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Abstract

This paper quantifies the relative footprint of trade and agricultural productivity on defor-

estation in Brazil between 2000 and 2017. Using remote-sensing data, we find that these two

phenomena have distinct effects on land use. Greater exposure to new genetically engineered

soy seeds is associated with faster deforestation through the expansion of cropland. We find

no association between exposure to demand from China and deforestation – although, trade

induces less conversion of forest and pastureland to cropland in areas hit by the technology

shock. Our results suggest that, when taken together, agriculture productivity gains, and not

trade, were the main driver of deforestation and the expansion of the agriculture sector.
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1 Introduction

Trade and technology are two of the main forces shaping agricultural markets worldwide.

They are key factors in promoting food security and economic development in low- and

middle-income countries.1 Despite the benefits brought by greater trade integration and

technological advances, agriculture is also the main driver of the loss of tropical forests and

the leading source of greenhouse gas emissions outside developed economies. 2 This is be-

cause tropical ecosystems host a large amount of biomass that is released in the form of

carbon dioxide in the process of converting natural vegetation into new agricultural land.3

Thus, it is important to understand the environmental footprint of new agriculture technolo-

gies and trade in tropical ecosystems.

Moreover, technology and trade are intertwined, so it is crucial to understand how differ-

ent are the impacts of the two factors (Autor et al., 2015). For instance, gains in agriculture

productivity can change countries’ comparative advantage, leading to production special-

ization and higher trade flows (Eaton and Kortum, 2002). Meanwhile, trade can generate

productivity gains by providing access to cheaper inputs and by increasing innovation efforts

(Akcigit and Melitz, 2021). Considering these complex relationships, how do new agricultural

technologies and trade differentially impact deforestation?

In this paper, we quantify the relative footprint of new agriculture technology and in-

creased trade demand on deforestation and land use in Brazil. In particular, we untangle the

effects of new genetically engineered soy seeds (Bustos et al., 2016) and increased demand

from China (Costa et al., 2016) on the loss of forest cover and land-use changes between 2000

and 2017 (MapBiomas Project). Our results reveal distinct footprints of these two phenom-

ena. While greater exposure to the new soy technology is associated with faster deforestation

through the expansion of cropland, we find no statistically significant or economically mean-

ingful association between exposure to greater demand from China and deforestation.

The impact of increased agricultural productivity on deforestation is theoretically am-

biguous (Jayachandran, 2021). On the one hand, greater productivity makes agriculture

production more profitable, leading to more entry, and an expansion of the agriculture fron-

tier over the forest (Garcia, 2020). This is known as the “Boserup Hypothesis”, a special case

of Jevon’s Paradox. On the other hand, higher productivity may lead to an intensification

of production that, under some factor market constraints, reduces the need for new agricul-

tural land. This is known as “Borlaug Hypothesis”. Evidence on the direction of the effects

1World Bank (2007); Goldberg and Pavcnik (2004); Barrett (2010); Gollin et al. (2014); Bustos et al.
(2016); McArthur and McCord (2017).

2IPCC (2007); Curtis et al. (2018); Crippa et al. (2021).
3Baccini et al. (2012); Araujo et al. (2020); Balboni et al. (2021).
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are mixed. Consistent with the latter hypothesis, Abman and Carney (2020) and Abman

et al. (2020) show that agriculture extension programs targeted to small-scale agriculture

in Malawi and Uganda reduced deforestation. Szerman et al. (2022) shows that electrifi-

cation in Brazil between 1960 and 2000 increased agriculture productivity and preserved

forest areas. Consistent with the “Boserup Hypothesis”, and more aligned with our findings,

Hess et al. (2021) shows that community-driven development programs in Gambia increased

deforestation, likely through the community’s choice to implement agricultural projects.4

The environmental effects of trade are also conceptually ambiguous. Grossman and

Krueger (1991) shows that the net effects depend on a combination of three main mecha-

nisms: an increase in production scale, a change in the product mix, and the adoption of

cleaner and more efficient technologies. All three mechanisms are at play in our setting. Em-

pirically, there is a series of cross-country and correlational studies documenting that trade

liberalization is associated with higher deforestation.5 Using an event study design, Abman

and Lundberg (2020) shows that regional trade agreements lead to a subsequent increase in

deforestation, especially in tropical regions. Also, a series of papers link increases in interna-

tional commodity prices with deforestation in Brazil (Assunção et al., 2015; Harding et al.,

2021; Da Mata and Dotta, 2021).

Our main contribution is to connect these two strands of the literature to evaluate the

relative impact of agriculture productivity and trade on the expansion of agricultural land

over forest areas. The key inputs we need to untangle these two channels are quasi-exogenous

measures of exposure to agriculture technological innovations and demand from international

markets. We measure the local exposure to technological shock as the local productivity gains

from new genetically engineered soy seeds introduced in Brazil in 2003 as in Bustos et al.

(2016). We measure the local exposure to increased export demand from China using a

two-step procedure as in Costa et al. (2016). We first use country-level trade data to run

regressions of country imports in the whole world (excluding Brazil) on a set of product and

product-China fixed effects. The set of China-specific fixed effects captures the differential

change in Chinese demand for that product relative to the rest of the world (excluding

Brazil). We distribute this change in product-specific Chinese demand across municipalities

in Brazil according to the local production composition in 1995.

Key to our identification, we show that there is variation in differential exposure to the

trade and technology shocks across municipalities such that we can study their effects on

a single equation as Autor et al. (2015). Our identifying assumption is that conditional on

4Related, increasing household income has been shown to increase deforestation in India, Mexico, and
Indonesia (Foster and Rosenzweig, 2003; Alix-Garcia et al., 2013; Ferraro and Simorangkir, 2020).

5E.g., Barbier and Rauscher (1994); Ferreira (2004); Faria and Almeida (2016); Leblois et al. (2017).
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controls, differential suitability to the new genetically engineered soy seed and differential

exposure to the China-induced export demand are not correlated with other determinants

of land use. Reassuringly, we find no strong correlations between the technology and trade

shocks with land-use trends in the pre-treatment period between 1996 and 2000.

We contribute to the discussion about the effects of agriculture productivity on defor-

estation by providing a piece of evidence in favor of the “Boserup Hypothesis”. Different

from recent papers that find that agriculture productivity gains can promote conservation

(Abman and Carney, 2020; Abman et al., 2020; Szerman et al., 2022), we study a setting in

which the new agriculture technology favors large-scale agriculture and capital constraints

are likely looser. This is a period in which the government devoted large, subsidized credit

to large agriculture producers.6 Furthermore, Bustos et al. (2016) show that the soy boom

created a process of local structural transformation with substantial implications for local

capital accumulation (Bustos et al., 2020).

We also contribute to the literature on the environmental implications of trade (Copeland

et al., 2021; Cherniwchan and Taylor, 2022). We find no evidence that exposure to greater

export demand is associated with deforestation when we account for agriculture productivity

shocks that may affect local comparative advantage. Differently from the literature, we study

a shock in the demand for agricultural goods on deforestation, rather than fluctuations in

commodity prices (Harding et al., 2021) or regional trade agreements (Abman and Lundberg,

2020). Other papers have used related shift-share shocks to study the effects of greater

trade demand for exports, but with a focus on air pollution and emissions in China and

India (Bombardini and Li, 2020; Barrows and Ollivier, 2021). A growing literature embeds

environmental externalities in trade models with heterogeneous productivity (Costinot et al.,

2016; Shapiro, 2016; Hsiao, 2021; Pellegrina, 2022). In particular, Dominguez-Iino (2021)

shows that unilateral environmental tariffs on agriculture imports from Latin America are

not effective because of leakage. Our paper provides additional reduced-form evidence on

the limited impact of international trade on deforestation.

The remainder of the paper is organized as follows. We describe our measures of land use

in Section 2.1. We explain the new soy agriculture technology in Section 2.2, and the local

exposure to trade in Section 2.3. Section 2.4 details the empirical method and discusses

identifying assumptions. Section 3 presents the main results, a series of robustness, and

briefly discusses potential spatial spillover. Section 4 offers concluding comments.

6Bulte et al. (2007) argues that subsidies to large farmers are not unique to Brazil, but abound in Latin
America. Assunção et al. (2019) shows that credit access is an important mediator of deforestation in the
Brazilian Amazon.
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2 Measurement and Method

2.1 Land Use in Brazil

Our main measure of land use is yearly remote sensing data from MapBiomas that classifies

land use in Brazil based on 30 meters resolution LANDSAT images.7 We consider four

categories of land use: forest (native and secondary vegetation), crop, pasture, and others

(the omitted category). We compute the share of each category at the municipality level

i between 1996 and 2017. Because new municipalities were created in this period, we use

Minimum Comparable Areas (AMCs) to ensure municipality limits are consistent over time

(Reis et al., 2008; Ehrl, 2017) – hereinafter, we use municipalities referring to AMCs.8

Figure A1 shows the evolution of land use shares in Brazil over time. Figure A1a shows

that forested areas decreased sharply until 2005. In this early period, the main responsible

for the loss of forest area is the expansion of pastureland – notice the difference in the scale

in Figures A1b and A1c. Figure A1b shows that areas destined for crops steadily increased

since 1995, there seems to be an inflection point in the early 2000s when cropland starts to

expand faster. Starting in 2005, deforestation slows down as the government introduced a

series of conservation policies to cope with deforestation in the Amazon region.9

Figure 1 shows the map of land-use changes in Brazil between 2000 and 2017. Figure

1a plots the change in forest cover (i.e., deforestation) in this period across municipalities in

Brazil. We see that the municipalities in the western part of the Amazon and the Cerrado

biome (savannah-type vegetation in the center of Brazil) are among those that lost the largest

share of forest cover in the period. While we see an increase in cropland in these areas (Figure

1b), we see a substantial overlap between the municipalities with the highest deforestation

and those with the largest expansion of pastureland (Figure 1c) in the period. This seems to

be associated with pastureland moving North over time, pushed by the expansion of cropland

in the Midwest and the South.

2.2 Exposure to New Agricultural Technologies

One of the most important factors driving the expansion of crop production in Brazil over

the last decades is the arrival of genetically engineered (GE) soybean seeds. GE soy seeds

are more resistant to herbicides than traditional ones. With GE seeds, farmers need little

7Project MapBiomas - Collection 3.0 of Brazilian Land Cover & Use Map Series, accessed on 01/09/2020
through the link: http://mapbiomas.org.

8We also use the 1996, 2006, and 2017 Brazilian Agricultural Census from the Brazilian Institute of
Geography and Statistics (IBGE), and the 1991 Demographic Census to build additional controls at the
municipality level.

9E.g., Assunção et al. (2015, 2019); Alix-Garcia et al. (2018); and Burgess et al. (2019).
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Figure 1: Maps of Land Use Change 2000–2017

(a) Change in Forest Cover

(b) Change in Cropland (c) Change in Pastureland

These maps show the land-use change between 2000 and 2017. These are the three main outcome variables in
the paper: (a) changes in the share of municipalities with forest cover; (b) changes in the share of pastureland;
and (c) changes in the share of cropland. Unit of observations are municipalities (AMCs). The intervals in
the legends correspond to the quintiles of the respective variables. Table A1 Panel A presents the summary
statistics of these variables.

soil preparation to separate harmful weeds from soy seeds because they can apply herbicides

directly to the soil, killing unwanted weeds without harming the soy plants. This saves

6



time and labor, increasing potential yields. Importantly, the new technology allowed the

expansion of soy production to areas that were not commercially viable using traditional soy

seeds. GE seeds were first commercialized in the United States in 1996, but the Brazilian

government approved the use of GE soybean seeds in the country only in 2003.10 This

represented a major increase in agricultural productivity in some regions inflicting profound

changes not only in the agriculture sector but in the whole economies around the new soy

fields. Bustos et al. (2016) show that the technology shock of the new soy seed had triggered

a process of structural transformation and capital accumulation (Bustos et al., 2020).

To measure the local exposure to the increase in agricultural productivity brought by

the GE soy seeds, we follow Bustos et al. (2016). We use data on potential soy yields

from the Food and Agriculture Organization’s project Global-Agroecological Zones (FAO-

GAEZ). This data computes the maximum predicted yields by field based on weather and

soil characteristics under different combinations of agriculture inputs. We use the difference

between two measures of potential yields for soy to compute the agriculture productivity gain

brought by the GE soy seed. The low input potential yields consider traditional production

technology with minimal use of modern inputs such as fertilizers and herbicides. The high

input potential yields consider the use of modern inputs such as GE seeds and fertilizers. We

measure the local exposure to productivity gains from adopting GE soy seeds in municipality

i, Ai, as the difference in potential yield in the high and low input scenarios aggregated at

the municipality level (divided by 100 to facilitate visualization).11

Figure 2a shows the map of local agriculture productivity gains from GE soy seeds (Table

A1 Panel B shows summary statistics). The regions in the Midwest and the South of the

country particularly benefited from the GE soy seed. These are the areas we observe the

largest increase in cropland in Figure 1b, and the largest decline in pastureland in Figure 1c.

2.3 Exposure to International Trade

A second large economic event that had a profound influence on the Brazilian agriculture

sector in the last decades is China’s emergence in the world market. After a decade of massive

internal growth rates, China joined the World Trade Organization in 2001 and changed the

dynamics of international trade (Autor et al., 2013). For developing countries in general

and Brazil in particular, China rapidly became a major exporter of manufactured goods and

an importer of commodities (Costa et al., 2016). This created a commodity boom of goods

demanded by China, such as soybeans. The new GE soy seeds and the growing demand

10However, there is evidence of smuggling of GE seeds occurred through the Brazilian border with Ar-
gentina since 2001 (USDA, 2001).

11We use rain-fed potential yield because irrigation is not common in soy plantations in Brazil.
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Figure 2: Maps of Exposure to Agriculture Technology and Trade Shocks

(a) Productivity Gains from GE Soy seeds (b) Exposure to Chinese Demand

These maps plot the two treatment variables used in the paper. Panel (a) plots local exposure to the potential
productivity gains from GE soy seeds, described in Section 2.2. Panel (b) plots the local exposure to increased
Chinese demand for products between 2000 and 2017, described in Section 2.3. Unit of observations are
municipalities (AMCs). The intervals in the legends correspond to the quintiles of the respective variables.

for soybeans were a perfect storm in Brazilian agriculture. Brazil became the leading global

exporter of soybeans, with China being the larger destination of Brazilian soy production.

Brazilian exports of soybeans to China increased by $2.8 billion between 1995 and 2006, and

by $17.4 billion between 2006 and 2017 - see Table A2. Brazilian exports of several other

commodities and minerals to China also expanded in this period, as shown in the table.

We construct a measure of local exposure to China’s growing demand for agricultural

commodities in three steps. First, we use the BACI-CEPII international trade database,

which provides the annual value of bilateral trade in goods classified at the 6-digit level

of the Harmonized System classification from 1995 to 2017.12 To match the agricultural

products reported in the Census with the trade data, we apply the concordance from the

Comissão Nacional de Classificação (Concla-IBGE). Since this concordance only links raw

agricultural products to their trade codes, we use the direct requirements coefficients from

IBGE’s Brazilian input-output table to account for the changes in the demand for processed

12Values are denominated in thousand of current US dollars converted to thousand of 2017 US dollars
using the GDP price deflator from the US Bureau of Economic Analysis.
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goods.13 This input-output table indicates the dollar amount of a raw agricultural product

necessary to produce one dollar of each industry’s output. We multiply the change in Chinese

demand for each industry by such dollar amount to measure Chinese implicit demand for

each raw agricultural product. We present a detailed description of these concordances in

Appendix B. Table A3 presents the direct impact of each industry on specific agricultural

products. For instance, a $1 increase in the Chinese demand for biofuel products results in

a $0.38 increase in the demand for sugarcane and $0.03 increase in the demand for soy.

Overall, we obtain 54 Brazilian agricultural product categories exported to China since

1995. Table A2 shows the descriptive statistics of these product categories.14 It shows, for

example, that annual Brazilian exports of cattle to China increased by around $476 million

between 1996 and 2017.

We are interested in estimating the effect of exposure to growing demand from China

on land use in Brazil. As other internal factors may have influenced Brazilian agriculture

production over time, we cannot simply attribute all Brazilian export growth to China. For

example, as we discuss in Section 2.2, the GE soy seed could have led to the expansion of soy

production in Brazil irrespective of China’s ascension. Thus, our main empirical challenge is

isolating the effects of the growth of Chinese demand on Brazilian production, net of other

Brazil-specific factors.

We address this challenge by constructing a plausibly exogenous measure of exposure

to Chinese demand by adapting the method in Costa et al. (2016). We first remove the

influence of world- and Brazil-specific shocks in the observed changes in trade between Brazil

and China. We do so by running the following auxiliary regression for all countries except

Brazil, weighted by the initial import values:

∆Ĩij00/17

Ĩij00
= βj + ψChina,j + υij (1)

where ∆Ĩij00/17/Ĩij00 is the growth rate in imports of product j by country i from all countries

other than Brazil between 2000 and 2017; βj is the product fixed effect that captures the

world average growth of net-of-Brazil imports of product j; ψChina,j is a China-product

specific dummy that captures the deviation of the China import growth rate of product j in

13Concla’s concordance includes products with minimal use of agricultural commodities as inputs. We
only consider products that use raw agriculture products as inputs with direct impacts larger than 0.02.

14The value of production for each animal is not available in the 1995 Agricultural Census. We input the
value of cattle production as equal to the value of production of large animals (in 2006, cattle production
represented 99.3% of the large animals’ production), and the value of production of swine and poultry as
equal to the difference between the value of animal and large animals production (in 2006, swine and poultry
accounted for 90.5% of this difference).
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comparison to the one from the rest of the world (βj); and υij is the error term. The estimated

ψ̂China,j captures the predicted change in global exports to China (excluding Brazil) induced

by China-specific factors between 2000 and 2017. Table A2 shows the estimates ψ̂China,j.

Our measure of local exposure to China-induced export demand is the following:

X̂i =
1

Li95

54∑
j=1

Vij95
VBj95

× XBCj00 ψ̂China,j

100
(2)

where Li95 is the agricultural and forest land area (the sum of cropland, pastureland and

forest) in municipality i in 1995; Vij95 is the value of production of product j in municipality

i in Brazil in 1995; VBj95 is the total value of product j produced in Brazil in 1995; XBCj00

is the Brazilian exports of product j to China in 2000; and ψ̂China,j are the estimates of

ψChina,j from equation (1). Intuitivelly, we distribute the China-induced demand growth in

product j (XBCj00 ψ̂China,j) across municipalities i according to the share of that product

produced in that municipality in the baseline (Vij95/VBj95) normalized by the municipality

area (Li95). As with the technology shock, we divide by 100 to better visualize the regression

coefficients. Goldsmith-Pinkham et al. (2020) clarifies that shift-share variables, such as X̂i,

are a weighted average of just-identified estimates considering each product category as an

instrument. In our case, our identification relies on shift-exogeneity granted by the fixed

effects estimates from equation (1).15

Figure 2b plots the map of local exposure to the Chinese demand computed from equation

(2). We see that municipalities in the South, the Midwest and the Center of Brazil were

among the most exposed to China-induced growth of export demand. Table A1 Panel B

shows the summary statistics of X̂i.

2.4 Empirical Method

We aim to untangle the impacts of exposure to agriculture productivity shocks and increased

international demand for commodities on land use in Brazil. To that goal, our empirical

strategy consists in estimating the effects of municipal exposure to two plausibly exogenous

shocks: exposure to the new GE soy seed Ai (Bustos et al., 2016) and increased demand

from China X̂i (Costa et al., 2016).

The key to our identification is that these two shocks are not highly colinear, otherwise,

we would not have variation in differential exposure to both shocks that would allow us to

untangle the distinct contribution of each of them to land use. The correlation between Ai

and X̂i is positive but low (equal to 0.33). Important for our identification strategy, there is

15We cannot apply the method in Borusyak et al. (2022) as we have few product categories.
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a considerable spatial variation in the intensity of exposure to the two shocks – see the maps

in Figure 2 and the scatter graph in Figure A2. For example, from the set of municipalities

on the top decile of most heavily exposed to either of the two shocks, only 27% are heavily

affected by both shocks. That is, most of the municipalities more strongly exposed to the

soy technological shock are not among the municipalities more strongly exposed to Chinese

demand growth, and vice versa. This enables us to untangle the impacts of each of these

shocks on land use.

In our main specification, we estimate the following equation for each year t:

∆yit = αtX̂i + βtAi +W ′
iγt + εit, (3)

where ∆yit is the change in land-use (either forest, pastureland or cropland) in municipality

i between 2000 and t ∈ {2001, ...2017}, and Wi is a vector of municipal controls measured at

baseline. By regressing the change in land use at the municipality level, the model absorbs

any municipal-level characteristics that determine land use levels. Additionally, to allow for

differential trends for municipalities with different initial characteristics, we include a set of

controls Wi as in (Bustos et al., 2016): literacy rate, the share of the rural population, the

log of population density, log of income per capita, all in 1991 based on the demographic

census. We also control for the share of available land in 1996 from MapBiomas, which is

equal to the share of forest, cropland, and pasture combined – this accounts for areas that

cannot be used for agriculture, such as urban areas, water sources, and rock formations. We

allow for the possibility of differential state-specific trends by including state fixed effects.

We adjust the standard errors by taking into account potential spatial correlation (Conley,

1999) with a 100km distance cut-off.

The coefficients of interest are βt and αt, which capture the effects of the technology

and trade shocks, respectively, on land-use change each year. Under the assumption that,

conditional on municipality level fixed effects, state-specific trends, and controls, differential

suitability to the new GE soy seed and differential exposure to the China-induced export

demand are not correlated with other determinants of land use, the coefficients βt and αt

hold causal interpretation.

3 Results

We study the land-use implications of exposure to the new genetically engineered soy seed

(an agriculture technological shock) and export demand from China. Figure 3 shows the

estimates of equation (3). The solid lines in column (a) show the coefficients of the trade
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shock (αt) and the solid lines in column (b) show the coefficients of the technology shock

(βt). The dashed lines show the 95% confidence intervals. Each row presents the estimates of

a different dependent variable: changes in municipalities’ area with forest cover, and changes

in areas used for crop and pasture, respectively.

Our main exercises focus on land-use changes after 2000. To help assess our identification

assumption, we investigate whether exposure to technology and trade shocks correlates with

pre-treatment land use between 1995 and 2000. In this exercise, we regress changes in

land use between year t and 1995 on the two shocks (and controls) – that is, we estimate

equation 3 considering changes in the left-hand-side variables in the pre-period of analysis.

Looking at the period from 1996 to 2000, in row 1, we observe noisy correlations between

these shocks and deforestation, estimates are not statistically different from zero at 5%

significance. Importantly, in rows 2 and 3 we find no differential pre-treatment effects of

the technology and the trade shocks on the expansion of cropland and pastureland.Thus,

reassuringly, we find no strong correlations between the technology and trade shocks with

land-use trends in the pre-treatment period.

What are the effects of exposure to the rise in Chinese demand for land use? Figure 3

column (a) shows the results. In row 1, we see that exposure to the rise in export demand

is not associated with changes in the share of municipalities’ area with forests after 2000.

The point estimates are positive until 2010 and negative afterward but are all statistically

insignificant. We find, however, that exposure to Chinese demand leads to some substitution

of pasture for crops. Results in column (a) rows 2 and 3 show a negative and a positive

association between export demand and share of cropland and pastureland, respectively, with

similar magnitudes in absolute terms. The magnitude of this substitution is non-negligible.

By 2017, a municipality at the 75th percentile of exposure to the trade shock (X̂i = 0.009,

see in Table A1) had on average 5.7 [=100×0.071×(0.009 - 0.001)] percentage points more

pastureland and 5.4 [=100*(-0.068)*(0.009 - 0.001)] percentage points less cropland than a

municipality at the 25th percentile (X̂i = 0.001).

What are the effects of exposure to the soy technology shock on land use? Figure 3 column

(b) row 1 provides evidence that areas of forest have declined more rapidly in municipalities

where potential productivity gains from GE soy seed have increased more strongly. All the

point estimates are negative, and most of them are statistically significant at the 5% level.

Our estimates suggest that, by 2017, a municipality at the 75th percentile of the technology

shock (Ai = 0.025) lost about 1 [= 100×(-0.706)×(0.025 - 0.011)] percentage point of forest

more than a municipality at the 25th percentile (Ai = 0.011). To put that into perspective,

the municipality of Comodoro in the state of Mato Grosso is close to the 75th percentile of

the shock. With an area of approximately 21,520 km2, our estimates suggest that this single

12



Figure 3: Results on the Effects of Trade and Technology Shocks

(a) China Export Demand
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The figures show the estimates of the effects of the trade shock (αt) and technology shock (βt) from equation
(3) on land-use change over time. Each row presents a different dependent variable: changes in municipalities’
forest cover area, changes in areas used for crops, and pasture, respectively. The solid lines plot the point
estimates and the dashed lines the 95% confidence (using Conley, 1999, standard errors). We plot pre shocks
(1996-2000) and post shocks (2001-2017) regressions. The points to the right of the solid vertical line consider
post trade shock regressions (2001 onwards), while points to the right of the dashed vertical line consider
post trade and technology shocks regressions (2003 onwards). All regressions include state fixed effects and
the following controls: income per capita, literacy rate, population density, and rural population all in 1991,
and available land in 1995. N=3,823.
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municipality lost about 212.6 km2 more forest area than a municipality not so exposed to

the soy technology shock, the equivalent of over a quarter of the area occupied by New York

City.

The estimates in Figure 3 column (b) rows 2 and 3 show that the main driver of defor-

estation is the expansion of cropland over forest and pasture. Row 2 shows that, by 2017,

a municipality at the 75th percentile of the technology shock (Ai = 0.025) gained 5.7 [=

100×4.05×(0.025 - 0.011)] percentage point of cropland and lost 4.5 [= 100×(-3.19)×(0.025

- 0.011)] pastureland relative a municipality at the 25th percentile.

Robustness We verify the robustness of our results to different specifications. First, Figure

A3 shows that our results are robust to applying an inverse hyperbolic sine transformation to

our dependent variables.16 Table 1 presents a series of different specifications. All regressions

in the table consider the last year of our analysis – that is, land-use changes between 2000 and

2017. Panels show results using different land use as the dependent variable. Column 1 shows

our baseline results using the same specifications from Figure 3. Column 2 uses Agricultural

Census data to calculate the dependent variables (instead of MapBiomas). Column 3 weights

regressions by the municipality area. Column 4 excludes state fixed effects.17 Column 5

does not include any regressor apart from state fixed effects, while columns 6-10 consider

state fixed effects and add each control one at a time. This table shows that the estimates

presented in Figure 3 are robust to most of these specifications. Almost all coefficients

remain statistically significant and their magnitudes are relatively stable across the different

specifications. The two noteworthy differences are relative to the estimates of the effect

of technology on deforestation (Panel A). The point estimates are larger when we use the

Agricultural Census data (column 2), likely because it only includes private property areas

(e.g., it excludes indigenous land and other protected areas). Point estimates are statistically

insignificant when we weigh the regression by municipalities area (column 3).

Interaction We also consider a specification that includes an interaction between the two

shocks. The results are presented in Figure 4. We can see that adding the interaction does

not change the sign or magnitudes of the coefficients of the technology shock. However,

most of the coefficients of the trade shock become statistically insignificant. The interaction

coefficients in the last column of the figure suggest that the trade shock alleviated the

16More precisely, we take the inverse hyperbolic sine transformation of land use before taking differences
over time to construct our new dependent variables. This transformation plays the same role as a logarithmic
transformation (before taking time differences). Its main advantage is that it incorporates zeros, which are
relevant in our case.

17This increases the sample by two observations, as two states (Roraima and Distrito Federal) had fewer
than three municipalities and could not be included in the regression with state fixed effects.
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Table 1: Robustness Results on the Effects of Trade and Technology Shocks 2000-2017

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Panel A. Change in share of forest 2000-2017
Trade Shock (α) -0.002 0.003 -0.009 0.001 -0.003 -0.003 -0.003 -0.003 -0.003 -0.002

(0.005) (0.009) (0.010) (0.007) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
Technology Shock (β) -0.706∗∗ -1.114∗∗∗ -0.505 -0.695∗∗ -0.671∗∗ -0.648∗∗ -0.702∗∗ -0.672∗∗ -0.638∗∗ -0.702∗∗

(0.281) (0.409) (0.363) (0.305) (0.275) (0.275) (0.281) (0.273) (0.281) (0.288)

Panel B. Change in share of cropland 2000-2017
Trade Shock (α) -0.068∗∗ -0.015 0.034 -0.057∗∗ -0.059∗ -0.057∗ -0.059∗ -0.061∗∗ -0.061∗∗ -0.069∗∗

(0.027) (0.025) (0.032) (0.027) (0.031) (0.030) (0.031) (0.028) (0.030) (0.030)
Technology Shock (β) 4.050∗∗∗ 4.047∗∗∗ 3.431∗∗∗ 5.381∗∗∗ 4.048∗∗∗ 4.133∗∗∗ 4.074∗∗∗ 4.046∗∗∗ 4.271∗∗∗ 4.307∗∗∗

(0.713) (0.710) (0.479) (0.982) (0.797) (0.810) (0.809) (0.731) (0.834) (0.827)

Panel C. Change in share of pastureland 2000-2017
Trade Shock (α) 0.071∗∗∗ 0.038∗ -0.024 0.065∗∗ 0.059∗ 0.058∗ 0.060∗∗ 0.060∗∗ 0.059∗∗ 0.069∗∗

(0.027) (0.021) (0.030) (0.029) (0.030) (0.030) (0.030) (0.029) (0.030) (0.029)
Technology Shock (β) -3.188∗∗∗ -3.204∗∗∗ -2.763∗∗∗ -4.535∗∗∗ -3.142∗∗∗ -3.193∗∗∗ -3.042∗∗∗ -3.141∗∗∗ -3.232∗∗∗ -3.424∗∗∗

(0.888) (0.707) (0.645) (1.130) (0.928) (0.946) (0.953) (0.895) (0.981) (0.965)

Data MapBio. Census MapBio. MapBio. MapBio. MapBio. MapBio. MapBio. MapBio. MapBio.

State FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Income p.c91 Yes Yes Yes Yes Yes
Literacy rate91 Yes Yes Yes Yes Yes
Population density91 Yes Yes Yes Yes Yes
Rural population91 Yes Yes Yes Yes Yes
Available Land95 Yes Yes Yes Yes Yes
Weighted Yes

This table presents alternative specifications for the effects of the trade shock (αt) and technology shock (βt)
from equation (3) on land use changes between 2000 and 2017. See description in the Robustness segment
in Section 3. Conley (1999) standard error in parenthesis. Number of observations: 3,784 (column 2), and
3,823 (remaining columns).

deforestation effects arising from the technology shock. Although many coefficients are

not statistically significant, the point estimates of the interaction terms suggest that areas

extensively exposed to both trade and technology shocks experienced less deforestation and

less conversion from cropland to pastureland compared to areas that experienced only large

technology shocks. One possible explanation is that regions more exposed to trade were

already major commodities producers (including soy) even before the technology shock. On

the other hand, adopting GE soy seeds likely constituted a more extensive productivity shock

in regions that did not grow export-oriented crops, leading to greater crop expansion and

deforestation in these regions – the “Boserup Hypothesis”.

Spillovers A potential concern about our empirical method is that local exposure to trade

and technology shocks could have spatial spillovers and affect land use in the neighboring

municipalities (De Sá et al., 2013). We provide some evidence on the effect of these shocks

on land use in nearby regions. The first challenge is to determine the reach of such potential

spillovers. As an effort in this direction, we study how exposure to the trade and technology

shocks in municipality i affects land use in the N closest municipalities to i.
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Figure 4: Results on the Effects of Trade and Technology Shocks with an Interaction
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The figures show the estimates of the effects of the trade shock (αt) and technology shock (βt) from equation
(3) on land-use change over time, as well as of the interaction between the two shocks. Each row presents a
different dependent variable: changes in municipalities’ forest cover area, changes in areas used for crops, and
pasture, respectively. The solid lines plot the point estimates and the dashed lines the 95% confidence (using
Conley, 1999, standard errors). We plot pre shocks (1996-2000) and post shocks (2001-2017) regressions.
The points to the right of the solid vertical line consider post trade shock regressions (2001 onwards), while
points to the right of the dashed vertical line consider post trade and technology shocks regressions (2003
onwards). All regressions include state fixed effects and the following controls: income per capita, literacy
rate, population density, and rural population all in 1991, and available land in 1995. N=3,823.
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Figure 5 presents the estimates from equation (3) using as dependent variable land-use

change in the nine closest municipalities to i (that is, N =9). We control by the neighbors’

available land, as well as to neighbor’s exposure to the trade and technology shocks. We

find no robust evidence that trade or technology shocks to a particular municipality spillover

to the nearby areas – all coefficients are statistically indistinguishable from 0 at standard

significance values.

Considering an inverse hyperbolic sine transformation does not produce substantially dif-

ferent results - see Figure A4 in the Appendix. Moreover, Table A4 shows that specifications

considering a different number of closest municipalities (N = 3, 6, and 15) or using Census

data also produce statistically insignificant results. This suggests that our estimates are not

entirely driven by local spillovers.

4 Conclusion

We estimate the impacts of new agriculture technology and greater demand from trade on

deforestation and land use in Brazil between 2000 and 2017. We measure local exposure

to an agriculture technological shock based on the productivity gains from new genetically

engineered soy seeds introduced in Brazil in 2003, and exposure to increased export demand

from China using a shift-share strategy based on the growth of China-product-specific de-

mand. We quantify the distinct effects of local exposure to these shocks using remote-sensing

data of land use from MapBiomas.

In the Brazilian case, a setting where the technology shock mostly benefitted large-scale

farmers with low capital constraints, we find evidence supporting the “Boserup Hypothesis”.

That is, we find that municipalities with greater suitability to new genetically engineered soy

seeds experience a loss of forest cover driven by the expansion of cropland area. In contrast,

we find no effect of exposure to demand from China on deforestation. If anything, we find

weak evidence that trade reduces the loss of forest cover generated by the technology shock.

This suggests that the main driver of land-use change in Brazil was productivity gains that

changed the country’s comparative advantage in global markets.

It is important to highlight that our findings do not suggest that large trade shocks

should not be a source of concern for conservationists around the globe. In fact, trade

relationships may be a good way to demand environmental actions from trade partners in

order to mitigate the potential negative externalities from those relationships. This may be

the case of Brazil, where trade partners constantly threaten to disrupt commercial flows if

environmental protection is not taken seriously (Gibbs et al., 2015). Moreover, the evidence

provided here show-cases the need for trade models incorporating deforestation that can
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Figure 5: Results on Spillovers of Trade and Technology Shocks

(a) China Export Demand
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The figures show the estimates of the effects of the trade and technology shocks on land-use change spillovers
over time. Each row presents the estimates of a different dependent variable: changes in forest cover
area, cropland, and pastureland considering the nine closest municipalities. See further description in the
Spillovers segment in Section 3. The solid lines plot the point estimates and the dashed lines the 95%
confidence (using Conley, 1999, standard errors). We plot pre shocks (1996-2000) and post shocks (2001-
2017) regressions. The points to the right of the solid vertical line consider post trade shock regressions (2001
onwards), while points to the right of the dashed vertical line consider post trade and technology shocks
regressions (2003 onwards). Regressions include all controls from Figure 3 plus controls for neighbors’
available land and neighbor’s exposure to the trade and technology shocks. N=3,818.
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account for general equilibrium effects of agriculture productivity gains on global trade flows

and on land-use.
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os peŕıodos intercensitários de 1872 a 2000. Rio de Janeiro: Ipea/Dimac, page 40.

21



Shapiro, J. S. (2016). Trade costs, co2, and the environment. American Economic Journal: Eco-
nomic Policy, 8(4):220–54.

Szerman, D., Assunção, J., Lipscomb, M., and Mobarak, A. M. (2022). Agricultural productivity
and deforestation: Evidence from brazil. working paper.

USDA (2001). Agriculture in brazil and argentina: developments and prospects for major field
crops. United States Department of Agriculture Report WRS-01-3.

World Bank (2007). World development report 2008: Agriculture for development. The World
Bank.

22



Appendix (for online publication)

A Additional Figures and Tables

Figure A1: Evolution of Total Share of Forest Area, Cropland and Pastureland
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0.
22

0.
22

0.
23

0.
23

0.
24

0.
24

Sh
ar

e 
of

 P
as

tu
re

1995 2000 2005 2010 2015

This figure shows the evolution of the share of forest areas, cropland, and pastureland in Brazil. Data from
MapBiomas.
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Figure A2: Exposure to Agricultural Technology vs. Export Demand
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This graph presents scatter plots of municipal-level soy technology shock Ai against the Chinese demand
shock X̂i. The line depicts the results of a simple regression of Ai on X̂i (coefficient .0134, s.e. .0006).
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Figure A3: Robustness Results – Inverse Hyperbolic Sine Transformation
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These figures show the estimates of the effects of the trade shock (αt) and technology shock (βt) from
equation (3) on land-use change over time using inverse hyperbolic sine transformation of the share of land-
use change. We take the inverse hyperbolic sine transformation of land use shares before taking differences
over time to construct the dependent variables. Remaining notes and descriptions are analogous to Figure
3. Number of observations: 3,818.
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Figure A4: Robustness Spillover Results (N=9) – Inverse Hyperbolic Sine Transformation
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These figures show the estimates of the effects of the trade shock (αt) and technology shock (βt) from equation
(3) on land use change of the nine closest municipalities using inverse hyperbolic sine transformation of the
share of land use change. We take the inverse hyperbolic sine transformation of land use shares before taking
differences over time to construct the dependent variables. Remaining notes and descriptions are analogous
to Figure 5. Number of observations: 3,818.
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Table A1: Descriptive Statistics

Mean Std. Deviation Min 25th Pctl. 75th Pctl. Max

Panel A. Main dependent variables: land use
∆00/06Foresti -0.003 0.036 -0.290 -0.014 0.012 0.196
∆00/06Croplandi 0.017 0.037 -0.105 0.000 0.020 0.306
∆00/06Pasturei -0.016 0.052 -0.307 -0.039 0.008 0.289
∆00/17Foresti 0.004 0.056 -0.374 -0.018 0.032 0.244
∆00/17Croplandi 0.056 0.098 -0.168 0.000 0.073 0.743
∆00/17Pasturei -0.065 0.117 -0.807 -0.106 0.001 0.370

Panel B. Main exogenous variables

Exports (X̂ ) 0.067 0.211 0.000 0.001 0.009 1.275
Productivity gain from GE soy seed (A) 0.018 0.009 -0.003 0.011 0.025 0.040

Panel C. Controls
Income per capital 1991 10.981 0.468 9.462 10.607 11.333 13.127
Literacy rate 1991 0.657 0.175 0.131 0.494 0.804 0.965
Population density 1991 -1.315 1.300 -7.012 -1.983 -0.663 4.795
Rural population share 1991 0.452 0.227 0.000 0.269 0.637 0.978

Panel D. Land use in neighboring municipalities (spillovers)
∆00/06Forestn=9 -0.010 0.311 -18.848 -0.006 0.007 0.372
∆00/06Croplandn=9 0.017 0.049 -0.322 0.000 0.016 1.613
∆00/06Pasturen=9 -0.011 0.313 -1.267 -0.031 0.002 18.746
∆00/17Forestn=9 -0.006 0.463 -27.652 -0.006 0.025 0.771
∆00/17Croplandn=9 0.059 0.161 -0.036 0.001 0.065 6.887
∆00/17Pasturen=9 -0.059 0.458 -2.916 -0.096 -0.000 26.422

This table presents summary statistics of the variables described in Section 2. Panel A shows statistics of the
dependent variables in Section 3 described in Section 2.1. Panel B presents statistics if the two exogenous
variables discussed in Sections 2.2 and 2.3. Panel C shows statistics of control variables computed using the
1991 Demographic Census. Panel D shows statistics on the spillover variables used in Section 3. Unit of
observation are municipalities (AMCs). Number of observations: 3,818.
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Table A2: Agricultural Products Exported from Brazil to China

Change in Exports to China (Thousands of US$)

Between Between Share of Agricultural ψ̂China,j

1995-2006 1995-2017 Production in 1995 (%)
Agave 21,812.3 10,680.7 0.02 120.9
Apple 36.6 0 0.45 1.4
Avocado 0 2.1 0.04 12,889.9
Bamboo -30.2 -30.2 . -0.8
Banana 25.9 0 1.33 1.6
Bean 0 45.8 2.19 12.5
Brazil nut 592.4 -26.2 . 0
Cashew nut -69.2 -66.2 0.13 -0.4
Cattle 8,181.3 476,095.5 25.89 3.5
Cereals (ex-maize) -20,620.6 -13,732.7 4.07 7.5
Citron 110.3 0 0 42.5
Coffee 596.6 10,309.6 5.31 15.0
Cotton 12,689.7 112,565.3 0.81 12.6
Forest production 42,750.0 140,460.4 . 2.9
Garlic 40.2 0 0.10 1.2
Grape 171.9 0 0.60 6.1
Guava and Mango 0 3.0 0.37 23.5
Maize 0 2,707.2 6.96 1069.6
Mandarin 127.2 0 0.18 23.2
Mate 1.2 25.4 0.15 949.9
Natural gum resin 0 2.3 . 1.3
Nut 142.3 319.1 . 9.0
Orange 14.8 0 2.06 5.7
Other root vegetables 17.5 0 0.12 34.2
Pepper 20.3 1,287.7 0.05 1.8
Plants (live) 33.7 119.6 0.34 4.4
Plants (pharmacy and perfume) 44.0 226.6 0.06 -1.2
Soybean 2,856,979.3 20,296,222.0 9.15 5.4
Spices 1.3 39.9 0.01 -0.3
Sugarcane -66,186.4 -26,245.4 11.57 5.9
Swine and Poultry 2,396.0 139,400.3 14.75 3.5
Tobacco 34,741.9 101,821.4 1.70 0.06
Vegetable fibre -37.5 -37.5 0.01 0
Vegetable for tanning 23.4 0 . 0
Vegetable waxes 1,583.9 15,283.9 . 0.9
Walnut 300.8 0 0.02 8.2
Wood -2.3 3,440.2 . 8.0

Columns (1) and (2) show the change in exports from Brazil to China in thousands of $ between 1995 and
2006, and between 1995 and 2017, respectively. It includes the impacts of changes in exports of processed
goods on the demand for raw agricultural goods, according to the coefficients of the direct requirement (Table
A3). Column (3) indicates the share of the agricultural production (the value of production in Brazilian
Reals) for each product. It does not sum up to 1 because many agricultural products were not traded
between Brazil and China. The share of agricultural production in 1995 is missing for forest products. The
table does not contain products that were not traded in 1995, 2006 or 2017.
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Table A3: Industry Exports Impact on Agricultural Products

Meat and
dairy

Sugar
Other food
products

Beverage
Tobacco
products

Textile Biofuel
Forest

products
Wood

products
Paper

products

Cereals (ex-maize) - - 0.03 - - - - - - -
Maize - - 0.03 - - - - - - -
Cotton - - - - - 0.06 - - - -
Sugarcane - 0.52 - 0.02 - - 0.38 - - -
Soybean - - 0.11 - - - 0.03 - - -
Tobacco - - - - 0.39 - - - - -
Cattle 0.26 - - - - - - - - -
Swine and Poultry 0.08 - - - - - - - - -
Forest production - - - - - - - 0.04 0.10 0.05

This table presents the direct impact of each industry on specific agricultural products based on IBGE’s
Brazilian input-output table, as discussed in Section 2.3. Each coefficient represents the value of the row’s
commodity necessary for the production of one dollar of the column’s industry. Coefficients lower than 0.02
are represented by a dash (-).
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Table A4: Robustness Results on the Spillovers of Trade and Technology Shocks 2000-2017

Number of neighboring municipalities (N)
N=9 N=9 N=3 N=6 N=15
(1) (2) (3) (4) (5)

Panel A. Change in share of forest 2000-2017
Trade Shock (α) -0.016 -0.011 -0.001 -0.004 -0.002

(0.015) (0.024) (0.003) (0.007) (0.020)
Technology Shock (β) 0.524 3.080 -0.118 -0.649 -0.844

(1.326) (3.470) (0.360) (1.213) (3.306)

Panel B. Change in share of cropland 2000-2017
Trade Shock (α) 0.008 -0.003 0.007 0.005 0.018

(0.020) (0.020) (0.007) (0.010) (0.023)
Technology Shock (β) -0.753 1.785∗∗ -0.255 -0.114 -1.043

(0.670) (0.708) (0.245) (0.473) (1.067)

Panel C. Change in share of pastureland 2000-2017
Trade Shock (α) 0.007 0.010 -0.007 -0.000 -0.016

(0.026) (0.020) (0.008) (0.011) (0.029)
Technology Shock (β) -0.024 -1.421 0.221 0.607 1.768

(1.428) (2.109) (0.390) (1.267) (3.091)

Data MapBio. Census MapBio. MapBio. MapBio.

N 3818 3756 3818 3818 3818

This table presents alternative specifications for the spillover effects of the trade shock (αt) and technology
shock (βt) from equation (3) on land-use changes in the neighboring municipalities between 2000 and 2017.
See description in the Spillovers segment in Section 3. All regressions include state fixed effects and the
following controls: income per capita, literacy rate, population density, and rural population all in 1991, and
available land in 1995. Conley (1999) standard error in parenthesis. Number of observations: 3,784 (column
2), and 3,823 (remaining columns).
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B Concordances

The concordance between the Agricultural Census data from IBGE to the trade data from

BACI-CEPII is the result of the following procedures:

Raw agricultural products: The Concla-IBGE provides a correspondence table linking

the agricultural products to a list of products (PRODLIST). Then, another classification

links the PROLIST data to the 2003 Nomenclatura Comum do Mercosul (NCM) trade

codes. The final step to match the products to the trade data is to remove the last two

digits from the NCM trade codes (this classification is more specific than the HS), and

use the UN Trade Statistics correspondence table between the HS 2002 and HS 1992 trade

codes – the BACI-CEPII trade data is classified in the 6-digit Harmonized System (HS) 1992

nomenclature. The Concla concordance includes some products with minimal processing that

use agricultural commodities as inputs. However, it does not include all processed goods and

does not indicate which raw agricultural products are being used in the production of these

processed products. So we will take an alternative approach to account for changes in the

demand for processed goods.

Goods that use agricultural products as input: Using the direct requirements

coefficients from the 2015 Brazilian Input-Output Table released by IBGE (Table 11 - Matriz

dos coeficientes técnicos dos insumos nacionais), we can account for the dollar amount of

an agricultural commodity necessary to produce one dollar of the industry’s output. For

instance, a one-dollar increase in the demand of the biofuel industry results in the use of 0.38

dollars of sugarcane (Table A3). We impose a threshold of 0.02 on the direct requirements

coefficients. This is not an arbitrary choice. Ignoring coefficients lower than this threshold

avoids an arbitrary choice of how to split the production of industry among “Other temporary

crops”, since it is not possible to know which specific agricultural product is being used as

an input. The only exception is the case in which 0.39 dollars of “Other temporary crops” is

required to produce one dollar of the tobacco products industry. In this situation, we assume

that “Other temporary crops” means tobacco. To construct the contribution of an industry

to the China Shock, we multiply the change in the industries’ exports by their respective

input coefficients and by the local exposure to the agricultural inputs, summing over all the

inputs used in that industry. To link the Input-Output table industries to the trade data,

we use the international trade/national accounts correspondence table from IBGE (Tradutor

Nomenclatura Comum do Mercosul (NCM) - Comércio Exterior/Contas Nacionais (2016)).

Agricultural products linked to the trade data: We include crops, livestock and

forest products in the list of products used to calculate the exposure of each municipality

to the trade shock. The value of production for each animal is not available in the 1995
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Agricultural Census. Therefore, to measure the exposure to trade shocks we consider the

“Large animals production” as the output value for “Cattle” and the difference between

“Animal production” and “Large animals production” as the value of production for “Swine

and Poultry”. Based on the 2006 Agricultural Census, this is a reasonable assumption.

Cattle production represented 99.3% of the large animals’ production, while poultry and

swine accounted for 90.5% of the difference in the value of animal production and large

animals’ production.
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