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Abstract In this paper I study how the in�ation targeting system can impact the
equilibria of an in�nitely repeated monetary policy game. I modify the Barro-
Gordon model so that the central bank incurs a penalty (i.e., a payo¤ loss)
whenever the actual in�ation rate is not equal to its target. I assess how changes
in this penalty impact the set of equilibrium outcomes that can be supported
by trigger strategies that specify reversion to a one-shot Nash equilibrium. The
results of this exercise show that, as argued by many authors, the in�ation tar-
geting regime can indeed help to anchor the agents�expectations about current
and future in�ation rates. Furthermore, if the penalty is su¢ ciently large, then
the only element of that equilibrium set is precisely the one in which the central
bank implements the target at every date.
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1 Introduction

In 1990, New Zealand was the �rst country to implement the in�ation targeting regime.

Since then, many other nations have adopted this monetary policy framework. Hammond

(2012) identi�ed 27 countries following the policy regime in question in 2012. This list did

not include the United States, Japan and the nations of the Euro Zone. However, as argued

by Svensson (2011), the Federal Reserve, the Bank of Japan and the European Central Bank

were on the path, and already close, to becoming in�ation targeters. Indeed, currently each
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of these three central banks has some type of publicly announced target for the in�ation

rate.

Given that so many economies have embraced the in�ation targeting system, it is not

surprising that a large body of literature on this policy framework exists. Nevertheless,

questions are still open regarding how the adoption of the in�ation targeting regime (i)

impacts the set of equilibrium values of the in�ation rate and (ii) helps agents to coordinate

on an equilibrium in which the announced target is implemented, especially in the context

of an in�nitely repeated game. This paper addresses precisely these two issues.

To study these questions, I take the well-kwon model of Barro and Gordon (1983a and

1983b) as the starting point to construct a suitable stage game. In its simplest form (which

does not include the in�ation targeting regime), the private sector sets its expectations �e

for the in�ation rate, while the central bank selects the actual in�ation rate �. Given these

two variables, the GDP is determined according to a standard Phillips curve. The payo¤ of

the private sector is simply the square of its in�ation forecast error. Concerning the central

bank, its period preferences are described by a quadratic loss function that depends on the

in�ation rate and the deviation of the output from a level, higher than the natural rate of

production, that this player would like to achieve. As usual, this stage game has a single

Nash equilibrium. In this outcome, the in�ation rate is positive and equal to its expected

value. For future reference, denote this equilibrium rate by �̂.

To incorporate the in�ation targeting regime, I add two features to the above described

above stage game. First, I postulate that an exogenous target �� exists for the in�ation rate.

Second, I assume that whenever the central bank implements an in�ation rate � 6= ��, this

agent incurs a payo¤ loss equal to a positive constant C. Hence, this agent�s payo¤ has a

discontinuity precisely when � = ��.

The equilibrium set of this stage game depends on the value of the penalty. More specif-

ically, I show there are two critical values k1 and k2, where k2 > k1 > 0, for C with the

properties that I describe next. If C < k1, then the penalty is so small that the in�ation

targeting regime is irrelevant. As a consequence, the only Nash equilibrium is precisely the

one of the original Barro-Gordon setup, where �e = � = �̂. If C > k2, then the penalty is

so large that the central bank will surely play � = ��. In anticipation of this, the private

sector sets �e = ��. Hence, the unique equilibrium is given by �e = � = ��. Finally, in the

intermediate case in which C 2 [k1; k2], there are exactly two Nash equilibria: �e = � = �̂

in the �rst of them and �e = � = �� in the other.

Next, I study the in�nitely repeated version of this game. As usual, I use the one-

shot Nash equilibria described above to characterize a set of subgame-perfect equilibrium

outcomes for the repeated game. If C � k2, then trigger strategies that specify reversion to
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the Nash equilibrium in which �e = � = �̂ can support many other equilibria. For the case

in which C > k2, reversion to the Nash equilibrium where �e = � = �� may support other

outcomes. Since those equilibrium outcomes are supported by trigger strategies and the

characterization of the set depends on the value of the penalty, I denote the set in question

by T (C).
In the context of this paper, an in�ation targeting regime is constituted by a target ��

and a penalty C. Although I treat the target as an exogenous variable, one can see it as an

optimal in�ation rate that is a function of preferences, technology, �scal policy, and other

features of the economy. On the other hand, the parameter C can be interpreted as a concise

measure of a society�s ability to align the central bank�s incentives with its desire to achieve

a speci�c in�ation rate. Now consider questions of the type �How large does C have to be to

ensure that the target �� can be implemented in equilibrium?�, and �Is there a su¢ ciently

large C to ensure that no deviations from �� can happen in equilibria supported by trigger

strategies?�, etc. Questions of this class can be answered by studying how changes in C

impact the set T (C), which is precisely the main exercise carried out in this paper.
This exercise provides several interesting results. Let X� denote the outcome in which

�et = �t = �� for all t. First, there exists a number k0 < k1 with the property that X�

belongs to T (C) if and only if C � k0. Therefore, k0 � 0, then X� is an equilibrium

outcome regardless of the value of C. Moreover, if k0 > 0, the implementation of X� with

standard trigger strategies requires C to be positive. Second, while the penalty is still smaller

than or equal to k2, an increase in C will not add an outcome to T (C) in which �t 6= �� for

every t. Furthermore, if such an increase drops an outcome from T (C), then it must be the
case that this outcome does not hit the target �� su¢ ciently often (in a sense that can be

de�ned precisely). Third, when C is already larger than k2, a further increase in C will not

create a new equilibrium outcome. Fourth, if C > k2, then there is a neighborhood of X�

with the property that X� is the only outcome in this neighborhood that belongs to T (C).
Thus, X� has a type of local-uniqueness property whenever C > k2. Fifth, there is a number

k3 > 0 such that if C > k2 and C � k3, then X� is the unique element of T (C).
It is desirable to have a brief and intuitive synthesis of the implications of the above

�ndings. The �rst result establishes that the implementation of X� with standard trigger

strategies may require the introduction of the in�ation targeting system. However, that is not

all. Even if X� is an equilibrium outcome in the absence of this policy regime, its adoption

helps, in several ways, to achieve equilibria in which the target �� is implemented at least on

some dates. Indeed, if C � k2, the introduction of the in�ation targeting framework changes

the set of equilibrium outcomes by adding sequences in which the central bank implements

�� on some dates and by removing sequences in which �t 6= �� for all dates. If C > k2,
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then X� will be, in a local sense, a unique equilibrium outcome supported by strategies that

specify reversion to the Nash equilibrium of the stage game. And, for C su¢ ciently large,

this uniqueness will be global (instead of just local). Finally, if C > k2, a further increase

in the penalty does not create a new equilibrium outcome, so the in�ation targeting regime

helps to deal with the problem of equilibrium multiplicity.

A brief analysis of the related literature helps to assess the relevance of these results.

Bernanke, Laubach, Mishkin, and Posen (1999, p. 11) stated that the in�ation targeting

system �serves as a nominal anchor for monetary policy� and �provides a focus for the

expectations of �nancial markets and the general public.�Walsh (2009, p. 200�201) argued

that this type of policy �can align the public�s expectations of current and future target

rates with the actual goals of the central bank�and may anchor �the public�s beliefs about

future in�ation.�Svensson (2011, p. 1247) mentioned that the empirical evidence suggests

that �an explicit numerical target for in�ation anchors and stabilizes in�ation expectations.�

The previous paragraph shows a widespread view exists that the in�ation targeting regime

can help the economic agents to coordinate their expectations and actions. However, to my

knowledge no paper has yet been published providing a theoretical foundation, in an in-

tertemporal model, for this view. And there is at least one reason for that: equilibrium

multiplicity is a prevalent feature of intertemporal games. Therefore, at a �rst glance, a

repeated game does not seem to be a viable framework to study how the in�ation targeting

regime can lead to better coordination among the agents of an economy. In spite of that,

this paper provides the missing rationalization for the manner in which an in�ation target-

ing policy can contribute to the coordination of players�actions and lessen the problem of

equilibrium multiplicity.

This essay has two features in common with Araujo, Berriel, and Santos (2016). First,

they also studied how the in�ation targeting regime can induce agents to coordinate their

expectations. However, they adopted a single-period game with imperfect information. As

a consequence, the problems addressed in their paper and here are not precisely the same.

Second, they also assumed that the central bank incurs a payo¤ loss whenever it does not

implement the in�ation target. They interpreted the penalty as a commitment device em-

bedded in the loss function that describes the preferences of the central bank.

There is an alternative interpretation to the penalty in question. As pointed out in

Subsection 2.2.1, introducing this hypothesis is equivalent to assuming that the central bank

receives a performance bonus whenever the actual in�ation rate is equal to the target. Hence,

this paper may be seen as a study of the e¤ects of a speci�c type of compensation scheme

(more speci�cally, a discontinuous one) for the central banker. This is in line with the �ndings

of Mishkin and Westelius (2008), who argued that it is possible to interpret an in�ation band
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targeting as a type of in�ation contract.

The remainder of this paper is organized as follows. Section 2 lays out the stage game

and characterizes its set of Nash equilibria. Section 3 presents the in�nitely repeated game

and characterizes the set of equilibrium outcomes that can be supported by trigger strategies

that specify reversion to a Nash equilibrium of the stage game. The e¤ects of changes in the

penalty on this last set are studied in Section 4. Section 5 concludes.

2 Preliminaries: The Stage Game

The goal of this section is to present and analyze the stage game underlying the in�nitely

repeated game that is the focus of this paper. To ease the exposition, I �rst discuss a

version of the stage game without in�ation targeting; this version is essentially identical to

the single-period in�ation bias model adopted by Kydland and Prescott (1977) and, more

famously, by Barro and Gordon (1983a and 1983b). In a second step, I modify the game to

incorporate the in�ation targeting regime.

2.1 Without In�ation Targeting

There are two players in the game. The �rst is the central bank (player b). The second is

the general public (player p), which encompass people, �rms and other agents. Players move

simultaneously. Agent p selects an value �e for expected the in�ation rate. Her/his choice

must lie in the set � = [0; �max], where �max is a positive number large enough so that it is

never reached in any of the equilibria discussed in this paper. Player b selects a value � 2 �
for the actual in�ation rate. Given those choices, the value y 2 R of the natural logarithm
of the GDP is determined according to the Phillips curve

y = �y + �(� � �e),

where �y is the natural logarithm of the natural rate of output and � is a positive parameter.

The payo¤ of p is given by

V (�e; �) = �(� � �e)2. (1)

The function

w(y; �) = �f�2 + [y � (1 + �)�y]2g, (2)

where  > and � > 0, is the payo¤ of b.

I adopt the usual procedure of using the Phillips curve to express the payo¤ of b as

function of �e and �. That is, de�ne the functionW so thatW (�e; �) = w(�y+�(���e); �).
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Hence,

W (�e; �) = �f�2 + [�(� � �e)� ��y]2g. (3)

Thus, from now on I assume that the central bank�s payo¤ is described by W . This player�s

problem is

max
�2�

W (�e; �) (4)

while player p solves

max
�e2�

V (�e; �). (5)

A Nash equilibrium for this game is a vector (�̂e; �̂) with the properties that: (i) given �̂e, �̂

solves the problem of player b and (ii) given �̂, �̂e solves the problem of player p.

The game has a unique Nash equilibrium. Denote the partial derivatives @W=@�e and

@W=@� by, respectively, W1 and W2. It is a simple exercise to show that, for a �xed �e, the

function W (�e; �) is strictly concave. Therefore, the solution of (4) is characterized by

W2(�
e; f(�e)) = 0, (6)

where f is the best response function of b. It is a simple exercise to show that

f(�e) =
�2

 + �2
�e +

��

 + �2
�y. (7)

Optimality by player p requires �e = �. Thus, �̂e = �̂ = f(�̂); as a consequence,

�̂ =
��


�y. (8)

It is worth to point out that �̂ is the unique �xed point of f .1

2.2 With In�ation Targeting

In this subsection I carry out two tasks. First, I modify the previous game to incorporate

the in�ation targeting regime; second, I characterize the equilibrium set of the resulting new

game. Each of those tasks is carried out in a separated subsection.

1Since � = �e in the unique Nash equilibrium, one could be tempted to de�ne an equilibrium just as a
value for � instead of a two-dimensional vector. However, in the stage game with in�ation target it is not
so obvious that � = �e in equilibrium. Moreover, the analysis of the repeated game requires to have a clear
distinction of the actions of each player. As a consequence, had I introduced this simpli�cation, I would have
to reverse it shortly after. Hence, I opted for not adopting it.
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2.2.1 Introducing In�ation Targeting

I assume that an outside agent (for instance, the legislative) carries out the task of modifying

the game.2 More speci�cally, this agent publicly announces that the central bank has to

pursue a target �� 2 (0; �̂) for the in�ation rate. This announcement is made before the
players implement their actions. By itself this change will not impact the equilibrium of the

stage game. Thus, it is necessary to carry a second modi�cation, which I discuss next.

When studying the in�ation targeting regime, many authors assume that a term similar to

��(����)2, where � is a positive constant, shows ups in the objective function of the central
bank or in a social welfare function.3 Following this approach here would require substituting

the term �(����)2 for �2 in expression (2). However, this procedure implicitly assumes that
the external agent who introduces the in�ation targeting regime has the ability to modify

the payo¤ function of the central bank and that is at odds with the standard practice of

taking preferences as given. Furthermore, once that is accepted that external agent is able

to change the preferences of player b, the obvious question is why the external agent will

not set the parameter � equals to 0 to ensure that � = �� in equilibrium. Therefore, I take

a di¤erent path. Following Obstfeld (1994), who assumes that a central bank faces a �xed

penalty whenever the exchange rate does not remain constant, I suppose that the external

agent assess a penalty to player b whenever the actual in�ation rate di¤ers from the target

��. This penalty has the property that it leads to a payo¤ loss equals to C > 0. Formally,

de�ne the indicator function I so that

I(�) =

(
1, if � 6= ��

0, if � = ��
.

while the function U , which is given by

U(�e; �) =W (�e; �)� I(�)C, (9)

is the payo¤ of the central bank.

Araujo, Berriel and Santos (2016) adopted this assumption when studying in�ation tar-

geting policies in a context of imperfect information.4 They interpret the penalty as a com-

mitment technology. The same interpretation is valid here. Furthermore, one can assume

2It is possible to assume that the changes are implement by the central bank itself. I disscuss this matter
at end of this subsection.

3For some examples, see Svensson (1997 and 1999), Drazen (2000), and Capistrán and Ramos-Francia
(2010).

4In a previous and much less ambitious work (Cunha 2019), I used the same approach to study whether
or not the existence of indexation in the Brazilian economy impacts its central bank ability to implement
the in�ation target.
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that there is an increasing relation between the robustness of the institutions of a society

and the value of C. A second interpretation consists in viewing the penalty as equivalent

to a performance-based compensation contract for the central banker. Indeed, consider the

function ~U(�e; �) =W (�e; �) + [1� I(�)]C. This function speci�es that player b has a pay-
o¤ increment equals to C whenever � = ��. Hence, one can associate ~U to the situation in

which the central banker has an extra income that allows she/him to enjoy additional C pay-

o¤ units by achieving the target ��. Since ~U(�e; �) = U(�e; �) + C, for the purposes of this

paper the functions U and ~U are equivalent. As a consequence, the contract interpretation

can indeed be applied here.5

I close this subsection with a brief remark on the possibility of the above modi�cations

being carried out by the central bank instead of an external player. The results presented

in this paper do not depend on which agent introduces the changes. However, there are two

points to be considered if one assumes that the central bank itself is in charge of implementing

the in�ation targeting regime. The �rst is related to the magnitude of C. As shown in the

next sections, the value of this parameter impacts the set of equilibrium outcomes; the higher

it is, the easier is to coordinate on an equilibrium in which the in�ation rate is equal to the

target ��. Hence, one has to be concerned whether or not central bank is able to choose a

C as high as it can be done by an outside institution. The second is related to the selection

of the target rate. However, if the central bank is in charge of choosing ��, then it seems

reasonable to assume that this agent will attempt to maximize its payo¤ when carrying out

the task in question. In the context of this paper, where expressions (3) and (9) determinate

b�s payo¤, this player should set �� = 0.

2.2.2 Equilibrium

The problem of player p is still given by (5). In her/his turn, player b solves

max
�2�

U(�e; �). (10)

A stage Nash equilibrium with in�ation targeting is a vector (�e; �) with the properties that:

(i) given �e, � solves the problem of player b and (ii) given �, �e solves the problem of player

p.

I now turn to the task of characterizing the equilibrium set of the stage game. This

requires solving problem (10). Since U is discontinuous at � = ��, this cannot be done using

solely the standard tools. Fortunately, there is a simple procedure that works out in this

5Persson and Tabellini (2000, Sec. 17.3) provide an overview of literature on the relation between in�ation
targets and compensation and preferences of the central banker.

8



Equilibrium Under In�ation Targeting

context: compare the values of U(�e; f(�e)) and U(�e; ��) (or, equivalently, the values of

W (�e; ��) and W (�e; f(�e))�C) and select the argument f(�e) or �� that yields the higher
payo¤. The next lemma formalize this discussion.6

Lemma 1 The following �ve statements are true:

(i) max�2� U(�e; �) = maxfU(�e; ��); U(�e; f(�e))g;
(ii) maxfU(�e; ��); U(�e; f(�e))g = maxfW (�e; ��);W (�e; f(�e))� Cg.
(iii) if U(�e; ��) > U(�e; f(�e)), then �� is the unique solution of (10);

(iv) if U(�e; ��) < U(�e; f(�e)), then f(�e) is the unique solution of (10);

(v) if U(�e; ��) = U(�e; f(�e)), then �� and f(�e) are the only two solutions of (10).

As one should expected, the equilibrium set depends on the value of the penalty C.

Suppose that this parameter is small. In this case the in�ation targeting regime should not

be relevant and the only Nash equilibrium should be (�̂; �̂); which is the one identi�ed in

the game without in�ation target. On the other hand, if C is large, then the central bank

should play �� regardless of the value of �e. In anticipation of this, player p should play

��. Hence, the only Nash equilibrium should be (��; ��). For intermediate values of C, both

(�̂; �̂) and (��; ��) are Nash equilibria.

It turns out that the above intuitive reasoning is indeed correct. However, formalizing it

requires attributing precise meanings to the notions of small, large and intermediate values

of C. Fortunately, this is a feasible task. De�ne the parameters k1 and k2 according to

k1 = W (��; f(��))�W (��; ��) (11)

and

k2 = W (�̂; f(�̂))�W (�̂; ��). (12)

Since f(�e) uniquely maximizesW (�e; �) and �� is di¤erent from f(��) and f(�̂), both k1 and

k2 are positive. Moreover, k1 is exactly the value of C for which U(��; f(��)) = U(��; ��).

Hence, if C = k1 and player p selects �e = ��, then player b will be indi¤erent between the

actions f(��) and ��. In a similar fashion, U(�̂; f(�̂)) = U(�̂; ��) for C = k2. Thus, if the

last equality holds, then b can optimally play either f(�̂) or �� as a response to �e = �̂.

Besides playing an important role in this subsection, the next result will be used in the

other parts of this paper.

Lemma 2 The parameters k1 and k2 satisfy the inequality k1 < k2.

6All proofs, as well as two examples, are available in an appendix at the end of the paper.
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It is now possible to say that the penalty is small when C < k1, large when C > k2,

and intermediate when C 2 [k1; k2]. The next proposition, which concludes this subsection,
formalizes the intuitive description of the equilibrium set.

Proposition 1 If C < k1, then (�̂; �̂) is the unique stage Nash equilibrium with in�ation

targeting. If C > k2, then (��; ��) is the unique stage Nash equilibrium with in�ation target.

If C 2 [k1; k2], then (�̂; �̂) and (��; ��) are the only stage Nash equilibria with in�ation

targeting.

3 The In�nitely Repeated Game

In this part of the paper I start the study of the game constituted by the in�nite repetition

of the stage game with in�ation targeting of the previous section. In Subsection 3.1 I carry

out some basic tasks, as setting up some notation and presenting a suitable equilibrium

de�nition. In Subsection 3.2 I spell the conditions that characterize the set of equilibrium

outcomes that can be supported by trigger strategies that specify reversion to one of the

Nash equilibria of the stage game.

3.1 Structure and Equilibrium De�nition

Denote a vector (�et ; �t) of date-t actions by xt, while � and � are the respective discount

factors of players p and b. As usual, these two parameters belong to the interval (0; 1).7

Given a sequence fxtg1t=0 of actions, the payo¤s of p and b from date t onwards are given,

respectively, by
1X
r=t

�r�tV (�er; �r) (13)

and
1X
r=t

�r�tU(�er; �r). (14)

Let ht be a history (x0; x1; : : : ; xt) of actions. At the beginning of each date t, both

players know the history ht�1. Player p implements an action �et 2 �, while b implements
an action �t 2 �. Denote these choices by st(ht�1) and �t(ht�1). Thus, a strategy for p is a
sequence s = fstg1t=0, while a strategy for b is a sequence � = f�tg1t=0. At each date t, given

7It is worth to clarify two issues concerning the discounting factors. First, the results of this paper do
not depend on � and � being or not di¤erent from each other. Second, I did not adopt the standard notation
(�) used in the macro literature to emphasize that neither � nor � has to be equal to the discount factor of
a typical household of an economy subjacent to the games studied here.
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the history ht�1 and the strategy � of player b, p selects a continuation sequence fsrg1r=t to
maximize (13). This player takes into consideration that the actions of b evolve according

to �r = �r(h
r�1). In a similar fashion, given ht�1, s, and the rule �er = sr(h

r�1), b selects a

continuation sequence f�rg1r=t to maximize (14).
An equilibrium with in�ation targeting is a pair of strategies (s; �) such that, at every date

t and for every every history ht�1, fsrg1r=t and f�rg1r=t solve the problems of the corresponding
players. An equilibrium outcome with in�ation targeting is a sequence fxtg1t=0 with the
property that there is an equilibrium (s; �) that satis�es �et = st(x0; x1; : : : ; xt�1) and �t =

�t(x0; x1; : : : ; xt�1). Clearly, an equilibrium with in�ation targeting is subgame perfect.

3.2 A Set of Equilibrium Outcomes

In this subsection I enunciate su¢ cient conditions for a sequence fxtg1t=0 to be an equilibrium
outcome with in�ation targeting. As often done, I use the stage Nash equilibria of Proposition

1 as the starting point to �nd other equilibrium outcomes. Given that the set of stage

equilibria depends on the value of C, it is necessary to consider separately the two cases

C � k2 and C > k2.

Suppose that C � k2. A standard argument based on trigger strategies establishes that

in this context, a sequence fxtg1t=0 is an equilibrium outcome with in�ation targeting if it

satis�es

�t = �et (15)

and
1X
r=t

�r�tU(�er; �r) � max
�2�

U(�et ; �) + �
U(�̂; �̂)

1� �
. (16)

If C > k2, the corresponding conditions are (15) and

1X
r=t

�r�tU(�er; �r) � max
�2�

U(�et ; �) + �
U(��; ��)

1� �
. (17)

This discussion is formalized in the next proposition.

Proposition 2 If C � k2, then every sequence fxtg1t=0 that satis�es (15) and (16) is an
equilibrium outcome. If C > k2, then every sequence fxtg1t=0 that satis�es (15) and (17) is
an equilibrium outcome.

This proposition provides a characterization of the set of all equilibrium outcomes that

can be supported by trigger strategies that specify reversion to one of the stage Nash equi-
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libria. I denote this set by T (C), where the T comes from the word trigger and the C is

spelled out to emphasize that the set depends on the the value of the penalty.

4 The Penalty and the Equilibrium Outcomes

In this section I study how the set T (C) is a¤ected by changes in C, as well as under which
conditions playing the target �� at every date is an equilibrium action for both players and

some other related issues.

At this point, I need to introduce some new notation. I denote a generic sequence fxtg1t=0
by X and the sequence in which xt = (��; ��) for all t by X�. Similarly, X̂ is the sequence

with the property that xt = (�̂; �̂) for all t . The set of all sequences in ��� is denoted by
X. The subset of X containing all sequences that have the property that �t = �� for some t

is denoted by X�, while ~X� is the subset of X containing all sequences with the property that
�t 6= �� for every t (i.e., the complement of X� with respect to X). I also have to clarify a
minor point concerning the usage of the symbols � and �. The latter requires the inclusion
to be a proper one, while the former allows for the two sets in analysis to be equal.

4.1 The Sustainability of X�

In this subsection I provide a necessary and su¢ cient condition for X� to be an element of

T (C). De�ne the parameter k0 so that

k0 = (1� �)k1 � �[W (��; ��)�W (�̂; �̂)].

It is worth to point out that that k0 < k1.

Proposition 3 The sequence X� belongs to T (C) if and only if C � k0.

It may be the case that k0 � 0. If that happens, then X� will be an equilibrium outcome

regardless of the value of C (including the limit case of C = 0). On the other hand, the

implementation of X� with trigger strategies requires C to be positive whenever k0 > 0,

which happens if and only if � < k1=fk1 + [W (��; ��)�W (�̂; �̂)]g.

4.2 The Impacts of Changes in C

In this part of the paper I study how the set T (C) evolves as C increases. I provide several
results on this matter. These �ndings are split into three propositions.

12
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Suppose that C � k2. Then, many equilibrium outcomes can be supported by the

strategy of reverting to X̂ after a deviation. Indeed, let X 0 be any sequence such that

�r 6= �� for every date r. Now, take a generic date t. For dates larger than t the value of C

is irrelevant (under the point of view of player b) when comparing the payo¤s of X 0 and X̂,

since the penalty will be assessed at every date under both sequences. However, by deviating

to �� at date t, player b can avoid the penalty in this date. Therefore, the larger the value

of C, the larger will be the incentive of player b to deviate from X 0. Thus, as C increases,

sequences belonging to ~X� tend to be dropped out of T (C).

Proposition 4 If C1 < C2 � k2, then T (C2) \ ~X� � T (C1) \ ~X�.

It is worth two mention two points about this proposition. First, provided that C does

not become higher than k2, if an increase in the penalty adds a sequence X to the set T (C),
then X must belong to X�. Second, as illustrated by Example 1 in the Appendix, the sets
T (C2) \ ~X� and T (C1) \ ~X� do not have to be equal.
As a consequence of Proposition 3, if X� is an equilibrium outcome for a given penalty,

then it will also be for a higher one. At a �rst glance, it may appear that this result can

be extended to any sequence belonging to X�. However, an additional condition is required.
Indeed, consider two penalties C1 and C2 such that C1 < C2 � k2. Now, let X 6= X� be an

element of T (C1) \X� and t be any date in which �t 6= ��. It may happen that an increase

in C may induce the central bank to deviate to �� at date t to avoid incurring in a higher

penalty. However, if in future dates X hits �� su¢ ciently often, such a deviation will not be

an optimal action for player b. Indeed, consider the inequality

1X
r=t+1

�r�t[1� I(�r)] � I(�t). (18)

The sum in the left-hand side is simply a discounted counting of the number of times that,

after date t, X hits the target ��. Since I(��) = 0, this inequality will surely hold if �t = ��.

If �t 6= ��, the sum will have to be no less than 1 for the condition to hold. Denote the subset

of X� containing all sequences that satis�es (18) for all t by X��. In the next proposition I
show that if an element of X�� belongs to T (C1), then it will also belong to T (C2).

Proposition 5 If C1 < C2 � k2, then T (C1) \ X�� � T (C2) \ X��.

This proposition implies that while C remains smaller than or equal to k2, if a sequence is

dropped from to set of equilibrium outcomes as a consequence of an increase in the penalty,

then it must be the case that X does not hit �� su¢ ciently often as required by (18).

13
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Moreover, Example 2 in the Appendix illustrates that one should not assume that the sets

T (C1) \ X�� and T (C2) \ X�� are equal.
As established in Proposition 2, the conditions that characterize the set of equilibrium

outcomes that can be supported by reverting to a Nash equilibria of the stage game depend

on whether or not C > k2. Thus, it is important to understand what happens to T (C) when
the value of C changes from k2 to a higher one. An intuitive analysis of the those conditions

suggests that for a penalty C slightly higher than k2, T (C) should be a proper subset of
T (k2). Indeed, for a given penalty, every sequence that satis�es (17) will also satisfy (16).
Hence, exactly when the penalty shifts from k2 to a slightly higher value, every sequence that

satis�es (16) but does not satisfy (17) will be dropped from the set of equilibrium outcomes.

Furthermore, for C > k2, given a sequence X 6= X� that respect (17), a further increase in

C will impact the inequality in question in such a way that X may fail to satisfy it. Hence,

whenever C2 > C1 > k2, T (C2) should be a subset of T (C1). This discussion is formalized
in the next proposition.

Proposition 6 If C2 > C1 > k2, then T (C2) � T (C1) � T (k2).

An obvious implication of this last result is that if C is already larger than k2, a further

increase in the penalty will not add an element to T (C). Furthermore, the sets T (C1) and
T (C2) may be equal. Indeed, as a consequence of the forthcoming Proposition 8, both T (C1)
and T (C2) will be equal to fX�g whenever C1 is su¢ ciently large.

4.3 The Local and Global Uniqueness of X�

I present two main results in this subsection. First, in Proposition 7 I show that provided

that C > k2, a sequence di¤erent from but su¢ ciently close to X� cannot be an element of

T (C). Second, in Proposition 8 I prove that X� is the unique element of T (C) whenever C
is su¢ ciently large. Furthermore, I provide some complementary �ndings in Propositions 9

and 10.

To grasp the intuition behind the �rst of these results, assume that C > k2. Thus,

(��; ��) is the stage Nash equilibrium used to support equilibrium outcomes of the repeated

game. Now, take a sequence X 6= X�. At any date t in which �t 6= ��, a deviation from

�t to �� will allow b to avoid the penalty C at the date in question. Moreover, if X is such

that �r is su¢ ciently close to �� for all r > t, the current gain from dodging the penalty

will more than o¤set any conceivable losses in future dates. Therefore, X cannot belong to

T (C).

14
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Proposition 7 For every C > k2, there exists a positive number " (that does not depend

on �) such that if a sequence X 6= X� has the property that j�t � ��j < " for all t, then

X =2 T (C).

Concerning the second result, its underlying reasoning is relatively simple. As C becomes

larger, eventually the central bank incentives to avoid the penalty will be strong enough to

prevent it from ever implementing an in�ation rate di¤erent from ��. That being said, the

real problem consists in obtaining the desired result without requiring C to be needless large.

Since X̂ 2 T (C) for all C � k2, the aforementioned uniqueness requires C > k2. Next,

de�ne k3 according to

k3 = W (0; 0)�W (��; ��). (19)

It is established in the next proposition that C � k3 and C > k2 are su¢ cient conditions

for X� to be the sole element of T (C). It is worth to point out that it is not the case that
k3 must be larger than k2. Indeed, it is possible to show that k2 = (�2 + )(�̂ � ��)2 and

k3 = (��)2. Thus,

k3 > k2 , �� >
(�2 + )0:5

(�2 + )0:5 + 0:5
�̂.

Proposition 8 If C > k2 and C � k3, then T (C) = fX�g.

Next I investigate whether the converse of the last proposition is true. That is, I study

whether the equality T (C) = fX�g implies that C > k2 and C � k3. However, this is

equivalent to study if C � k2 or C < k3 implies that T (C) 6= fX�g. Since X̂ will belong to

T (C) whenever C � k2, it remains to consider what happens when k2 < C < k3.

Suppose that k2 < k3 and take any C in the interval (k2; k3). Hence, (19) implies that

W (0; 0)�W (��; ��)� C > 0. Now, let �C be any in�ation rate in the interval (0; ��) with

the property that

W (�C ; �C)�W (��; ��)� C > 0 (20)

and XC be the subset of all sequences in X such that �et = �t and �t 2 [0; �C ] for all t.

Proposition 9 Suppose that k2 < k3. Hence, for every C 2 (k2; k3) there is a number

�C 2 (0; 1) with the property that if � 2 [�C ; 1), then XC � T (C).

One may wonder if the assumption on � can be dispensed with. As shown in the next

proposition, the answer is no.

Proposition 10 Suppose that k2 < k3. Hence, for every C 2 (k2; k3) there is a number
�0C 2 (0; 1) with the property that if � 2 (0; �0C), then T (C) = fX�g.
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I end this subsection with two brief comments. First, Proposition 9 makes clear that k3
is not a unnecessarily high lower bound. Second, the critical discount rates �C and �

0
C are

uniform over X (i.e., they do not depend on the sequences).

4.4 Summing Up

I close this section with a summary of its �ndings. I have studied under which conditions

X� is an element of T (C). It turns out that there is a number k0 with the property that
X� 2 T (C) if and only if C � k0. It may that happens that k0 � 0; if so, then X� will be an

equilibrium outcome with in�ation targeting regardless of the value of the penalty (including

the limit case in which C = 0). If k0 > 0, then X� will be an element of T (C) only if C > 0.

I have also assessed how changes in C impact T (C). Recall that the characterization
of this set depends on whether or not C � k2. I showed that while this inequality holds,

an increase in C will not add to T (C) a sequence X in which �t 6= �� for all t and it will

not drop from the set in question a sequence X that hits the target �� su¢ ciently often.

If C > k2 then T (C) is proper subset of T (k2) and an increase in C will not lead to an

enlargement of the set T (C).
Finally, I have studied under which conditions X� is the unique element of T (C). For

such a uniqueness to happen, it is necessary that C > k2. When this inequality is satis�ed,

then X� has a local uniqueness property. That is, for every C > k2 there is a neighborhood

of X� such that no sequence in this neighborhood will belong to T (C). Moreover, there is a
number k3 > 0 such that if C � k3, then X� is the only element of T (C).

5 Concluding Remarks

Several researchers have argued that a main feature of the in�ation targeting system consists

of aligning the beliefs of economic agents with the goals of the central bank and helping to

stabilize the expectations about future in�ation rates. Despite being popular, it appears that

so far no paper has been published providing theoretical underpinnings for such a feature in

the context of an intertemporal model.

This paper�s main goal consists of �lling that gap. Therefore, I have studied the mechanics

of the in�ation targeting system in an in�nitely repeated game. Its stage game is a variant

of the well-known Barro-Gordon model. Compared with its parent, this modi�ed version

has just two additional features: (i) there is an exogenous target for the in�ation rate, and

(ii) the central bank incurs a penalty (i.e., a payo¤ loss) whenever it fails to achieve that

target. This penalty can be interpreted as a concise measure of a society�s ability to induce
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the central bank to pursue the target in question.

I have assessed how changes in the penalty impact the set of equilibrium outcomes that

can be supported by trigger strategies that specify reversion to a Nash equilibrium of the

stage game. This exercise led to �ve major results. First, for a su¢ ciently large penalty,

the outcome in which the in�ation target is implemented at every date belongs to that set.

Second, as the penalty increases, outcomes in which the target is never implemented tend

to be dropped from the set in question, while outcomes in which the target is implemented

with su¢ ciently high frequency are never dropped. Third, when the penalty is already larger

than a critical value, a further increase of it will not enlarge the set in question. Fourth, if

the penalty is larger than that critical value, the equilibrium outcome in which the target is

implemented on every date is locally unique. Fifth, this outcome is the only element of that

equilibrium set for a su¢ ciently large penalty. Hence, the in�ation targeting system does

have, from a theoretical viewpoint, the ability to help players to align their expectations and

coordinate on an equilibrium in which the target is implemented.

Appendix: Proofs and Examples

Proof of Lemma 1. I start by statement (i). Let �e be any element of �. Then,

� 6= �� ) U(�e; �) =W (�e; �)� C � W (�e; f(�e))� C � U(�e; f(�e)).

Hence,

� 6= �� ) U(�e; �) � maxfU(�e; ��); U(�e; f(�e))g. (21)

Since U(�e; ��) � maxfU(�e; ��); U(�e; f(�e))g, the inequality in (21) holds for all � 2 �;
therefore, (i) is true. Since U(�e; ��) =W (�e; ��) and

f(�e) 6= �� ) U(�e; f(�e)) = W (�e; f(�e))� C,

the equality in (ii) holds if f(�e) 6= ��. If f(�e) = ��, then both sides of the equality in

question will be equal to W (�e; ��). Hence, statement (ii) is true. The last three statements

follow directly from (i).

Proof of Lemma 2. De�ne the function  (�e) according to

 (�e) =W (�e; f(�e))�W (�e; ��). (22)

Thus,  0(�e) =W1(�
e; f(�e))+W2(�

e; f(�e))f 0(�e)�W1(�
e; ��). Together, the last equality
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and (6) imply that  0(�e) =W1(�
e; f(�e))�W1(�

e; ��). SinceW1(�
e; �) = 2�[�(���e)���y],

 0(�e) = 2�2[f(�e)� ��]. On the other hand, (7) and (8) imply that

f(��)� �� =


 + �2
(�̂ � ��) > 0.

Given that f is strictly increasing, f(�e)� �� � f(��)� �� > 0 for every �e � ��. Thus,

 0(�e) > 0, 8�e � ��. (23)

Therefore,  (��) <  (�̂). Since  (��) = k1 and  (�̂) = k2, k1 < k2.

Proof of Proposition 1. Suppose that C < k1. Combine this inequality with Lemma 2 to

conclude that C < k2. Then, use (12) to show that W (�̂; ��) < W (�̂; f(�̂))�C, which in its
turn implies that U(�̂; ��) < U(�̂; f(�̂)). Thus, if p plays �e = �̂, then the best action for the

central bank consists in playing � = f(�̂). Since f(�̂) = �̂, (�̂; �̂) is a stage Nash equilibrium

with in�ation targeting. Concerning uniqueness, optimality by player p implies that (�̂; �)

is not an equilibrium for any � 6= �̂. Consider now what happens when p implements an

action �e = �0 6= �̂. Suppose that �0 = ��. Then, use the fact that C < k1 and equality

(11) to show that U(��; ��) < U(��; f(��)). Hence, player b should set � = f(��). Since

f(��) 6= ��, �e = �� is not a best response to � = f(��). For the case in which �0 is di¤erent

from both �� and �̂, recall that the optimal choice for b is (i) � = �� or (ii) � = f(�0).

If (i) is true, then the assumption that �0 6= �� implies that such a �0 does not solve the

problem of player p. If (ii) holds, then the fact that �̂ is the only �xed point of f implies

that �0 6= f(�0). Again, �0 cannot be an optimal strategy for p.

Now, assume that C > k2. Apply Lemma 2 again to show that C > k1. Hence, (11)

implies that U(��; ��) > U(��; f(��)). Thus, if p implements the action �e = ��, the central

bank best response is � = ��. Thus, (��; ��) is a stage Nash equilibrium with in�ation

targeting. To show that there is no other equilibrium, observe that optimality by p implies

that (��; �) is not an equilibrium for any � 6= ��. Next, assume that p plays �e = �0 6= ��.

If �0 = �̂, the inequality C > k2 implies that U(�̂; ��) > U(�̂; f(�̂)). Thus, b should play ��

and, as a consequence, �̂ is not an optimal action for player p. If �0 is di¤erent from both

�� and �̂, the optimal action for the central bank will be �� or f(�0). Again, the facts that

�0 6= �� and �0 6= f(�0) imply that such a �0 is not an optimal strategy for player p.

Finally, consider the case in which k1 � C � k2. The inequality C � k1 and (11) imply

that U(��; ��) � U(��; f(��)). Thus, if p plays ��, then b can optimally play ��. Therefore,

(��; ��) is a stage Nash equilibrium with in�ation targeting. Similarly, the inequality C � k2

and (12) imply that U(�̂; f(�̂)) � U(�̂; ��). Hence, (�̂; �̂) is also a stage Nash equilibrium
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with in�ation targeting. To establish that there is no other equilibria, observe that optimality

by player p implies that (��; �) is not an equilibrium for any � 6= ��, while (�̂; �) is not for

any � 6= �̂. Moreover, if p plays �0 =2 f��; �̂g, then the optimal response for b is �� or f(�0).
Since �0 6= �� and �0 6= f(�0), �0 cannot be an equilibrium strategy for p.

Proof of Proposition 2. Suppose that C � k2. Thus, (�̂; �̂) is a stage Nash equilibrium

with in�ation targeting. Therefore, standard trigger strategies that specify reversion to (�̂; �̂)

can support any sequence fxtg1t=0 that satis�es (15) and (16) as an equilibrium outcome of

the repeated game. A similar argument can be applied to the case in which C > k2.

Proof of Proposition 3. I start with the �if part�. Suppose that C � k0. If C � k1, then

(��; ��) is a stage Nash equilibrium with in�ation targeting and, as a consequence, X� is an

equilibrium outcome of the in�nitely repeated game. If C < k1, the fact that C � k0 implies

that

C � (1� �)k1 � �[W (��; ��)�W (�̂; �̂)])
(1� �)C � (1� �)k1 � �fW (��; ��)� [W (�̂; �̂)� C]g )

C � k1 �
�

1� �
fU(��; ��)� U(�̂; �̂)g.

Combine the last inequality with (11) to conclude that

C � W (��; f(��))�W (��; ��)� �

1� �
fU(��; ��)� U(�̂; �̂)g )

W (��; ��) +
�

1� �
U(��; ��) � W (��; f(��))� C +

�

1� �
U(�̂; �̂).

However, f(��) 6= ��. Therefore,

U(��; ��) +
�

1� �
U(��; ��) � U(��; f(��)) +

�

1� �
U(�̂; �̂). (24)

Now, observe that the inequality C < k1 implies that U(��; ��) < U(��; f(��)). Thus, it is

possible to apply Lemma 1 to conclude that max�2� U(��; �) = U(��; f(��)). Combine this

equality with (24) to conclude X� satis�es (16). Hence, X� is an equilibrium outcome with

in�ation targeting.

Concerning the �only if part�, it su¢ ces to show that if C < k0, then X� =2 T (C). A
reasoning similar to the one used to obtain (24) establishes that this inequality does not hold

if C < k0. Thus, player b can enhance her/his payo¤by deviating to f(��); as a consequence,

X� =2 T (C).
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Proof of Proposition 4. Let X be any element of T (C2) \ ~X�. Thus, X satis�es (15).

Furthermore, for a X 2 ~X�, inequality (16) is equivalent to

1X
r=t+1

�r�t[W (�er; �r)�W (�̂; �̂)] �

max fW (�et ; ��) + C;W (�et ; f(�
e
t )) + [1� I(f(�et))]Cg �W (�et ; �t).

Its right-hand side is non-decreasing on C, while the left-hand side does not depend on the

variable in question. Given that C1 < C2 and X satis�es this condition for C = C2, it must

be the case that the same is true for C = C1. Therefore, X 2 T (C1) \ ~X�.

Example 1 It is not the case that the sets T (C1) \ ~X� and T (C2) \ ~X� in Proposition 4
have to be equal. Let �0 be an in�ation rate belonging to the interval (��; �̂) and X 0 the

sequence in which �et = �t = �0 for all t . Since �� < �0 < �̂, (11), (12), (22), and (23) imply

that

k1 =  (��) <  (�0) <  (�̂) = k2.

Furthermore, if C >  (�0), then W (�0; f(�0))� C < W (�0; ��). Hence, for any such C,

max
�2�

[W (�0; �)� I(�)C] =W (�0; ��)

and

W (�0; ��)�W (�0; �0) + C > W (�0; f(�0))�W (�0; �0) > 0.

Therefore,

max
�2�

[W (�0; �)� I(�)C]� [W (�0; �0)� C] =W (�0; ��)�W (�0; �0) + C > 0. (25)

Now, take a penalty C1 2 ( (�0); k2) and a penalty C2 2 (C1; k2). Thus, the equality in (25)
holds for C = C1 and C = C2. Next, de�ne �

0 so that

�0

1� �0
[W (�0; �0)�W (�̂; �̂)] =W (�0; ��)�W (�0; �0) + C1. (26)

Combine the inequality W (�0; �0) > W (�̂; �̂) with (25) to conclude that �0 is well de�ned

and lies in the interval (0; 1). Hence, if � = �0 and C = C1, then X 0 satis�es (16) as equality

and this implies that X 0 2 T (C1) \ ~X�. On the other hand,

W (�0; ��)�W (�0; �0) + C1 < W (�0; ��)�W (�0; �0) + C2.

20



Equilibrium Under In�ation Targeting

Combine this inequality with (26) to conclude that X 0 does not satisfy (16) for � = �0 and

C = C2. As a consequence, X 0 =2 T (C2) \ ~X�.

Proof of Proposition 5. Take a sequence X belonging to T (C1)\X��. Clearly, X satis�es

(15). Condition (16) can be written as

1X
r=t+1

�r�t[W (�er; �r)�W (�̂; �̂)] +

( 1X
r=t+1

�r�t[1� I(�r)]� I(�t)

)
C �

max fW (�et ; ��);W (�et ; f(�et ))� I(f(�et))Cg �W (�et ; �t).

Since X 2 X��, (18) implies that the expression inside the curly brackets is non-negative.
Therefore, the left-hand side is non-decreasing in C, while the other side is non-increasing

in C. Since X satis�es the above inequality for C = C1, it will also satis�es for C = C2.

Hence, X 2 T (C2) \ X��.

Example 2 The sets T (C1)\X�
� and T (C2)\X�

� in Proposition 5 do not need to be equal.

For instance, let X 0 be the sequence in which �et = �t = �̂ for t even and �et = �t = �� for

t odd. Assume that � = 0:62. Therefore, �=(1� �2) �= 1:0071 > 1. Thus, (18) holds, which
implies that X 0 2 X�

� . Consider the expression

1X
r=t+1

�r�t fW (�er; �r)�W (�̂; �̂) + [1� I(�r)]Cg � (27)

max fW (�et ; ��);W (�et ; f(�et ))� I(f(�et ))Cg �W (�et ; �t) + I(�t)C,

which is equivalent to (16). The term inside the curly brackets in the left-hand side is positive

for r odd and equal to 0 for r even. Therefore, the left-hand side of the inequality is positive.

Concerning the right-hand side, the inequality C � k2 implies that it is equal to 0 for t even.

Thus, (27) holds for all even dates. For t odd, the right-hand side is equal to maxf0; k1�Cg.
Next, assume that � = 0:5,  = � = �y = 1, and �� = 0:01. Hence, �̂ = 0:5 and k1 = 0:19208.

The table below contains the results of the numerical evaluation, for odd date, of both sides

of (27) for two distinct values of C.

Numerical evaluation of the left- and

the right-hand sides of expression (27) for t odd
C left-hand side right-hand side

0.02 0.16853 0.17208

0.10 0.21849 0.09208
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Thus, X 0 =2 T (0:02) and X 0 2 T (0:10); as a consequence, T (0:02) \ X�� 6= T (0:10) \ X��.

Lemma 3 There exists a real number � > 0 with the property that T (C) � T (k2) for every
C 2 (k2; k2 + �].

Proof. De�ne � so that

� =
�

1� �
[W (��; ��)�W (�̂; �̂) + k2]. (28)

Now, suppose that C belongs to (k2; k2 + �] and let X be any element of T (C). Thus, (17)
implies that

1X
r=t

�r�t[W (�er; �r)� I(�r)C] � max
�2�

[W (�et ; �)� I(�)C] + �
W (��; ��)

1� �
.

As a consequence,

1X
r=t

�r�t[W (�er; �r)� I(�r)k2] � max
�2�

[W (�et ; �)� I(�)(k2 + �)] + �
W (��; ��)

1� �
.

Combine this inequality with (28) to conclude that

1X
r=t

�r�t[W (�er; �r)� I(�r)k2] � max
�2�

[W (�et ; �)� I(�)(k2 + �)] + � + �
W (�̂; �̂)� k2

1� �
. (29)

On the other hand,

max
�2�

[W (�et ; �)� I(�)(k2 + �)] + � = max
�2�

fW (�et ; �)� I(�)k2 + [1� I(�)]�g )

max
�2�

[W (�et ; �)� I(�)(k2 + �)] + � � max
�2�

[W (�et ; �)� I(�)k2].

Together, the last inequality and (29) imply that

1X
r=t

�r�t[W (�er; �r)� I(�r)k2] � max
�2�

[W (�et ; �)� I(�)k2] + �
W (�̂; �̂)� k2

1� �
.

Therefore, X satis�es (16) when the penalty is equal to k2. Since X 2 T (C), X also satis�es

(15). Therefore, X 2 T (k2), from which follows that T (C) � T (k2).
It remains to show that T (C) 6= T (k2). Clearly, X̂ 2 T (k2). Moreover, the inequality
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C > k2 implies that W (�̂; �̂)� C < W (�̂; ��). Thus,

W (�̂; �̂)� C

1� �
= W (�̂; �̂)� C + �

W (�̂; �̂)� C

1� �
< W (�̂; ��) + �

W (��; ��)

1� �
.

Therefore, X̂ does not satisfy (17). As a consequence, X̂ =2 T (C).
For future reference, de�ne the function R(�e; �; C) according to

R(�e; �; C) = maxfW (�e; ��);W (�e; f(�e))� Cg � [W (�e; �)� I(�)C]. (30)

Therefore, for sequences in which �et = �t for all t, inequality (17) is equivalent to

1X
r=t+1

�r�tf[W (�r; �r)� I(�r)C]�W (��; ��)g � R(�t; �t; C). (31)

Lemma 4 Suppose that C > k2. Thus, R(��; ��; C) = 0, R(�; �; C) > 0 for � 6= ��, and

R(�; �; C) is non-decreasing in C.

Proof. Take any C > k2. Since C > k1, W (��; ��) > W (��; f(��)) � C. Combine this

inequality with (30) to conclude that R(��; ��; C) = 0. Next, observe that

� 6= �� ) R(�; �; C) = maxfW (�; ��)�W (�; �) + C;W (�; f(�))�W (�; �)g. (32)

Since W (�̂; ��)�W (�̂; �̂)+C = C�k2, R(�̂; �̂; C) � C�k2 > 0. Therefore, R(�; �; C) > 0
if � = �̂. On the other hand, if � is di¤erent from both �̂ and ��, then f(�) 6= � and, as

consequence, W (�; f(�)) �W (�; �) > 0. I conclude again that R(�; �; C) > 0. Finally, an

inspection of the equality in (32) establishes that R(�; �; C) is non-decreasing in C whenever

� 6= ��. Since R(��; ��; C) = 0 for all C, it must be the case that R(�; �; C) is non-decreasing

in C for all �.

Proof of Proposition 6. Take two penalties C1 and C2 such that C2 > C1 > k2. Let

X be an element of T (C2). Thus, X satis�es (31) for C = C2. Now, observe that the

left-hand side of (31) is non-increasing in C, while Lemma 4 implies that its right-hand side

is non-decreasing in C. Therefore, X also satis�es (31) for C = C1. Hence, X 2 T (C1); as
a consequence, T (C2) � T (C1).
It remains to show that T (C1) � T (k2). The previous conclusion implies that T (C1) �

T (C0) for every C0 2 (k2; C1). By making C0 su¢ ciently close to k2, it is possible to apply
Lemma 3 to conclude that T (C0) � T (k2). Thus, T (C1) � T (k2).

Proof of Proposition 7. The continuity of W implies that for every C > 0 there exists a
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" > 0 such that

j� � ��j < ") jW (�; �)�W (��; ��)j < C. (33)

Clearly, " does not depend on �. Now, observe that

jW (�; �)�W (��; ��)j < C ) W (�; �)� C �W (��; ��) < 0)
[W (�; �)� I(�)C]�W (��; ��) � 0. (34)

Next, take a sequence X 6= X� with the property j�r � ��j < " for all r and let t be the

�rst date in which �t 6= ��. Inequality (34) implies the sum in the left-hand side of (31) is

smaller than or equal to 0. On the other hand, the fact that �t 6= �� combined with Lemma

4 implies that R(�t; �t; C) > 0. Thus, X does not satisfy (31); hence, X =2 T (C).

Proof of Proposition 8. Take any C that satis�es the stated conditions. Since C > k2,

X� 2 T (C). Next, take a sequenceX 6= X� that satis�es (15). It su¢ ces to show thatX does

not satisfy (31). Let t be the �rst date in which �t 6= ��. Apply Lemma 4 to conclude that

R(�t; �t; C) > 0. Consider now the left-hand side of (31). If �r = ��, then the term inside

the curly brackets is equal to 0. Suppose now that �r 6= ��. Since W (0; 0) � W (�r; �r),

W (�r; �r)�W (��; ��) � W (0; 0)�W (��; ��) = k3 ) W (�r; �r)�W (��; ��) � C.

Hence, the term inside the curly brackets is nonpositive if �r 6= ��. As a consequence, the

sum in the left-hand side of (31) is smaller than or equal to 0. Since R(�t; �t; C) > 0, it

follows that X does not satisfy (31).

Proof of Proposition 9. De�ne �R according to

�R = max
�2�

[maxfW (�; ��)�W (�; �) + C;W (�; f(�))�W (�; �)g] . (35)

Since the objective function is continuous and � is compact, �R is well de�ned. Furthermore,

W (��; f(��))�W (��; ��) > 0; thus, �R > 0. Next, de�ne �C so that

�C =
�R

[W (�C ; �C)� C �W (��; ��)] + �R
.

Combine (20) with the fact �R > 0 to conclude that �C 2 (0; 1). Now, take an X 2 XC and
let t be any date. Since �r � �C < ��, W (�r; �r) � W (�C ; �C) and I(�r)C = C. Hence,

W (�r; �r)� I(�r)C �W (��; ��) � W (�C ; �C)� C �W (��; ��).
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Thus, if � 2 [�C ; 1), then

1X
r=t+1

�r�t[W (�r; �r)�I(�r)C�W (��; ��)] �
�C

1� �C
[W (�C ; �C)�C�W (��; ��)] = �R. (36)

Now, compare the equality in (32) with the objective function in (35). Since �t 6= ��, it

must be the case that �R � R(�t; �t; C). Together with (36), this last inequality implies that

X satis�es (31); as a consequence, X 2 T (C).

Proof of Proposition 10. Given a penalty C 2 (k2; k3), take an " as in the statement
of Proposition 7 and let �" be the set f� 2 � : j� � ��j � "g. Since C < k3, (19) and

(33) together imply that 0 2 �". Therefore, �" is not empty. Next, consider the problem of

selecting � 2 �" to minimize R(�; �; C). Since �� =2 �", the objective function is continuous
in �"; thus, the compactness of this set implies that there is a solution �". Clearly, �" 6= ��;

thus, Lemma 4 implies that R(�"; �"; C) > 0. Now, de�ne �
0
C according to

�0C =
R(�"; �"; C)

(k3 � C) +R(�"; �"; C)
.

Observe that �0C 2 (0; 1). Now, take a sequence X 6= X� that satis�es (15). Apply Propo-

sition 7 to conclude that if j�t � ��j < " for all t, then X =2 T (C). Suppose now that

j�t � ��j � " for some date t. Since W (�r; �r) � W (0; 0),

W (�r; �r)� C �W (��; ��) � W (0; 0)� C �W (��; ��) = k3 � C )
W (�r; �r)� I(�r)C �W (��; ��) � k3 � C.

Hence, if � 2 (0; �0C), then

1X
r=t+1

�r�t[W (�r; �r)� I(�r)C �W (��; ��)] <
�0C

1� �0C
(k3 � C) = R(�"; �"; C).

Furthermore, �t 2 �"; thus, R(�"; �"; C) � R(�t; �t; C). Therefore, X does not satisfy (31)

and this implies that X =2 T (C).
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