625
Industrial Machinery 0.0080 -0.0015 0.4920
Electronics 0.0024 -0.0189 0.4817
Minerals 0.0021 -0.0011 0.4834
Paper and Printing 0.0001 0.0001 0.4901
Utilities 0.0000 0.0000 0.4820
Education and Research -0.0003 0.0001 0.4838
Construction -0.0003 -0.0001 0.4798
Miscellaneous Manufacturing  -0.0006 -0.0004 0.4831
Agriculture -0.0008 -0.0007 0.4771
Mining -0.0047 -0.0011 0.4963
Wood and Furniture -0.0051 -0.0152 0.4866
Shipbuilding and Aerospace -0.0061 -0.0174 0.4938
Textiles -0.0070 0.0091 0.4844
Food and Beverages -0.0092 -0.0221 0.4608

Notes. This table decomposes the baseline coefficient [ into a weighted sum of estimates that
use each industry share, along with the robot penetration in each industry, as a separate source
of variation. Columns (1) and (2) presents Rotemberg weights for all industries, following
Goldsmith-Pinkham et al. (2020). Column (3) shows the estimated coefficient when each in-
dustry is excluded from the overall measure of robot exposure. See notes to Table 1 for details

on the sample and specification.
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E.7 Additional Covariates

Table E.7: Exposure Effects on Bachelor’s Degree (in % pts)
(Additional Covariates)

Dependent variable is
Bachelor’s degree completion
(1) 2) (3) (4)
Robot penetrationxpost 0.4828 0.5221 0.4152 0.4819
[0.1338] [0.1238] [0.1628] [0.1561]

R? 0.673 0.673 0.674 0.674
Mean Dep. Variable 32.51 32.51 32.51 32.51
Observations 15372069 15372069 15372069 15372069
1990 employment-to-pop. ratio (x birth-year FE) v v
1990-2008 change in demographics (X birth-year FE) v v
Baseline covariates v v v v

Notes. This table explores the robustness of the baseline estimates to additional controls. The sample
is limited to individuals over age 30 at survey time and born in one of the States covering the mainland
of the United States. All regressions include the baseline controls included in column (5) of Table 1
(see footnotes to that table for details). Robust standard errors in brackets are clustered at the state-
of-birth level.
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E.8 Robust Inference

Our baseline analysis uses standard errors clustered at the state-of-birth level. In this section, we
evaluate the robustness of our results to alternative inference approaches. First, we use standard
errors clustered at the state level but adjust them by the effective sample size implied by the relative
importance of each observation, as suggested by Young (2016). Second, because we are using a
shift-share identification strategy, a particular concern is that standard procedures to inference
may result in smaller standard errors if residuals are spatially correlated across areas with similar
sectoral shares (Borusyak et al., 2022). Therefore, we evaluate the robustness of the results using the
inference procedures proposed by Adao et al. (2019) and Borusyak et al. (2022) that address cross-
region correlation in residuals in shift-share designs. Finally, we present results from a specification
that uses standard errors two-way clustered at the state-of-birth and birth-year level, which account
for possible serial and spatial correlation in a flexible manner. As shown in Table E.8, the results

are in general very similar to our baseline.

Table E.8: Exposure Effects on Bachelor’s Degree (in % pts)
(Robustness to Alternative Inference Procedures)

Alternative inference procedures
Clustered by

state + Twoway clustering
Young (2016) Borusyak et al. (2022) Adao et al. (2019) by state +
Baseline effective d.o.f.-adj. robust SE robust SE birth year
(1) @) (3) (4) 5)
Robot penetrationxpost 0.4828 0.4828 0.4828 0.4828 0.4828
[0.1338] [0.1447) [0.1216] [0.1103] [0.1341]
R? 0.673 0.673 0.673 0.673 0.673
Mean Dep. Variable 32.51 32.51 32.51 32.51 32.51
Observations 15372069 15372069 15372069 15372069 15372069
Baseline covariates v v v v v

Notes. This table evaluates the robustness of the baseline results in Table 1 to alternative inference approaches: i) standard er-
rors clustered at the state level but adjusted by the effective sample size implied by the relative importance of each observation,
as suggested by Young (2016); 4¢) inference procedures proposed by Adao et al. (2019) and Borusyak et al. (2022) that address
cross-region correlation in residuals in shift-share designs; iii) two-way clustering by state-of-birth and birth year. See notes to

Table 1 for details on the sample and specification.
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E.9 Robots and Exposure to Other Programs

We examine the extent to which cohort exposure to robots predicts the probability of childhood
exposure to Community Health Centers, Head Start, Food Stamp, Medicaid and School Finance
Reforms. As in Goodman-Bacon (2021), we consider ages 0 to 9 as the relevant window of exposure
for Community Health Centers, Food Stamp and Medicaid, and ages 3 to 4 for Head Start. For
the school finance reforms, we use the ages 5 to 17 as the relevant window of exposure (as in
Jackson et al. (2016)). For each of these programs, we generate a variable measuring the fraction
of the relevant years that a given cohort was exposed to the reform or program. We then estimate
our baseline specification (2) using these measures of program exposure as dependent variables.
Table E.9 documents that the post-robot cohorts from states with greater robot penetration are

not significantly more likely to have been exposed to these programs in childhood.

Table E.9: Robots and Exposure to Safety Net Programs and School Finance Reforms

Fraction of relevant years of exposure to...

Community School
Health Centers Head Start Food Stamp Medicaid Finance Reforms

(1) (2) (3) (4) (5)

Robot penetration X post 0.0246 0.0023 0.0028 -0.005 -0.0575
[0.0181] [0.0156] [0.0138] [0.0137] [0.0371]
R? 0.915 0.866 0.967 0.975 0.892
Mean Dep. Variable 0.210 0.150 0.520 0.580 0.300
Observations 15372069 15372069 15372069 15372069 15372069
Baseline covariates v v v v v

Notes. This table estimates the effects of robots on the share of childhood years exposed to each program
and reform. As in Goodman-Bacon (2021), we consider ages 0 to 9 as the relevant window of exposure
for Community Health Centers, Food Stamp, and Medicaid, and ages 3 to 4 for Head Start. For the
school finance reforms, we use the ages 5 to 17 as the relevant window of exposure (as in Jackson et
al. (2016)). See notes to Table 1 for details on the sample and specification. Robust standard errors in

brackets are clustered at the state-of-birth level.
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Table E.10: Exposure Effects on Bachelor’s Degree (in % pts)
(Controlling Flexibly for Other Social Reforms)

Controlling for birth-cohort FE x adoption year of...

Community School All
Baseline Health Centers Head Start Food Stamp Medicaid Finance Reforms simultaneously
(1) (2) (3) (4) (5) (6) (7)
Robot penetrationxpost 0.4828 0.4819 0.554 0.51 0.4736 0.5678 0.5814
[0.1338] [0.1345] [0.1417] [0.1294] [0.1316] [0.1543] [0.1558]
R? 0.673 0.673 0.673 0.673 0.673 0.673 0.674
Mean Dep. Variable 32.51 32.51 32.51 32.51 32.51 32.51 32.51
Observations 15372069 15372069 15372069 15372069 15372069 15372069 15372069
Baseline covariates v v v v v v v

Notes. This table demonstrates the robustness of the baseline estimates to controlling flexibly for the timing of war-on-poverty programs,
Medicaid, and School Finance reforms. Columns (2)-(6) repeat the baseline specification, but separately include birth-cohort fixed effects
interacted with the year of each program or adoption across states. See notes to Table 1 for details on the sample and specification. Ro-

bust standard errors in brackets are clustered at the state-of-birth level.
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E.10 Supply-Side Responses

Table E.11: Robots and Supply-Side Responses

Log-differences 1990-2008:

Percapita revenue Per capita revenue Per capita
Average net from from Government transfers
tuition and fees state and local state and local in education and
costs appropiations grants training assistance
(1) 2) 3) (4)
Robot penetration 0.0015 0.0014 0.0059 -0.017
[0.0099] [0.0288] [0.0323] [0.045]
R? 0.0001 0.0001 0.0002 0.319
Mean Dep. Variable 1.13 0.35 1.63 1.06
Observations 49 49 49 49
Baseline covariates v v v v

Notes. This table reports results from estimating equation (6): AY;g0—0s = @ + yRobotss + Z.Q + &,.
The unit of analysis is a state. All regressions control for the baseline demographic and socioeconomic state

characteristics described in Table 1. Standard errors are robust to arbitrary forms of heteroskedasticity.
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F Model Appendix

F.1 Local Identification

This subsection provides further evidence that the targeted moments effectively inform the esti-
mated parameters. Figure F.1 plots the value of the criterion function for different values of a
given parameter, holding the other fixed at its estimated value. As one can infer from the figure,
the targeted moments provide relevant idenfitication information. The criterion function is strictly

convex around the estimated parameters and consequently the coefficients are uniquely identified.

Figure F.1: Minimum Distance, Model

Panel A. Mean of disutility: u, Panel B. Standard deviation of disutility: o,
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Notes. These figures show the impact of varying one parameter at time on the criterion function, holding the other
parameter fixed at its estimated value. The x—axis is the respective parameter of interest, while the y—axis represents

the value of the criterion function.
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F.2 Sensitivity Tests

Table F.1: Estimated Parameters for the Structural Model:
Alternative Curvature Coefficients

Description Parameter Estimate Target moment Data  Model
Panel A: v =1 (log utility)

Mean of disutility from college attendance fiy 3.947 Bachelor completion (% pts.) 32.506 32.110
[0.288]

Standard deviation of disutility from college attendance oy 4.630 Reduced-form effect of robots 0.483  0.476
[0.293]  on bachelor completion (% pts.)

Panel B: v =2
Mean of disutility from college attendance fyy 0.00039  Bachelor completion (% pts.) 32.506 32.322
[0.00005]
Standard deviation of disutility from college attendance oy 0.00078  Reduced-form effect of robots 0.483  0.482

[0.00001]  on bachelor completion (% pts.)

Notes. This table shows the robustness of the results to assuming alternative values for the curvature parameter of the utility function.
The estimates are obtained using the simulated method of moments. The estimation sample consists of all youths aged 18 in the 1990
census, when they are ready to make college decisions. For a vector of possible values of structural parameters 1, we simulate a value
n; for each individual ¢ based on the cumulative normal distribution function F(-) and then solve for their college decision under a sce-
nario with and without robots. For the latter scenario, the corresponding updated earnings profiles are simulated using the estimates
of Kksq Obtained in the first step. The parameters are estimated by minimizing the distance between the target empirical moments and
simulated moments as predicted by the model for a given vector of free parameters. The target moments are the bachelor attainment
rate and the reduced-form effect of robots on bachelor attainment reported in column (5) of Table 1. The estimated coefficients and re-
spective standard errors are reported in the third column. The empirical and simulated moments are reported in the last two columns.

Standard errors reported in brackets are obtained through a bootstrap of the structural estimation.
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Table F.2: Estimated Parameters for the Structural Model:
Alternative Interest Rates

Description Parameter Estimate Target moment Data Model

Panel A: annual interest rate=1%

Mean of disutility from college attendance iy 0.06376  Bachelor completion (% pts.) 32.5062  32.555
[0.00254]
Standard deviation of disutility from college attendance oy 0.08164  Reduced-form effect of robots 0.4828  0.5032

[0.0025]  on bachelor completion (% pts.)

Panel B: annual interest rate=2%

Mean of disutility from college attendance fiy 0.05768  Bachelor completion (% pts.) 32.5062 32.5557
0.00252]
Standard deviation of disutility from college attendance oy 0.0804  Reduced-form effect of robots 0.4828  0.4484

[0.00249]  on bachelor completion (% pts.)

Panel C: annual interest rate=3%

Mean of disutility from college attendance iy 0.04912  Bachelor completion (% pts.) 32.5062  32.5925
[0.00249]
Standard deviation of disutility from college attendance oy 0.0729  Reduced-form effect of robots 0.4828  0.4535

[0.00256]  on bachelor completion (% pts.)

Panel D: annual interest rate=4%

Mean of disutility from college attendance fin 0.04185  Bachelor completion (% pts.) 32.5062 32.6744
[0.00248]
Standard deviation of disutility from college attendance oy 0.0661  Reduced-form effect of robots 0.4828  0.4686

[0.00243]  on bachelor completion (% pts.)

Notes. This table shows the robustness of the results to assuming alternative values for the annual interest rate. Note that the interest
rate per period is equal 4(x) the annual interest rate, since each period corresponds to 4 years. The estimates are obtained using the sim-
ulated method of moments. The estimation sample consists of all youths aged 18 in the 1990 census, when they are ready to make college
decisions. For a vector of possible values of structural parameters v, we simulate a value 7; for each individual ¢ based on the cumula-
tive normal distribution function F'(-) and then solve for their college decision under a scenario with and without robots. For the latter
scenario, the corresponding updated earnings profiles are simulated using the estimates of kg, obtained in the first step. The parameters
are estimated by minimizing the distance between the target empirical moments and simulated moments as predicted by the model for a
given vector of free parameters. The target moments are the bachelor attainment rate and the reduced-form effect of robots on bachelor
attainment reported in column (5) of Table 1. The estimated coefficients and respective standard errors are reported in the third column.
The empirical and simulated moments are reported in the last two columns. Standard errors reported in brackets are obtained through a

bootstrap of the structural estimation.
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Table F.3: Estimated Parameters for the Structural Model:
Alternative Repayment Peridos

Description Parameter Estimate Target moment Data Model
Panel A: loans last 4 periods
Mean of disutility from college attendance iy 0.03925  Bachelor completion (% pts.) 32.5062 33.1022
[0.00251]
Standard deviation of disutility from college attendance oy 0.06697  Reduced-form effect of robots 0.4828  0.4711
[0.00247]  on bachelor completion (% pts.)
Panel B: loans last 6 periods
Mean of disutility from college attendance fiy 0.03954  Bachelor completion (% pts.) 32.5062 32.5649
[0.00239]
Standard deviation of disutility from college attendance oy 0.06505 Reduced-form effect of robots 0.4828 0.478
[0.00253]  on bachelor completion (% pts.)
Panel C: loans last 8 periods
Mean of disutility from college attendance iy 0.04108  Bachelor completion (% pts.) 32.5062 31.8347
[0.00245]
Standard deviation of disutility from college attendance oy 0.06582  Reduced-form effect of robots 0.4828  0.4909
[0.00248]  on bachelor completion (% pts.)

Notes. This table shows the robustness of the results to assuming alternative repayment periods. The estimates are obtained using the

simulated method of moments. The estimation sample consists of all youths aged 18 in the 1990 census, when they are ready to make

college decisions. For a vector of possible values of structural parameters v, we simulate a value 7; for each individual i based on the cumu-

lative normal distribution function F(-) and then solve for their college decision under a scenario with and without robots. For the latter

scenario, the corresponding updated earnings profiles are simulated using the estimates of kg, obtained in the first step. The parameters

are estimated by minimizing the distance between the target empirical moments and simulated moments as predicted by the model for a

given vector of free parameters. The target moments are the bachelor attainment rate and the reduced-form effect of robots on bachelor

attainment reported in column (5) of Table 1. The estimated coefficients and respective standard errors are reported in the third column.

The empirical and simulated moments are reported in the last two columns. Standard errors reported in brackets are obtained through a

bootstrap of the structural estimation.
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