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1 Introduction

The recent global financial crisis has emphasized the importance of policies that improve

the overall stability of the financial system and was one of the clearest illustrations in

history about systemic risk, in which banks and credit play a particularly important

role (De Bandt and Hartmann, 2019). However, although there is a vast literature and

financial interest on this topic, there is a broad recognition among macroeconomists and

policymakers about the lack of a clear understanding of system-wide risk channels and

how much systemic risk each financial institution (FI)1 brings to the overall economy

(Christiano et al., 2018; Fidrmuc and Lind, 2020). Also, because of the criticality of this

theme, there is also a growing consensus among policy makers that a macroprudential

approach to regulation and supervision should be adopted to ensure a sound global financial

system (Hannoun, 2010; Borio, 2011; Galati and Moessner, 2013).

Understanding how each FI affects systemic risk through its idiosyncratic characteristics

or its connections with the rest of the economy is key to the effective action by both central

bank and policy makers. In that sense, a very important package of macroprudential

regulation in response to the global financial crisis is the so-called Basel III. Basel III

is a comprehensive set of reform measures in banking regulation, supervision and risk

management proposed in 2010. It was developed by the Basel Committee on Banking

Supervision (BCBS), at the Bank for International Settlements (BIS), to strengthen the

banking sector and achieve financial stability by increasing bank liquidity and decreasing

bank leverage. One of the core metrics created for this purpose is the requirement of a

minimum capital adequacy ratio2 that banks must maintain to operate in the market,

which is an important tool to absorbs unexpected losses without requiring the bank to

cease its operations (BCBS, 2011).

1We used here the term bank and financial institution as similar, although one can understand bank as
a subset of the financial services sector considering that non-banking companies comes also under the
category of financial institution. In this view, a bank is a financial institution that can accept deposits
into various savings and demand deposit accounts, services that a non-banking financial institutions
(investment banks, leasing companies, insurance companies, investment funds, finance firms and others)
cannot offer. For more information, see Hagendorff (2019).
2The capital adequacy ratio is calculated by adding Tier 1 and Tier 2 capital and dividing them by the
risk-weighted assets (RWA). Tier 1 capital is the core capital of a bank and is formed by the Common
Equity Tier 1 (CET1) and Additional Tier 1 (AT1), which includes equity capital and disclosed reserves.
This type of capital, also described as going-concern capital, can absorb losses without requiring the bank
to cease its operations. On the other hand, Tier 2 capital, also described as gone-concern capital, has a
lower standard than Tier 1 and is used to absorb losses in the event of a liquidation.
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Nevertheless, financial regulator often face conflicting objectives. One of the trade-off

faced by them in establishing the minimum capital requirement (CR) with the purpose to

strengthen the financial system and prevent systemic crisis is that a safer system could

generate greater banking concentration and an increase in the cost of capital, harming

the efficiency of financial intermediation and leading to a social cost that can outweigh its

benefit. The reason is that banks may try to meet higher capital requirements by either

reducing assets (decreasing, therefore, the loan supply) or increasing the loan interest rate,

which leads to a reduction the demand for loans. Due to this and other factors, the design

of the financial system’s protection mechanism must be finely adjusted to maximize social

welfare (Alexandre et al., 2022).

There are also other regulatory mechanisms designed to mitigate systemic risk. In

addition to capital requirements and capital buffers3 proposed by Basel III, the Financial

Stability Board (FSB) developed in 2018 the bail-in, a new resolution framework to resolve

distressed banks in an orderly manner without resorting to taxpayer money as in a bailout

policy. Bail-in prescribes ex-ante resolution planning without the use of public funds for

solvency support, forcing shareholders and creditors to share the burden of losses (FSB,

2018, 2021). These and other mechanisms in ongoing development reveal the importance

of this issue for policy makers and central banks.

Regarding the Brazilian context, the implementation of the Basel III Accord occurred

more rigorously than that practiced internationally. While the agreement prescribed a

minimum capital requirement of 8%, the Central Bank of Brazil (BCB) established a

minimum of 11% to operate in the market, in addition to specific capital buffers required.

Furthermore, other complementary aspects of Brazilian regulation make the banking market

robust and well capitalized in such a way that few bankruptcies are observed (Liberman

et al., 2018). In terms of magnitude, from 2000 to September 2022, Fundo Garantidor de

Créditos (FGC), the Brazilian deposit insurance, recorded only 20 extrajudicial settlements

or interventions made by the BCB on the banking market (8.2%), while the Federal Deposit

Insurance Corporation (FDIC) registered 563 interventions (11.9%) in USA4.

3Basel III introduces two capital buffers that financial institutions must hold in addition to other minimum
capital requirements: the capital conservation buffer and the countercyclical capital buffer. The capital
conservation buffer was introduced to ensure that banks have an additional layer of usable capital that
can be drawn down when losses are incurred. The countercyclical capital buffer (CCyB) aims to protect
the banking sector from periods of excess aggregate credit growth that have often been associated with
the build-up of system-wide risks.
4For more information, see FGC for the list of banking failures in Brazil and FDIC for the list of banking
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One of the consequences of this more robust and well-capitalized Brazilian financial

system is the high historical banking concentration. According to BCB (2021a), since 2015

the Concentration Ratio of the Five Largest (RC5) Brazilian banks is greater than 65%

for the different sets of banking segments5 and accounting aggregates (assets, deposits,

and credit operations), with an overall average of 79.2% in 2018, 78.6% in 2019, 75.5% in

2020 and 74.2% in 2021. This slight drop in baking concentration in the last years can

be attributed to the loss of participation of the public banks (47.6% in 2019 to 43.5% in

2021), especially BNDES, and the advancement of cooperatives (4.3% in 2019 to 6.1% in

2021). Nevertheless, this high concentration resulting from a regulatory framework and

market specificity hinders the greater occurrence of bank failures in the country.

In that sense, a natural question that arises is what could be the regulatory easing that

would increase banking competition, financial intermediation, and social welfare, while

maintaining a secure financial system. To explore this question, we estimate different

measures to understand how much systemic risk each bank brings to the market and

propose a bank run model that simulate the loss distribution (LD) and the optimal capital

requirement (CR) of the Brazilian banking system. This paper begins by estimating the

following measures: (i) Systemic Expected Shortfall (SES), (ii) Systemic Risk (SRISK),

and (iii) Conditional Value-at-Risk (CoVar) (Adrian and Brunnermeier, 2016; Acharya

et al., 2010, 2017; Engle, 2018).

The second part of this paper uses a similar theoretical framework in which portfolio

risk is calculated in banking organizations in order to simulate the optimal CR for the

Brazilian financial system. We also adopted a heterogeneous CR regime in which we have

different CRs for each bank depending on the prudential segment as in Alexandre et al.

(2022). Banks can also hold different levels of capital adequacy ratio (CAR) based on

their own strategy and balance structure. Through this analysis, we used granular balance

sheet information to estimate the PD of each FI, the amount of capital expected in times

of crisis (SRISK), the banking segmentation clusters, and the net stable funding ratio to

capture bank runs due to panic and liquidity shortages, respectively, and the interbank

failures in the USA. The percentages were calculated considering the financial institutions insured by the
deposit insurance in each country in September 2022.
5The BCB (2021a) considers three levels of aggregation to calculate the concentration of RC5: banking
and non-banking segment (b1 + b2 + b3 + b4 + n1), banking segment (b1 + b2) and commercial banking
segment (b1). The business model category (b1) includes commercial banks, multiples with a commercial
portfolio and savings banks; (b2), multiple banks without a commercial portfolio and investment banks;
(b3), credit unions; (b4), development banks; and (n1), non-bank credit institutions.
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network to estimate the financial contagion in the banking system.

This work is divided into 5 sections, being the first one this introduction. Section 2

presents the theoretical framework of all our analyses to estimate the systemic risk of each

bank and the optimal capital requirement for the Brazilian financial system. Section 3

presents the data used in our models. Section 4 presents the results and discussion of our

results and Section 5 presents the final remarks of this paper.

2 Theoretical Framework

This section presents the theoretical framework used to estimate each financial institu-

tion’s contribution to systemic risk. In addition, it also presents the bank run model that

considers different channels of contagion used to calculate the loss distribution and the

optimal capital requirement for the Brazilian financial market.

2.1 Systemic Risk Measures

Systemic risk refers to the risk of a financial crisis or market failure that affects

the stability of the financial system and has widespread impacts on the economy as

a whole. This type of risk is of particular concern in financial systems due to the

interconnectedness of financial institutions, which can amplify the effects of individual

failures and propagate shocks throughout the system as a negative domino effect. In

recent years, the concept of systemic risk has gained increasing attention from academics

and policy makers, as the global financial crisis highlighted the potential consequences

of systemic failures (Brunnermeier and Oehmke, 2013; Adrian and Brunnermeier, 2016;

De Bandt and Hartmann, 2019).

Measuring the systemic risk of the financial system is, to some extent, related to

measuring banking risk. This makes risk measures at the bank level a natural starting

point for thinking about systemic risk. The purpose of these measures is to reduce a large

amount of data to a single meaningful statistic that summarizes the risk of each financial

institution. Over the last two decades, especially after the implementation of Basel II

bank regulations and the global financial crisis, a large literature has explored and created

metrics to measure and capture systemic risk such as: (i) Systemic Expected Shortfall

(SES), (ii) Systemic Risk (SRISK), (iii) Conditional Value-at-Risk (CoVar), and many
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others6 (Brunnermeier and Oehmke, 2013; Adrian and Brunnermeier, 2016; Acharya et al.,

2010, 2017; Brownlees and Engle, 2017; Engle, 2018).

Because we are essentially dealing with market data, we begin by defining some

components that these measures have in common. Consider N financial institutions and

let ri
t be the log return of the daily stock price of bank i at time t, i = 1, . . . , N and

t = 1, . . . , T . Also, let rm
t be the log return of the daily market index to which all banks

participate, which in our case is captured by the Bovespa index (Ibovespa)7. Then, the

bank and market return processes are given by 1.

ri
t = µi + εi

t and rm
t = µm + εm

t (1)

In which µ is the expected return and εt is a zero-mean white noise. Although serially

uncorrelated, the series εt does not need to be serially independent and can present

conditional heteroskedasticity (Zakoian, 1994). Thus, to model this time-varying volatility,

we used the the GJR-GARCH (p, q) model (Glosten et al., 1993) that allows shock

asymmetry through γ and assumes a specific parametric form of εt = σtzt for this

conditional heteroskedasticity, where zt is a standard Gaussian and the volatility σt is

given by 2.

σ2
t = ω +

p∑
k=1

(αk + γkIt−k)ε2
t−k +

q∑
j=1

βjσ
2
t−j (2)

Where

It−k :=


0 if rt−k ≥ µ,

1 otherwise
(3)

Following Brownlees and Engle (2017) and Engle (2018), we used GJR-GARCH (1,1)

for all models and also found that this specification best fits our data. Furthermore, all

parameters (µ, ω, α, γ, β) were simultaneously estimated by maximizing the log likelihood
6Bisias et al. (2012) categorize and contrast more than 30 systemic risk measures. For more information
on the extensive literature on systemic risk and its connection with the current regulatory debate, see also
Jobst and Gray (2013), Benoit et al. (2017) and Silva et al. (2017).
7Ibovespa is the main performance indicator of the stocks traded in B3 and lists major companies in
the Brazilian capital market. It was created in 1968 and, over the last 50 years, has set a benchmark for
investors around the world. Ibovespa is reassessed every four months and is the result of a theoretical
portfolio of stocks. It is composed of stocks and units of companies listed on B3 that meet the criteria
described in its methodology, accounting for about 80% of the number of trades and the financial volume
of our capital markets. For more information, see B3 (2022).
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and the best model was selected based on the Bayesian Information Criterion (BIC)

and the Akaike Information Criterion (AIC). In addition, we use the strictly positive

restriction on all parameters beside µ. The assumption that zt is Gaussian does not imply

that the returns are Gaussian. Although their conditional distribution is Gaussian, their

unconditional distribution presents excess of kurtosis (fat tails). However, if the true

distribution is different, the Quasi-Maximum Likelihood (QML) estimator is still consistent

(Glosten et al., 1993).

Despite the assumption that returns are serially uncorrelated, returns may present

contemporaneous correlation. In other words, from equation 1, defining a vector of zero-

mean white noise as εt = rt − µ, ∑t := Et−1[(rt − µ)(rt − µ)′ ] may not be a diagonal

matrix. Moreover, this contemporaneous variance may be time-varying, depending on

past information. Therefore, the correlation between each bank i and the market index is

captured by the GARCH-DCC model (Engle, 2002, 2009) and is estimated in two steps.

The first step of the GARCH-DCC model accounts for the conditional heteroskedasticity.

It consists of estimating the conditional volatility σi
t using a GARCH (1,1) model (Engle,

1982; Bollerslev, 1986) for each one of the N bank series of returns ri
t. Let Dt be the

diagonal matrix with these conditional volatilities, that is, Di,i
t = σi

t and, if i ̸= j, Di,j
t = 0.

Then the standardized residuals with unit conditional volatility, νt, are given by Equation

4 and the Bollerslev (1990)’s constant conditional correlation (CCC) estimator, R, is given

by Equation 5.

νt := D−1
t (rt − µ) (4)

R := 1
T

T∑
t=1

νtν
′

t (5)

The second and final step consists in generalizing Bollerslev (1990)’s CCC to capture

dynamics in the correlation, giving origins to the dynamic conditional correlation (DCC).

Assuming the standardized residuals are jointly Gaussian and let Qi,j
t be the correlation

between ri
t and rj

t at time t, the DCC correlations are given by Equation 6.

Qt = R +
p∑

k=1
αk(νt−kν

′

t−k − R) +
q∑

j=1
βj(Qt−j − R) (6)

Where both parameters, α, β > 0, are simultaneously estimated by maximizing the log
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likelihood and the best model was selected based on the BIC and AIC information criterion.

Once these common components of volatility and correlation are defined, the following

subsections presents the concept and definition of the main metrics of systemic risk used

in this paper.

2.1.1 Systemic Expected Shortfall

The systemic expected shortfall (SES) proposed by Acharya et al. (2010, 2017) measures

the expected capital shortfall of a bank conditional on a substantial reduction in the

capitalization of the banking system and also provides a ranking for systemically risky

banks. The theoretical approach of this model considers that the aggregate capital shortfall

of the financial sector imposes a negative externality on the real economy. Thus, in order

to estimate the capital shortfall of the financial sector, the first step is to estimate the

marginal expected shortfall (MES) of a bank. MES is the expected short-term equity

loss of a financial institution conditional on the market taking a loss greater than its

Value-at-Risk (VaR) at α%. Taking into account the parameters established in Section

2.1, the MES is given by 7.

MESit = Et−1(ri
t|rm

t < C) (7)

Where C = qα(rm
t ) is a threshold corresponding to the tail risk in the market at time t.

Note that the definition of Acharya et al. (2010, 2017) considers the market return rm
t

as the value-weighted average of all bank returns in the market, that is, rm
t = ∑N

i=1 wi
tr

i
t,

where wi
t denotes the relative market capitalization of the bank i. However, although it

would be possible to reconstruct the rm
t through each ri

t, we opt to use the main benchmark

of the Brazilian stock exchange, Ibovespa, as our rm
t for purposes of comparability of

results with the literature.

Also, define the expected shortfall (ES) of the market as the expected loss in the

index conditional on this loss being greater than C, i.e., ESt = Et−1(rm
t |rm

t < C). Thus,

note that MES of one bank is the derivative, or the marginal effect, of the market’s ES

with respect to the bank’s market share (or capitalization). Therefore, the MES of a

bank in this case can be interpreted as reflecting its contribution and participation to

overall systemic risk. The higher the MES, the higher is the individual contribution of the

bank to the risk of the financial system. However, it is still possible to define the same
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statistic even if the observed bank does not participate in the market index. Rather than

a measure of how a particular bank’s risk adds to the market risk, the MES in this other

case should be viewed as a measure of the sensitivity (or resilience) of the bank’s stock

price to exceptionally bad market events.

Once the ES and MES are defined, the SES extends the MES and corresponds to the

amount that a bank’s equity drops below its target level, defined as a fraction k of assets,

in case of a systemic crisis when the aggregate capital is less than a fraction k of the

aggregate assets. Formally, the SES is given by 8.

SESit

Wit

= kLit − 1 − Et−1

(
ri

t |
N∑

i=1
Wit < k

N∑
i=1

Ait

)
(8)

Where Ait denotes the total assets, Wit the market capitalization or market value of the

equity, and Lit = Ait/Wit the leverage. In particular, in this work we set the prudential

capital fraction k according to the prudential segment of each Brazilian bank. Acharya

et al. (2010, 2017) show that the conditional expectation term can be expressed as an

increasing linear function of MES, given by Equation 9.

SESit = (kLit − 1 + θMESit + ∆i)Wit (9)

In which θ and ∆i are constant terms.

2.1.2 Systemic Risk

Taking into account the significant negative externalities that undercapitalization of

large financial institutions has on the real economy, Brownlees and Engle (2017) proposed

a systemic risk metric called SRISK to measure the capital shortfall of a bank conditional

on a severe market decline8. Although this contribution is related to the SES measure

proposed by Acharya et al. (2010, 2017), the authors argue that SRISK does not require

structural assumptions or observation of the realization of a systemic crisis for estimation,

making this a viable ex-ante measure with higher predictive power than SES. Furthermore,

the authors argue that aggregate SRISK also provides early warning signals of distress in

indicators of real activity.

The SRISK calculation is analogous to the stress tests that are applied to financial

8For an early report on SRISK, see Acharya et al. (2010, 2012) and Engle (2016).
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institutions but only uses publicly available information. The capital shortfall is the

variable introduced to measure the distress of a financial institution, which can be defined

as the difference between the regulatory capital reserves that the bank needs to hold and

the bank’s equity. Formally, the capital shortfall of a bank i in time t is given by 10.

CSit = kAit − Wit = k(Dit + Wit) − Wit (10)

Where Dit is the book value of the debt and the other parameters were previously defined

in Section 2.1.1. The capital shortfall can be understood as the negative of the working

capital of the bank. When the capital shortfall is negative, that is, the bank has a capital

surplus, the bank functions properly. However, when this metric is positive, the bank

experiences distress.

Because the interest is to predict the capital shortfall of a bank in the case of a systemic

event, Brownlees and Engle (2017) uses the same concept of a market decline below a

threshold C proposed by Acharya et al. (2010, 2017). Thus, the definition of SRISK as

the expected capital shortfall conditional on a systemic event is given by 11.

SRISKit = Et(CSit+h|rm
t+1:t+h < C)

= kEt(Dit+h|rm
t+1:t+h < C) − (1 − k)Et(Wit+h|rm

t+1:t+h < C)
(11)

In which {rm
t+1:t+h < C} is the systemic event with probability α, rm

t+1:t+h is the multiperiod

arithmetic market return between periods t + 1 and t + h, and SRISKit ≥ 0. In order to

compute this expectation, the authors assume that, in the case of a systemic event, debt

cannot be renegotiated, which implies that Et(Dit+h|rm
t+1:t+h < C) = Dit. Finally, using

this assumption in Equation 11 results in the final Equation 12 for SRISK.

SRISKit = max{0 ; kDit − (1 − k)Wit(1 − LRMESit)} (12)

Where LRMESit = −Et(ri
t+1:t+h|rm

t+1:t+h < C) is the Long Run MES, that is, the expec-

tation of the bank equity multiperiod arithmetic return conditional on the systemic event,

in which ri
t+1:t+h is the multiperiod arithmetic return of bank equity between periods t + 1

and t + h. In other words, when a stress scenario occurs, the equity decreases by a rate

called the LRMES. Note from Equation 12 that SRISK is higher for banks that are larger,
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more leveraged, and with higher sensitivity to market declines.

To estimate LRMES, Engle (2018) proposed a direct approach in which LRMESit =

1 − exp
[
(β̃i

t) log(1 − θ)
]
, where β̃i

t is the nested dynamic conditional beta (DCB) and θ

is the expected drop in the market during a financial distress event9. The initial DCB

approach described by Engle (2016) considers that beta is the product of a correlation

between the bank return and the market return, ρi,m
t , times the standard deviation of the

bank return, σit, and market return, σmt. Because all of these three values are potentially

time-varying, the author estimates them through GJR-GARCH and GARCH-DCC models.

Formally, the DCB estimates of beta is given by 13.

β̂i
t = ρi,m

t

 σit

σmt

 (13)

We also follow Engle (2018) by building an artificial model that nests both the constant

beta and DCB through Equation 14.

ri
t = (ϕ1 + ϕ2β̂

i
t)rm

t + εi
t (14)

The estimates of both coefficients are made by assuming a MA(1) GJR-GARCH error

term to construct a weighted least squares (WLS) model10. We would expect ϕ2 = 0 for

a constant beta or ϕ1 = 0 for DCB, but because both hypotheses can be rejected, it is

preferable to consider some combination of constant and time-varying beta (Engle, 2018).

Then, the nested DCB used to estimate LRMES and SRISK is given by 15.

β̃i
t = (ϕ̂1 + ϕ̂2β̂

i
t) (15)

2.1.3 Conditional Value-at-Risk

The conditional value-at-risk (CoVaR) is a concept proposed by Adrian and Brun-

nermeier (2016) and represents the p% quantile of market return using the distribution

conditional on the event that a particular bank return equals its VaR at q% and the

preceding state variable are M . In other words, it is a measure of how sensitive the overall

market is to a decline in a particular financial institution. First, the definition of VaR of

9Works like Acharya et al. (2012) and Engle (2018) consider θ = 40% over 6 months for the US market, a
measure that is further discussed in Section 2.2.2
10The weights are the inverse of the variance of the MA(1) GJR-GARCH model of εi

t (Engle, 2016).
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bank i with probability q, such as 5%, is given by 16.

P (ri
t < −V aRq

i,t | Mt−1) = q (16)

The CoVaR of the banking system in quantile p when a particular bank i has a market

decline equal to its V aRq
i,t is given by 17.

P (rm
t < −CoV aRp,q

m|i,t | ri
t = −V aRq

i,t, Mt−1) = p (17)

Adrian and Brunnermeier (2016) define the risk contribution of the bank i to the

overall market as the incremental change in its risk relative to its median state, that

is, ∆CoV aRq
m|i,t = CoV aRq,q

m|i,t − CoV aRq,0.5
m|i,t. In addition, they also proposed the use of

quantile regression for its efficiency and simplicity in estimating CoVaR, evaluating the

estimated equation with the independent variables of interest, which is given by Equation

18 and Equation 19.

rm
t = αq

i + βq
i ri

t + εt (18)

CoV aRq
m|i,t = α̂q

i + β̂q
i V aRq

i,t (19)

Therefore, the ∆CoV aRq
m|i,t is then given by Equation 20.

∆CoV aRq
m|i,t = β̂q

i (V aRq
i,t − V aR0.5

i,t ) (20)

2.2 Bank Run Model

In this section, we present the main contribution of our paper by proposing a bank

run model that accounts for single, or idiosyncratic, probability of default of banks based

on their balance sheet structure and a systemic risk process in which additional defaults

occur through different channels of contagion. The two fundamental channels of contagion

considered by the literature of financial stability and systemic risk are: (i) the exposure

channel and (ii) the informational channel (Greenwood et al., 2015; Paltalidis et al., 2015;

Hurd, 2016; Souza et al., 2016; De Bandt and Hartmann, 2019; Jackson and Pernoud,

2021; Radev, 2022). These fundamental channels can work in conjunction as well as
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independently, and we model them through three processes: (i) panic due to deposit

withdrawals and market similarity, (ii) interbank network and (iii) funding illiquidity.

Several works in the literature focus on the banking contagion process through one

of these three channels11, but few studies have shown the significant role they all play

together in understanding the full effect of contagion (Paltalidis et al., 2015; Glasserman

and Young, 2016; Anderson et al., 2019; Jackson and Pernoud, 2021). It is with this last

understanding that we propose our model. Our approach follows a similar theoretical

framework in which portfolio risk is calculated in banking organizations and how banking

losses are estimated in deposit insurance schemes (Lehar, 2005; Gupton et al., 2007; De Lisa

et al., 2011; Bellini, 2017; O’Keefe and Ufier, 2017; Parrado-Martínez et al., 2019; Matt

and Andrade, 2019; Fernández-Aguado et al., 2022). Section 2.2.1 presents the model used

to calculate the idiosyncratic probability of default and Section 2.2.2 introduces the model

that accounts for different channels of contagion. The diagram of the structure and steps

of our model is shown in Figure 1.

Figure 1: Diagram of the structure and steps of the Bank Run model.

∗ Note that the contagion process amplifies the idiosyncratic probability of default given by the Merton
(1974)’s structural model through the mechanisms and shocks described in Section 2.2.2. Furthermore,
the LGD parameter is assumed to be equal to one for all Brazilian banks, as mentioned in Section 2.2.3.

11See Martin (2006), Gorton (2010), Greenwood et al. (2015), Robatto (2019) and Gertler et al. (2019) for
panic due to deposit withdrawals and market similarity, Acemoglu et al. (2015), Cabrales et al. (2017)
and Alexandre et al. (2022) for the interbank network and Ferrara et al. (2019) and Ardekani et al. (2020)
for funding illiquidity.
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2.2.1 Probability of Default

We used the Merton (1974)’s structural model to estimate each financial institution’s

idiosyncratic PD12, which models credit risk using the Contingent Claim Analysis13 (Souza

et al., 2015, 2016; Guerra et al., 2016; Coccorese and Santucci, 2019; da Rosa München,

2022). It is a structural model because it provides the relationship between the debt and

the value of the bank. The intuition of this approach is to consider the bank’s assets as

the underlying asset of a European call option, with strike price equal to its obligations

and time to maturity T . Thus, if the bank defaults, the equity holders receive nothing

because the bank does not have enough resources to repay its obligations. Otherwise, if it

does not default, the equity holders receive the difference between the values of assets and

liabilities.

Although Merton (1974)’s model establishes that a default occurs when the bank’s assets

(granted loans) are lower than its obligations (deposits received), in practice, however,

it is possible to continue operating with a negative equity14. This is due to contract

breakdown or liquidity scarcity problems when the bank needs to sell assets or due to debt

renegotiation (Guerra et al., 2016). In order to address these characteristics, the literature

proposes a threshold called distress barrier (DB) as a trigger for default, defined as a

proportion of the face value of the debt. As a result, the bank defaults if its asset value

falls below its DB, being computed using accounting data based on the KMV model and

given by equation 21 (Crosbie and Bohn, 2003).

DBit = STDit + αitLTDit (21)

12There are works that use approaches such as CAMELS (Capital adequacy, Asset quality, Management,
Earnings, Liquidity, Sensitivity to market risk) to estimate the PD using balance sheet variables (Valahza-
ghard and Bahrami, 2013; Calabrese and Giudici, 2015; Rosa and Gartner, 2018; Parrado-Martínez et al.,
2019). Although this technique allows the use of more granular and specific bank variables, it performs
better when there is a large number of observable bank defaults to estimate a robust logit model, which is
not the case for the Brazilian economy. Even with strategies used to increase the default variable, such as
considering interventions by supervisors, capital below the minimum required or mergers motivated by
financial difficulties (Vazquez and Federico, 2015), criteria that have an inherent subjective aspect, we
may not necessarily reach a sufficient number of defaults in certain economies to estimate a robust model.
13Contingent Claim Analysis (CCA) is a generalization of the option pricing theory presented in Black and
Scholes (1973) to the analysis of the corporate capital structure. The general definition of a contingent
claim is any asset whose future payoff is contingent on the outcome of an uncertain event. Therefore, CCA
can be used to analyze how the value of the contingent claim changes as the value of the firm changes
over time. For more information, see Jobst and Gray (2013).
1411 banks operated with negative equity in the Brazilian market between March 2000 and September
2022 (BCB, 2022a).
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In which STDit and LTDit represent the sort-term (maturity ≤ 1 year) and long-term

(maturity above 1 year) liabilities, respectively, and 0 ≤ αit ≤ 1 is a parameter that proxies

the share of long-term liabilities of a bank subjected to early redemption in case of stress.

Due to the unavailability of time to maturity data of total liabilities for the Brazilian case,

following Souza et al. (2016), we assume that they are predominantly short-term debts

(STDit = 0.7) with a significant long-term debt (LTDit = 0.3) share. In general, the

literature suggests αit = 0.5 if LTDit/STDit < 1.5, which gives DBit = 0.85TLit (Crosbie

and Bohn, 2003; Souza et al., 2015; Guerra et al., 2016; Coccorese and Santucci, 2019).

Using these definitions on the Black and Scholes (1973)’s model, the option’s payoff

received by the equity holder is given by 22.

Eit = max(Ait N (d1it) − DBit e−rtT N (d2it), 0) (22)

Where Ait is the asset value, rt is the risk-free interest rate, N (.) is the cumulative normal

distribution function,

d1it =
ln( Ait

DBit
) + (rt + σ2

Ait

2 )T
σAit

√
T

and

d2it = d1it − σAit

√
T =

ln( Ait

DBit
) + (rt − σ2

Ait

2 )T
σAit

√
T

,

in which σAit denotes the volatility of the assets.

The time to maturity T , usually assumed to be 1 year, is the horizon for which the PDit

is computed. This one-year time horizon is consistent with i) the usual assets’ classification

into short-term and long-term liabilities that are required by the model, ii) the expected

time for banks to adapt to capital increases and iii) the stress test exercises conducted by

the regulatory authority BCBS (2010, 2011); O’Keefe and Ufier (2017).

To calculate each PDit, two important assumptions are made. The first is that the

bank’s asset values are log-normally distributed (Crouhy et al., 2000; Lehar, 2005; Guerra

et al., 2016; Souza et al., 2016; da Rosa München, 2022). The second is that investors

are risk neutral, that is, the demand rate of return is the risk-free rate of return rt,

which is lower than that required by risk-averse investors. This assumption results in

conservative (higher) PDit estimates. Thus, the idiosyncratic PDit of a FI in a time

horizon T , calculated in t = 0, is given by 23.
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PDit = P (DBit ≥ Ait)

= P (ln DBit ≥ ln Ait)

= N (−d2it)

= N

−
ln( Ait

DBit
) + (rt − σ2

Ait

2 )T
σAit

√
T


(23)

Note that the probability of default is the area under the default barrier, that is, a

fraction of total liabilities. Also, note that the negative of d2it can also be used to compute

the distance to distress (D2D) for a risk neutral environment, which is the distance of

the bank’s asset value to the distress barrier in t = 0, measured in assets value’ standard

deviations.

2.2.2 Contagion

The following subsections present our approach for the two fundamental channels

discussed in the literature, which are (i) the exposure channel and (ii) the informational

channel (Greenwood et al., 2015; Paltalidis et al., 2015; Hurd, 2016; Souza et al., 2016;

De Bandt and Hartmann, 2019; Jackson and Pernoud, 2021; Radev, 2022). As in Diamond

and Dybvig (1983), the runs we consider are runs in the entire banking system and not on

a single bank. In addition, as in Abergel et al. (2013), we do not consider the possibility

of partial default in our model15.

We begin by establishing three channels that are used to incorporate the contagion

effect in the event of a bank default: (i) panic due to deposit withdrawals and market

similarity, (ii) interbank network, and (iii) funding illiquidity. Note that these channels

are only activated after a single bank defaults, although they do not necessarily generate

a banking contagion process if the rest of the system is resilient16. The generation of a

banking contagion process or a systemic risk event occurs when the default of an individual

bank or multiple idiosyncratic defaults deteriorates the other banks in the system through
15In a model with partial default, represented by a default level on liabilities, it is necessary to introduce a
different mechanism in which the non-defaulting banks have to sell part of their assets in order to satisfy
some solvability ratio constraints. For more information, see Eisenberg and Noe (2001).
16Note that a run on an individual bank may not have aggregate effects if depositors simply shuffle their
funds from one bank to the others in the system (Gertler et al., 2019). We capture this dynamic in our
model when the shocks of the contagion process in the PD of banks that do not idiosyncratically default
do not generate additional defaults.
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these channels to the point of generating additional defaults.

An important component to be defined in the bank run simulation is the deterioration

of the probability of default when there is a contagion process or financial crisis. Engle

(2018) estimates a 40% deterioration over 6 months in PD when there is a financial distress

event for the US market and Greenwood et al. (2015) estimated a 28% deterioration

over 18 months in the market capitalization of European banks after the financial crisis.

Through our simulations, we estimate a PD for the Brazilian financial system using the

Merton (1974)’s structural model described in 2.2.1 and found a deterioration of 36% over

1 year during the 2008 financial crisis17. Therefore, we calibrate our shocks so that all

three contagion processes established by our model increase the default of banks over one

year, on average, by 36%.

2.2.2.1 Panic

The extensive literature on banking panics, beginning with Diamond and Dybvig (1983),

presents an important theme of how sudden withdrawals triggered by the expectation

of defaults can force the bank to liquidate many of its assets at a loss and, ultimately,

fail. The losses worsen the conditions of banks, including those that are financially strong,

reinforcing the flight to liquidity and making the process self-fulfilling. In this scenario,

it is the forced liquidation at fire sale prices during a run that pushes these banks into

bankruptcy, categorizing a situation of short-term illiquidity (Martin, 2006; Gorton, 2010;

Greenwood et al., 2015; Kiss et al., 2018; Allen et al., 2019; Robatto, 2019; Anderson et al.,

2019; Gertler et al., 2019).

Note that during this forced short-term liquidation, there is also a contagion effect

on asset prices for other banks that hold similar assets or portfolios to those that suffer

from these fire sales, leading to an undermining of its balance sheets. If the loss of an

affected bank is so severe that it is unable to meet its minimum capital requirement, then

the bank will have to sell some of its assets with a haircut, increasing the downward spiral

in market prices (Nier et al., 2007; Cont et al., 2013; Huang et al., 2013; Glasserman and

Young, 2016; Caccioli et al., 2018; Pichler et al., 2021).

Considering that panic behavior is fundamentally a problem of depositor expectation

17We construct a weighted PD considering the value of total deposits of each FI from December 2000 to
September 2022. The 36% deterioration over 1 year in this weighted PD considers the annual average
growth in PD between June 2009 and June 2008.
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and liquidity risk and has the potential to affect the overall stability of similar banks

within the industry, this issue can be addressed from the complete information on the

connection that each depositor and bank has with all other banks in the system (Brown

et al., 2016; Anginer and Demirgüç-Kunt, 2019; Jackson and Pernoud, 2021). In that sense,

after one bank idiosyncratically defaults, it is possible to anticipate the majority of banks

that will be susceptible to the panic effect and the magnitude of this illiquidity shock from

the cross-information of depositors and assets in those banks. However, because this is

a private and confidential information, we choose to model this behavior using a cluster

approach based on balance sheets and market data. Thus, through this process, we are

still able to simulate a short-term panic shock in similar banks within the industry.

We choose to use the K-means clustering (Lloyd, 1957; Jancey, 1966; MacQueen, 1967)

to estimate the clusters in the banking system. K-means clustering is an unsupervised

learning algorithm for finding K pre-specified clusters and cluster centers (i.e. centroid) in a

set of unlabeled data. Let C1, . . . , CK be the sets containing the indices of the observations

in each banking cluster. These sets satisfy both (i) C1 ∪ C2 ∪ · · · ∪ CK = {1, . . . , n} and (ii)

Ck ∩ Ck′ = ∅ for all k ̸= k′. Thus, (i) means that each observation belongs to at least one

of the K clusters and (ii) means that the clusters are non-overlapping, i.e., no observations

belong to more than one cluster (Hastie et al., 2009).

For instance, if the ith observation is in the kth cluster, then i ∈ Ck. Thus, a good

clustering is one for which the within-cluster variation, W (Ck), is as small as possible.

Therefore, the objective of the K-means algorithm is to solve 24.

min
C1,...,CK

{
K∑

k=1
W (Ck)

}
(24)

In order to solve 24, we first need to define the specification of the within-cluster

variation. The most common choice to define this concept in the literature is the Hartigan

and Wong (1979)’s algorithm, which defines the total within-cluster variation as the

sum of squared Euclidean distances between items and the corresponding centroid. This

specification is given by 25.

W (Ck) =
∑

xi∈Ck

(xi − µk)2 (25)

Where xi denotes a data point belonging to the cluster Ck and µk is the mean value of the
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points assigned to the cluster Ck. The algorithm that solves the optimization problem

when combining equations 24 and 25 can be decomposed into two major steps: (i) initially

assigns a random number, from 1 to K, to each of the observations and (ii) iterates

until the cluster assignments stop changing. In the second step, (a) for each of the K

clusters, the algorithm computes the cluster centroid and (b) assigns each observation to

the cluster whose centroid is the closest in terms of Euclidean distance. This algorithm is

used iteratively until the local optimum is reached. (Hastie et al., 2009).

Because the K-means technique requires a pre-specification of the expected number

of clusters, there are a variety of other direct and statistical methods used to define the

within-cluster variation in order to find the optimal number of clusters. The two most

common are the silhouette and the gap statistics. The silhouette statistic (Kaufman and

Rousseeuw, 1990) measures how well an observation is clustered and estimates the average

distance between clusters. A high average silhouette width indicates a good clustering

and the optimal number of clusters K is the one that maximizes the average silhouette

over a range of possible values for K. For observation i, let a(i) be the average distance to

other points in its cluster, and b(i) the dissimilarity between i and its closest clusters to

which it does not belong. Then, the silhouette statistics, s(i), is defined by 26.

s(i) = b(i) − a(i)
max{a(i), b(i)} (26)

On the other hand, the gap statistic (Tibshirani et al., 2001) compares the total

within-cluster variation for different values of K with their expected values under the null

reference distribution of the data. The estimate of the optimal clusters will be the value

that maximizes the gap statistic, in which log(Wk) falls the farthest below this reference

curve. Thus, considering En[log(Wk)] the expectation under a sample of size n, the gap

statistic is defined by 27.

Gapn(k) = En[log(Wk)] − log(Wk) (27)

Once the clustering technique and the optimal number of clusters have been defined,

we select some market and systemic risk variables used to distinguish these clusters

and simulate panic behavior in the Brazilian banking system. It is important, however,

that these clusters have an internal consistency with the prudential segmentation and
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the business model category established by the BCB (2022a). The variables used for

the clustering are: (i) total deposits over total assets, (ii) loan, lease and other credit

operations by risk level over total assets, (iii) risk-weighted assets (RWA), (iv) SRISK,

and (v) ∆CoVaR. The dynamics of the banking panic process simulation is such that,

once one of the banks within a cluster idiosyncratically defaults, the other banks in the

cluster suffer a shock in their probability of default, as mentioned in Section 2.2.2, so that

all three contagion processes established by our model increase the default of banks, on

average, by 36%.

2.2.2.2 Interbank Network

Besides the panic effect, several works in the literature have demonstrated the important

role that interbank networks play in the systemic risk contagion process, suggesting that the

probability of default cascades is increasing in the size of interbank exposures (Anand et al.,

2015; Bardoscia et al., 2015; Acemoglu et al., 2015; Silva et al., 2016; Anand et al., 2018;

Anderson et al., 2019; Ferrara et al., 2019). However, it is important to note that network

interconnectedness can be understood by both correlated portfolios, through common asset

holdings among banks, and counterparty risk, through direct bilateral exposures between

banks (Nier et al., 2007; Cont et al., 2013; Huang et al., 2013; Glasserman and Young,

2016; Pichler et al., 2021; Jackson and Pernoud, 2021). In that sense, we model these

two phenomena by (i) considering market and asset correlation in the first short-term

contagion channel described in Section 2.2.2.1 and (ii) considering the interbank market

as a second mid-term contagion channel, which is addressed in this section.

In the interbank market, banks lend to each other at an interbank interest rate. In

Brazil, the interbank deposit, DI, is traded exclusively among financial institutions and is a

private fixed income instrument that assists in closing the cash of banks, as an instrument

for raising funds or applying surplus resources. These securities, also called CDI, have high

liquidity, no incidence of taxes on profitability and carry a very low risk, usually associated

to the soundness of the banks that participate in the market. The negotiation between the

banks generates the DI rate, reference for most of the fixed income securities offered to the

investor. This interbank interest rate is the main benchmark of the market and is obtained

by calculating the weighted average of the rates of the prefixed, extragroup (different

conglomerates), and one-day transactions between financial institutions. Furthermore, it is
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important to note that, in the interbank market, banks can also trade one-day repurchase

agreement contracts backed by federal securities with similar purpose of interbank deposit,

but shifting the counterparty risk for sovereign risk (B3, 2022).

In addition to the functions of monetary, regulatory and supervisory authority exercised

by the Central Bank of Brazil, it is also responsible for controlling and monitoring the

liquidity of the banking system. Consistent with their role as lender of last resort (LOLR),

the provision of liquidity support contributes for the credibility of domestic currency and to

the financial system’s stability. The BCB’s liquidity facility (LFL) comprises the discount

window lending operations based on non-government issued securities with financial

institutions that hold a reserve or settlement account at BCB. The LFL’s operations can

be a short-term standing facility (LLI), normally intraday and overnight, or a long-term

facility (LLT), through discretionary approval and enhanced operational process. The loans

are secured against high-quality assets as collateral, which may not present immediate

liquidity (BCB, 2021c).

Considering that the complete information about the Brazilian interbank network

is private and only known by the Central Bank of Brazil, we reconstruct the interbank

network based on the following main properties: (i) density, (ii) average degree, and (iii)

assortativity. Among the several methods that can be used to estimate the matrix of

bilateral exposures18, we used an adapted version of the minimum density (MD) method

proposed by Anand et al. (2015) because it offered the best match with the known

properties of the Brazilian interbank network during March 2010 and September 201519 ,

which is: (i) density between [0.03,0.07], (ii) average degree between [4.6,7.8] for all banks

or [21,26] for large banks, and (iii) assortativity between [-0.31, -0.54] (Castro Miranda

et al., 2014; BCB, 2016; Souza et al., 2016; Silva et al., 2016; Anand et al., 2018; Alexandre

et al., 2022).

The minimum density method proposed by Anand et al. (2015) is a heuristic proce-

dure for allocating links that combines elements from information theory with economic

incentives to produce networks that preserve the realistic characteristics of interbank

activity. The authors argue that the MD approach is suitable for sparse networks, which is

appropriate for the Brazilian financial market, and is able to reconstruct it by minimizing
18See, for instance, Anand et al. (2018) for a comprehensive survey of different estimation methods.
19The last release of the assortativity and degree metric of the Brazilian interbank network made by the
BCB was in April 2016 with data until September 2015. All other data come from works that use the
true Brazilian interbank network. For more information, see BCB (2016).
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its cost of linkages. Let c be the fixed cost of establishing a link, X ∈ [0, ∞)N×N the

matrix of bilateral aggregated exposure values, Xij the unknown exposure of bank i to

bank j and N the number of banks. The total observable interbank assets of bank i are

Ai = ∑N
j=1 Xij and the total observable liabilities of bank j are Lj = ∑N

i=1 Xij. Then, the

MD problem is given by 28.

min
X

c
N∑

i=1

N∑
j=1

1[Xij > 0] s.t. (28)

N∑
j=1

Xij = Ai ∀i = 1, 2, . . . , N

N∑
i=1

Xij = Lj ∀j = 1, 2, . . . , N

Xij ≥ 0 ∀i, j

Where the integer function 1 equals one only if bank i lends to bank j, and zero otherwise.

This problem is equivalent to finding the network with lowest average degree, i.e., the

lowest number of edges, under given constraints.

However, because 28 is computationally expensive to solve, the authors proposed a

smooth value function, V (X), which is high whenever the network X has a few links and

satisfies the asset and liability constraints. First, the authors soften the constraints by

assigning penalties for deviations from the marginal of each bank, which is given by 29.

ADi ≡
(

Ai −
N∑

j=1
Xij

)
and LDj ≡

(
Lj −

N∑
i=1

Xij

)
(29)

In which LDj measures bank j’s current deficit, i.e., how much its bilateral borrowing

falls short of the total amount it needs to raise, Lj, and ADi is measures bank i’s current

surplus. When they are introduced into the objective function 28, the problem becomes a

maximization given by 30.

V (X) = −c
N∑

i=1

N∑
j=1

1[Xij > 0] −
N∑

i=1
(α2

i ADi) −
N∑

j=1
(δ2

j LDj) (30)

Where αi are the weights for assets deviations and δj are the weights for liabilities deviations.
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Note that sparse networks X that minimize marginal deviations are more efficient and

achieve higher values in the objective function V (X).

In addition to being sparse, interbank networks are typically disassortative, i.e. small

banks seek to match their lending and borrowing needs through relationships with larger

banks that are well placed to satisfy those needs. Such behavior contributes to sparsity,

since most small banks can satisfy their needs with a single large counterparty. The

authors capture this information through the set of probabilities Q ≡ {Qij} for the relative

relationships between i and j. The probability that i lends to j increases if either i is

a large lender to a small borrower j or i is a small lender to a larger borrower j. This

process is given by 31.

Qij ∝ max
{

ADi

LDj

,
LDj

ADi

}
(31)

To ensure that the most likely network solutions are disassortative, the authors propose

a probability distribution, P (X), that should be close to the prior Q. This mechanism is

given by 32.

max
P

∑
X

P (X)V (X) + θR(P ∥ Q) (32)

Where the scaling parameter θ emphasizes the weight placed on finding solutions with

characteristics similar to the prior matrix Q and R(P ∥ Q) = ∑
X P (X) log(P (X)/Q(X)) is

the relative entropy between P and Q. The solution to this problem can be obtained from

the first-order conditions given by 33, stating that a candidate X has a higher likelihood

of being chosen than the prior Q specifies if the departure from Q raises the value of the

maximization problem given by 30.

P (X) ∝ Q(X)eθV (X) (33)

Note that while the prior Q codifies the probabilities for picking links, there are no

restrictions to the values one should allocate to selected links. However, because each

bank has a maximum exposure limit of 25% of its Tier 1 capital that it can have with

another bank in the Brazilian financial market since the publication of Resolution 4.667 in

July 2018 (BCB, 2018a), we adapted the MD method proposed by Anand et al. (2015) by

including one more step in the iteration process. After the end of each iteration of the
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MD procedure, we checked whether the solution exceeded the maximum exposure limit of

each bank’s assets in relation to its Tier 1 capital. Only in cases where the solution have

exceeded is that we limit the asset’s exposure of each bank to 25%, and then we update

the simulated network until the total interbank market volume has been allocated. The

optimal solution is the one that satisfies all these restrictions and produces topological

features that match the moments of the Brazilian interbank network.

In terms of the topological features, the three most important are: (i) density, (ii)

average degree, and (iii) assortativity20. Density is the number of undirected links as a

percentage of the total number of links (excluding self-loops), which can also be seen as the

sparsity of a network. The degree, or valency, is a strictly local measure that corresponds

to the number of counterparties each bank connects in the financial network. Thus, degree

can be interpreted as a proxy of bank’s portfolio diversification inside the financial network.

Since this is a bank-level network measurement, it is common to report the average value

of all participating banks (Souza et al., 2016; Anand et al., 2018).

Assortativity is a global measure of the network that presents the correlation between

the number of counterparties of pairs of banks that have operations with each other. If this

measure is positive, it means that, in the assessed network, banks with many counterparties

usually carry out operations with banks that have many counterparties. On the other

hand, a negative measure, denoted disassortativity, reveals the predominance of financial

operations between pairs of banks with different total numbers of financial operations.

Usually, large banks, which have many operations and act as money centers, interconnect

with small banks, which have few operations and act as investors or borrowers in the

interbank. Furthermore, financial networks with negative assortativity show the existence

of core-periphery structures. In Brazil, the nucleus is mainly composed of the group of

large banks, whose members are highly connected to other members of the core and also

intermediate operations between members of the periphery (Souza et al., 2016; Silva et al.,

2016; Anand et al., 2018).

Once the interbank network is reconstructed considering all these properties, we proceed

to the estimation of the impact of shock scenarios considering possible additional contagion

effects and the measurement of the systemic importance of a bank in the network. Thus,

we will be able to infer how the dynamics of a bank’s default impact the whole system.

20For more information on topological information of a interbank network, see Silva et al. (2016).
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Among the different approaches proposed by the literature for this purpose, we choose

the well-known DebtRank algorithm (Battiston et al., 2012; Bardoscia et al., 2015) for its

effective shock propagation dynamics (Souza et al., 2016; Silva et al., 2017; Poledna et al.,

2021).

The DebtRank algorithm first proposed by Battiston et al. (2012) is inspired by the

feedback centrality measure21 and assumes that losses are linearly propagated between

connected banks. Suppose a network of mutually exposed banks in which each of these

banks has assets and liabilities, among which a fraction is related to the counterparties

within the network, and a capital buffer. If a bank suffer assets losses greater than its

capital buffer, it becomes insolvent and will not be able to honor any of its short-term

liabilities, a scenario in which the bank defaults. On the other hand, if the losses are

lower than its capital buffer, suppose 90%, the bank will be in distress and will not pay its

creditors a proportional part (10%) of its liabilities, which characterizes a stress measure.

In the first case, the creditors of the default bank, in turn, will suffer losses and undergo

through the same dynamics. This feedback process continues until the whole system

converges.

Formally, the original DebtRank method models the interbank market as a direct

network G = ⟨B, E⟩, in which the banks compose the vertex B and the exposures between

them compose the set of edges E . Again, these links are represented by a weighted

adjacency matrix X, where the (i, j)th entry, Xij, represents the amount bank i lends to

bank j, i.e., the exposure of bank i to bank j. In a similar notation, the total value of the

asset invested by i in funding activities is Ai = ∑
j∈B Xij and the relative economic value

of bank i is given by φi = Ai/
∑

j∈B Aj, φi ∈ [0, 1], which is the fraction of i’s assets with

respect to the total assets in the interbank market.

Also, each bank i has a capital buffer against shocks, Ei, which is represented by the

Common Equity Tier 1 (CET1)22. If Ei ≤ γ, where γ > 0, the bank defaults. If vertex j

21Feedback centrality measures are those in which the centrality of a node, or vertex, depends recursively
on the centrality of its neighbors. The recursiveness criterion effectively forces the centrality of each node
to depend on the entire network structure through feedforward/feedback mechanism. In this sense, the
original DebtRank of Battiston et al. (2012) is not formally a feedback centrality measure because it does
not propagate a second- and high-order round of impacts that come from cycles or multiple routes in the
network. These components are incremented in the DebtRank version of Bardoscia et al. (2015).
22Although Battiston et al. (2012) uses the Tier 1 (the sum of the Common Equity Tier 1 and the
Additional Tier 1) as the capital buffer against shocks, we used only the CET1 as it is the component of
highest quality capital and can absorb losses immediately as they occur (BCBS, 2011). CET1 comprises the
core capital of a bank and consists mostly of issued equity and retained earnings, being used by investors
to assess a bank’s solvency. Even considering the capacity to absorb losses of some AT1 instruments,
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defaults, all of the neighbors i will suffer losses corresponding to their exposure towards

j, given by Xij. When Xij > Ei, then vertex i defaults. The local impact of j on i is

Wij = min(1, Vij), where Vij = Xij/Ei is the bank’s stress level, so that if i’s losses exceed

its capital, the local impact is 1. Intermediate values within the interval (0, 1) for Wij lead

i into distress, but not into default.

The presence of cycles in the network inflates the computed impacts by counting the

local impact of a node on another more than once. To avoid the distortion caused by this

double-counting, the original DebtRank algorithm evaluates the additional stress caused

by some initial shock using a dynamic system, allowing only a single impact propagation

per each node. It maintains two state variables for each bank i ∈ B: (i) hi(t) ∈ [0, 1]

and (ii) si(t) ∈ {U, D, I}. hi(t) is the stress level of i and si(t) is a categorical variable

that denotes the state of i. U , D, and I stand for undistressed, distressed, and inactive,

respectively. The update rules of the dynamic system are given by 34 and 35.

hi(t) = min

1, hi(t − 1) +
∑

j∈D(t)
Wijhj(t − 1)

 (34)

si(t) =



D, if hi(t) > 0 and si(t − 1) ̸= I,

I, if si(t − 1) = D,

st(t − 1), otherwise

(35)

In which t ≥ 0 and D(t) = {j ∈ B | sj(t − 1) = D}. Note that the sum of 34 occurs

only for those distressed banks in the previous iteration. However, once distressed, they

become inactive in the next iteration due to 35. Thus, they are not able to propagate

further stress. Observe that the algorithm must converge for a sufficiently large number of

steps T ≫ 1 due to the min(.) operator, which places upper bounds on the bank’s stress

levels, and the non-decreasing property of hi(t), derived from the non-negative entries of

the vulnerability matrix Vij. We compute the resulting DebtRank due to the initial shock

scenario h(0) using equation 36.

DR(h(0)) =
∑
i∈B

[
hi(T ) − hi(0)

]
φi (36)

which includes noncumulative, nonredeemable preferred stock and related surplus and qualifying minority
interest, they have a lower quality compared to the CET1 instruments, especially in periods of financial
distress (Ramirez, 2017; Couaillier, 2021).
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Note that, by removing the initial stress h(0) from the DebtRank computation in 36,

it conveys the notion of additional stress given an initial shock scenario. However, the

great drawback of this formulation is that it prevents banks from diffusing second- and

high-order rounds of stress. This means that, once a vertex propagates stress, it will not

be able to propagate additional stress due to other subsequent impacts that it receives,

which can lead to a severe underestimation of the stress levels of banks.

In order to overcome the limitations of the original DebtRank algorithm, Bardoscia

et al. (2015) proposes an improvement that still accounts for cycles or multiple routes in

the vulnerability network and therefore prevents stress double-counting by using stress

differentials between one iteration and another. As a result, at each iteration, banks are

only allowed to propagate the stress increase that they received from the previous iteration.

Using this mechanism, financial stress is never double-counted because differentials are

always innovations from one iteration to another. Again, once a bank default at time

t, it no longer propagates financial stress during the dynamic process for t + k, k > 0.

Therefore, substituting the stress levels in 34 by stress differentials results in equation 37.

hi(t) = min

1, hi(t − 1) +
∑
j∈B

Wij∆hj(t − 1)

 (37)

Where ∆hj(t − 1) = hj(t − 1) − hj(t − 2) is the stress differential of the bank j in the

previous iteration t − 1 and h(t) = 0 ∀ t < 0. In the beginning of the iteration process,

h(0) is an ex-ante input that denotes the initial stress scenario, or the list of shocks based

on the bank’s probability of default. Thus, we then compute the DebtRank value of an

initial shock scenario in 36 using the convergent stress values of 37.

There are two important differences between the improved DebtRank of Bardoscia

et al. (2015) compared to the original formulation of Battiston et al. (2012). First, the

sum index in 37 runs through all the banks, such that there is no need to maintain states

in the dynamic system. Second, instead of only one propagation immediately after the

shock has been received, they could propagate shocks until all connected banks in the

network default, which makes a formally feedback centrality measure. The dynamics now

reaches global equilibrium only when the direct and indirect neighborhoods of each bank

are considered, taking into account multiple routes and network cycles when establishing

the final stress levels of banks.

27



2.2.2.3 Funding Illiquidity

It is well known in the literature, especially after the global financial crisis, as discussed

in this work, that banks suffer from liquidity and funding risk and the importance of these

channels for the process of contagion and systemic risk. Bank asset and liability structures

proved to be highly vulnerable to deposit runs, market shocks and breakdowns in funding

markets (Acemoglu et al., 2015; Paltalidis et al., 2015; Venkat and Baird, 2016; Ferrara

et al., 2019; Wen et al., 2023).

However, it is important to note the difference between short-term and long-term

liquidity risk and to distinguish their respective roles in the financial contagion process.

Short-term liquidity risk (less than one year) can arise from various sources, such as panic

behavior and asset fire sales, as mentioned in Section 2.2.2.1, and the direct exposures

in the interbank network, as mentioned in Section 2.2.2.2. On the other hand, long-term

liquidity risk (greather than one year) is related to sufficiently stable sources of funding

or the inability of banks to raise funds when needed, such that longer-term liabilities are

assumed to be more stable than short-term liabilities to mitigate the risk of future funding

stress (BCBS, 2014; Venkat and Baird, 2016; Ardekani et al., 2020; Wieser, 2022).

Some mechanisms have been created to prevent and mitigate all the risks addressed so

far. The design of a deposit insurance scheme (DIS), for instance, constitutes an integral

part of the financial safety net provided to the banking system and is intended to prevent

runs on individual banks by depositor. If the DIS is credible and depositors expect that

they will receive their money back from the insurance fund, regardless of what other

depositors do or whether they are last in line for reimbursement, then they no longer have

incentives to run and withdraw their funds. In the event of bank failure, it also limits losses

to depositors and reduces the risk that a run on one bank might undermine confidence in

others through contagion effects. Thus, the existence of a credible DIS contributes to the

reduction of the funding cost, especially long-term, of banks (Diamond and Dybvig, 1983;

Allen et al., 2011; Anginer and Demirgüç-Kunt, 2019; Freixas and Parigi, 2019).

The most fundamental deposit insurance scheme is the paybox mandate in which

the deposit insurer is only responsible for the reimbursement of insured deposits. Most

countries with an established DIS have improved its legal and operational characteristics

over time, usually by expanding the mandate and powers and strengthening the role of

the DIS within the financial safety net. (Ognjenovic, 2017; Kerlin, 2017). In Brazil, for
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instance, the DIS is a privately held company and exercises a paybox plus mandate, in

which the additional resolution function (e.g., financial support) is also attributed to the

deposit insurer (BCB, 2018b).

Regarding the Brazilian case, the situation that a private deposit insurer has limited

resources raises the question about the DI’s ability to withstand a strong systemic risk

event. In a scenario where all available fund resources are consumed, even with the

framework of lender of last resort played by the central bank in order to provide a potential

source of liquidity for banks, the uncertainty about the credibility of the entire system in

this case makes it difficult for financial institutions with poor long-term liquidity to raise

short-term funding in the market, a combination that further increases their probability

of default (Allen et al., 2011; Vazquez and Federico, 2015; Diamond and Kashyap, 2016;

Ognjenovic, 2017; Kerlin, 2017; Ebrahimi Kahou and Lehar, 2017; Bouwman, 2019).

The Basel Committee on Banking Supervision also created other mechanisms in Basel

III to reduce short-term liquidity risk and long-term financing risk. The two proposed

quantitative liquidity standards are the Liquidity Cover Ratio (LCR) and the Net Stable

Funding Ratio (NSFR). LCR reflects short-term liquidity soundness and requires banks

to hold sufficient high-quality liquid assets (HQLA) to offset the net cash outflows in a

liquidity stress scenario over 30 days. On the other hand, NSFR requires a minimum

amount of available stable funding (ASF) relative to the required stable funding (RSF)

over a one-year horizon. Both liquidity ratios have a minimum regulatory of 100%. Note

that the implementation of LCR encourages a substitution from long-term illiquid assets to

short-term liquid assets, which consequently eases bank runs. Furthermore, under NSFR

the bank needs to finance illiquid assets with long-term funding, which can alter the bank’s

incentive to use less runnable deposits (BCBS, 2013, 2014; Diamond and Kashyap, 2016;

Ebrahimi Kahou and Lehar, 2017).

As mentioned previously, considering that the different aspects of short-term liquidity

risk are covered in Section 2.2.2.1 and Section 2.2.2.2, we address the long-term liquidity

risk through the NSFR concept in all scenarios where the available resources from DI are

consumed23. The NSFR equation is given by 38.

23In those scenarios where banks suffer from the contagion channels of panic behavior and interbank
network, but the DI still has enough resources to maintain the credibility and confidence in the financial
system, then it can be argued that the remaining banks will not suffer from a long-term liquidity shock.
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NSFR = ASF

RSF
(38)

Where available stable funding (ASF ) is defined as the portion of capital and liabilities

expected to be reliable over the time horizon and the required stable funding (RSF ) is a

function of the liquidity characteristics and residual maturities of the various assets held

by the bank, as well as those of its off-balance sheet exposures (Chiaramonte et al., 2013;

BCBS, 2014).

Therefore, in order to comply with a minimum regulatory of 100% for NSFR, banks

can either increase their ASF or reduce their RSF. A natural option to increase ASF

is to increase the proportion of long-term funding in the whole portfolio or to increase

the Common Equity Tier 1 (CET1), which is the sum of Common Equity Tier 1 and

Additional Tier 1. On the other hand, a natural option to reduce RSF is to shrink its

balance sheet by changing the composition of its investments and loans or to change its

assets to such combination that would result in a lower weight factor.

Considering that the NSFR is subject to national discretion to reflect jurisdiction-

specific conditions, the Central Bank of Brazil defined the ILE (structural liquidity ratio)

as its equivalent concept that has been in effect since October 2018 through the Resolution

CMN 4.616 for banks in the S1 prudential segmentation (BCB, 2015, 2022c). However,

because the construction of the ILE requires private and confidential data from each bank,

we follow Takeuti (2020) to create a proxy for our NSFR24. Tables 1 and 2 detail each

balance sheet data from BCB (2022a) used to calculate the proxy’s for ASF and RSF.

24The two works that proposes a proxy for ILE in Brazil, for the best of our knowledge, are Cardoso et al.
(2019) and Takeuti (2020), but we evaluate that the work of Takeuti (2020) is more accurate in terms of
the concept of NSFR.
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Table 1: Balance sheets accounts used for calculating the ASF proxy.

Factor Composition Description
1.00 [60000002] Equity
1.00 [70000009] Gross Revenues
1.00 [80000006] Gross Expenses
0.90 [41100000] Demand Deposits
0.90 [41200003] Saving Deposits
0.90 [41500002] Time Deposits
0.60 [43000005] Mortgage, real estate and others
0.60 [46000002] Onlending
0.50 [42000006] Repurchase Agreements

Table 2: Balance sheets accounts used for calculating the RSF proxy.

Factor Composition Description
1.00 [19000008] Other Assets
1.00 [14000003] Interbank Transactions
1.00 [15000002] Interbranches Transactions
1.00 [20000004] Fixed Assets
1.00 [23000001] (-) Leased Assests
1.00 [18000009] Other Receivables
0.85 [16000001] Loans
0.65 [23000001] Leased Fixed Assets
0.65 [17000000] Leases
0.40 [13000004] Securities and Derivatives

Once the ASF and RSF metrics have been calculated to determine the NSFR proxy

for each bank, we proceed to the simulation of the funding illiquidity risk. The dynamics

of this third and final channel of contagion in the model is such that, in any scenario

where the available resources from DI are consumed through the reimbursement of covered

deposits from banks that default for idiosyncratic reasons or through the first two channels

described in Section 2.2.2.1 and Section 2.2.2.2, the remaining banks with NSFR less than

one experience an additional shock to their probability of default, as described in Section

2.2.2, so that all three contagion processes established by our model increase the default

of banks, on average, by 36%.
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2.2.3 Loss Distribution

As previous mentioned in Section 2.2, our approach follows a similar theoretical

framework in which portfolio risk is calculated in banking organizations and how banking

losses are estimated in deposit insurance schemes (Lehar, 2005; Gupton et al., 2007; De Lisa

et al., 2011; Bellini, 2017; O’Keefe and Ufier, 2017; Parrado-Martínez et al., 2019; Matt

and Andrade, 2019; Fernández-Aguado et al., 2022). Thus, the last part of our model

consists in estimating the loss distribution (LD) of the banking system taking into account

the probability of default (PD), the loss given default (LGD), and the exposure at default

(EAD). To this end, we first define the expected loss (EL) of a given bank i through

equation 39.

ELit = PDc
it × LGDit × EADit (39)

In which PDc
it ∈ [0, 1] is the final probability of default after the contagion process over

the idiosyncratic PDit defined in Section 2.2.1 through equation 23, EADit ∈ [0, ∞) is

given by SRISK in Section 2.1.2, and LGDit ∈ [0, 1] is assumed to be one for all banks in

the Brazilian banking system25.

The construction of the economy’s LDt is the result of a Monte Carlo simulation over the

ELs
t for each scenario s through the bank run model, where s = 1, . . . , S and t = 1, . . . , T .

The value of S must be large enough to achieve convergence, which in our case is equal to

100.000. Let N be the number of banks, Φ−1(PDc) := [Φ−1(PDc
1t), . . . , Φ−1(PDc

Nt)] the

vector of the probit function, or the inverse of the standard normal cumulative distribution

(quantile) function, of each bank’s PD, and Zs := (zs
1, . . . , zs

N) ∼ N (0, 1) a vector of

random variables for S different scenarios. Under the assumption of normality over bank

25The concept of loss given default can also be understood as the proportion of non-recovery assets, i.e.,
LGDit = 1 − RRit, in which RRit is the recovery rate. Note that in this framework the LGD is absorbed
by the central bank or the deposit insurer of the economy. The assumption of absence of recovery on a
one-year horizon when a bank default in Brazil can be argued considering the following aspects: (i) the
high historical interest rate in Brazil diminishes the present value of futures recoveries, (ii) during the
process of extrajudicial settlements there are mostly poor quality and illiquid assets left, which increases
the time in line for recoveries, and (iii) in periods of financial distress it is even more difficult to liquidate
assets without incurring great losses due to fire sales and market conditions. Therefore, considering
that we are modeling extreme distress events, the combination of all these factors further reduces the
present value of recoveries on a one-year horizon, which underlies the proxy of one for the LGD of the
Brazilian banking system. However, it is important to mention that if one would like to consider asset
recoveries in the event of bank default, we can use the Merton (1974)’s model framework to calculate
LGDit = 1 − (1 − φ)

[
Ait

DBit

N (−d1)
N (−d2)

]
exp (rtT ), in which φ represents administrative costs (Guerra et al.,

2016).
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asset values (Crouhy et al., 2000; Lehar, 2005; De Lisa et al., 2011; Guerra et al., 2016;

Souza et al., 2016; Bellini, 2017; O’Keefe and Ufier, 2017; da Rosa München, 2022), the

indicator function that generates the vector of bank’s default Ps
t used to estimate the ELs

t

for each scenario s is given by 40.

Ps
t :=


1, if zs

i ≤ Φ−1(PDc
it) ∀i = 1, . . . , N,

0, otherwise
(40)

In this framework, the vector Zs can be understood as the vector of initial shocks that

gives origins to the idiosyncratic default PDit, which will have a different combination of

initial defaults for each s. After this initial shock, all three contagion processes described

in Section 2.2 have their own dynamic according to the established criteria. Therefore, the

final vector ELs
t of size 1 × S has different values for each s because the shock vector Zs

is also different for each s. For example, consider that bank i has PDit = 30% and its

associated probit function Φ−1(PDit) = −0.5. If z1
i = −0.6 and z2

i = −0.4, both randomly

drawn from a normal distribution through Monte Carlo simulations, then bank i in time t

will idiosyncratically default in scenario 1 and will not idiosyncratically default in scenario

2. However, if bank i receives one shock of 36% during the contagion process, which gives

PDc
it = 41% and Φ−1(PDc

it) = −0.2, then it will default in both scenarios at the end of

the simulation. Figure 2 gives a synthetic illustration of this default dynamics.
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Figure 2: Events of default from a normal distribution.

Once the ELs
t is constructed for each s, the LDt is obtained by ordering its values.

The expected loss of LDt corresponds to the average ELt, and V aRα
LDt

is calculated as the

quantile α of the distribution. In contrast, the unexpected loss is derived as the difference

between the V aRα
LDt

and the expected loss. Because we are dealing with extreme events,

the vector LDt usually has a positive skew distribution, or a right-skewed distribution,

and leptokurtosis, i.e., fat tails with excess of kurtosis (Gupton et al., 2007; Bellini, 2017).

The representation of a hypothetical loss distribution of the banking system is shown in

Figure 3.
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Figure 3: Banking system loss distribution.

3 Data

We used quarterly data from December 2000 to September 2022 for all 26 publicly

traded Brazilian banks, resulting in a unbalanced panel data with 1.586 observations26.

All balance sheet data used in this paper are publicly provided by the Central Bank of

Brazil (BCB, 2022a), while the daily stock price and market capitalization data were

obtained from Bloomberg for the same period. The data set used in this study considers

the financial conglomerates and independent institutions until December 2014 and the

prudential conglomerates and independent institutions before March 201527 with the

26Although we have available information from 2000:I-2000:III in the database, we used these first three
quarters to calculate assets volatility considering that bank capital information are available from December
2000. Brazilian banks (with national headquarters) that are traded on foreign markets were also considered.
Also, it is important to mention that, although we have a data set for 244 Brazilian financial institutions,
which would result in 9.653 observations, we work only with a restricted subset that has market data
available.
27Note that until December 2013 the Central Bank of Brazil only registered the institution type of
financial conglomerates and independent institution. Before March 2014, the prudential conglomerate and
independent institution perspective was included, but the capital information from bank’s DLO (Statement
of Operating Limits) was only published in the prudential conglomerate and independent institution
perspective before March 2015. The difference between the two filter is that the latter include, besides
the institutions belonging to the financial conglomerate: (i) consortium administrators, (ii) payment
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business model category of b1, b2, b4 and n128, considering a minimum of six valid

observations in the studied period. The final data set represents 79.89% of total assets,

80.46% of total credit, 89.71% of total deposits and 13.19% of total member institutions in

September 2022. For the interest rate, we used public data provided by B3, the Brazilian

financial market infrastructure company (B3, 2022).

In order to estimate the probability of default on a one-year horizon for each FI using

the Merton (1974)’s structural model, we used the adjusted total assets29 for A, total

liabilities to calculate DB, annualized interbank interest rate DI for r and the annualized

standard deviation of the logarithmic returns of adjusted total assets, that is, log(At/At−1),

for asset volatility σA. Table 3 presents the aggregate descriptive statistics of these

variables.

institutions, (iii) companies that perform acquisition of credit operations, including real estate or credit
rights, (iv) other legal entities domiciled in the country that have as an exclusive objective an equity
interest in the aforementioned entities and (v) investment funds in which the entities that compose a
prudential conglomerate take or retain substantial risks and benefits (BCB, 2022a).
28We only used these four business model category to account for institutions that issue covered deposits
by the deposit insurance of Brazil, where (b1) includes commercial bank, universal bank with commercial
portfolio or savings bank; (b2), universal bank without commercial portfolio or investment bank or foreign
exchange banks and (n1), non banking credit company. The member institutions are: (i) multiple banks;
(ii) commercial banks; (iii) investment banks; (iv) development banks; (v) Caixa Econômica Federal
(Brazilian federal savings bank); (vi) savings banks; (vii) finance and investment companies; (viii) building
societies; (ix) mortgage companies savings and (x) loan associations (FGC, 2022; BCB, 2022a). For more
information on FGC covered deposits and the guaranteed financial instruments, see BCB (2021b).
29The adjusted total assets comprise total assets after netting and reclassification of the balance sheet items.
Netting is performed on the following balance sheet items: repurchase agreements, interbank relations
and relations within branches, foreign exchange portfolio and debtors due to litigation. Reclassifications
are performed within foreign exchange and leasing portfolios.
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Table 3: Descriptive statistics.

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max
ATAa 211.72 418.76 0.04 5.71 137.19 2,184.86
TLa 194.04 387.44 0.00 5.05 123.11 2,018.16
Loansa 89.23 185.98 0.00 2.44 39.73 978.56
DIb 11.19 5.11 1.90 6.93 14.13 26.23
AV 0.47 0.93 0.00 0.11 0.42 14.86
PDb 16.22 23.34 0.00 0.16 25.94 100.00
SRISKa 12.98 36.53 0.00 0.00 2.40 187.02
SESa 9.69 32.37 0.00 0.00 0.64 161.89
Beta 0.87 0.68 −0.60 0.45 1.10 5.79
MES 0.05 0.17 0.00 0.02 0.04 1.59
LRMES 0.30 0.15 −0.30 0.18 0.39 0.92
CoVaR 0.04 0.04 0.01 0.03 0.04 0.28
∆CoVaR 0.01 0.03 0.00 0.01 0.02 0.24
IIa 34.27 84.11 0.00 0.40 17.74 634.07
IDa 1.54 4.83 0.00 0.02 0.69 41.48
TDa 72.68 147.03 0.00 1.71 53.11 854.76
CET1a 10.26 26.70 0.00 0.00 2.37 142.78
TRCa 20.44 38.70 0.00 0.60 14.29 180.30
RWAa 123.00 234.02 0.00 3.62 88.56 1,225.17
DoAb 36.82 20.47 0.00 21.86 52.35 93.64
CoAb 42.04 21.06 0.00 29.30 54.53 97.87
LRb 4.15 8.31 0.00 0.00 7.11 100.00
CARb 20.89 25.04 0.00 14.25 18.73 542.27
NSFR 1.61 19.92 0.15 0.88 1.12 793.98
Notes: The sample period runs from 2000:IV-2021:IV for 25 publicly traded
Brazilian banks. ATA = adjusted total assets; TL = total liabilities; Loans =
loan operations by risk level; DI = interest rate; AV = assets volatility; PD =
probability of default; SRISK = systemic risk metric; SES = systemic expected
shortfall; Beta = market beta; MES = marginal expected shortfall; LRMES =
long-run marginal expected shortfall; CoVaR = conditional value-at-risk; ∆CoVaR
= delta conditional value-at-risk; II = interbank investments; ID = interbank
deposits; TD = total deposits; CET1 = common equity tier I; TRC = total
regulatory capital; RWA = risk-weighted assets; DoA = total deposits over total
assets; CoA = total credit over total assets; LR = leverage ratio; CAR = capital
adequacy ratio (tier I and II) and NSFR = net stable funding ratio.
a In BRL billion.
b In percentage.

4 Results and Discussion

This section summarizes and discusses the empirical results obtained in this paper.

First, we present some statistics on the banks’ risk measures, the contagion process, and
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the estimation of the loss distribution of the banking system considering a reduced sample

(RS) of only the listed banks. Second, we compare the results of the reduced sample with

a full sample (FS) with some adaptations. Then, we propose and discuss a new capital

adequacy ratio based on this framework considering the RS.

4.1 Banks’ Probability of Default and Contagion Process in the

Reduced Sample

Table 4 presents summary statistics for the risk measures estimated to build the loss

distribution of the Brazilian banking system in September 2022 with a reduced sample

of the 24 listed banks. The first risk measure is the probability of default given by the

Merton (1974)’s structural model (structural probability of default) used to compute the

idiosyncratic PD of each bank. The second measure is the banks’ PD that represents the

default rates in the Monte Carlo simulation. As expected and reflecting the construction

of our model, the mean of the structural PD and the Banks’ PD without contagion are

practically the same and equal to 19.3%. In addition, also note that the contagion process

described in Section 2.2.2 increases the average probability of default of banks by 36%.

Table 4: Summary statistics of structural PD and banks’ PD with and without contagion
in the reduced sample.

Structural PD
of Merton model (%)

Banks’ probability of default (%)

Panel A: without
contagion process

Panel B: with
contagion process

Mean 19,29 19,29 26,18
Std. Deviation 27,41 5,93 7,95
Minimum 0,00 4,17 4,17
Maximum 99,93 50,00 58,33
Percentiles: 25% 0,04 16,67 20,83

50% 7,02 20,83 25,00
75% 24,30 25,00 33,33

Notes: This table shows statistics of PD estimates for 24 Brazilian banks in September
2022. Structural PD represents the estimates of the Merton (1974)’s model used as an
input for the idiosyncratic PD of each bank. Banks’ PD are the default rates of the sample
banks in the Monte Carlo simulation. In details, Panel A shows summary statistics of
Banks’ PD with only idiosyncratic default (without contagion process). Panel B presents
the same statistics when all the contagion process described in Section 2.2.2 are considered.
As expected, note that the mean of the structural PD and the Banks’ PD without contagion
are practically the same.
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The clusters of the 24 Brazilian banks for September 2022 are presented in Table 5.

We specify four clusters based on the statistics described in Section 2.2.2.1 and taking into

account the relative consistency of their size, operation, regulation, and market similarity.

These results were used in the first contagion process (panic) when the idiosyncratic default

of a bank within a cluster causes a shock to the other banks’ PD within the cluster. Note

that banks classified in the S1 prudential segment were clustered in the same group.

Table 5: Cluster segmentation of the Brazilian banking system.

Cluster Bank Ticker DoAb CoAb RWAa SRISKa ∆CoVaR

1

Itaú ITUB4 BZ 38,7 40,3 1225,17 94,44 0,0148
Bradesco BBDC4 BZ 35,9 39,2 988,41 67,18 0,0144
Santander SANB11 BZ 39,7 47,0 637,46 48,44 0,0114
BB BBAS3 BZ 34,7 40,5 1039,39 185,10 0,0136
CEF CXSE3 BZ 34,9 62,7 704,62 168,25 0,0039

2

BTG BPAC11 BZ 26,6 26,3 300,75 0,00 0,0117
XP XP US 17,0 15,5 37,38 0,00 0,0077
B3 B3SA3 BZ 3,8 0,0 0,17 0,00 0,0174
BR Partners BRBI11 BZ 17,4 3,5 2,68 0,00 0,0032
Nordeste BNBR3 BZ 16,2 22,1 78,78 0,46 0,0026

3

Porto Seguro PSSA3 BZ 1,5 96,8 14,76 0,00 0,0093
Alfa BRIV4 BZ 24,4 58,2 19,37 1,67 0,0025
ABC ABCB4 BZ 19,1 49,5 41,35 1,44 0,0114
Amazônia BAZA3 BZ 14,4 52,2 36,72 2,03 0,0044

4

Nubank NU US 86,7 33,7 24,22 0,00 0,0131
Inter BIDI11 BZ 48,8 48,0 24,04 1,18 0,0027
BMG BMGB4 BZ 53,1 52,4 22,99 3,06 0,0076
Modal MODL11 BZ 45,7 19,6 5,51 0,00 0,0023
Pine PINE4 BZ 47,9 30,8 7,23 1,26 0,0055
Banrisul BRSR6 BZ 57,1 41,9 51,56 7,64 0,0099
Banestes BEES4 BZ 54,3 19,3 12,78 2,45 0,0027
Mercantil BMEB4 BZ 71,7 71,3 8,55 0,25 0,0004
Mercado Crédito MELI34 BZ 84,4 22,5 0,89 0,00 0,0018
Est. Sergipe BGIP4 BZ 77,4 46,6 4,97 0,56 0,0029

Notes: This table shows the four estimated clusters for 24 Brazilian banks in September 2022.
DoA = total deposits over total assets; CoA = total credit over total assets; RWA = risk-weighted
assets; SRISK = systemic risk metric; ∆CoVaR = delta conditional value-at-risk.
a In BRL billion.
b In percentage.

The estimated interbank network for the Brazilian economy in September 2022 is shown

in Figure 4. The main statistics of our estimated network, such as density, assortativity, r,

and average degree, are 0.31, -0.54 and 14.4, respectively. In terms of comparison, the

density, assortativity and average degree reported by BCB and other works using the true
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Brazilian interbank network vary between [0.03,0.07], [-0.31,-0.54] and [4.6,7.8] (or [21,26]

for large banks), respectively, during March 2010 and September 201530 (Castro Miranda

et al., 2014; BCB, 2016; Souza et al., 2016; Silva et al., 2016; Anand et al., 2018; Alexandre

et al., 2022). Note that even considering 13.19% of FIs, the adapted minimum density

method was still able to simulated the expected properties of the Brazilian interbank

network.

Figure 4: Estimated interbank network for the Brazilian financial system.

Notes: The size of each financial institution represented in the interbank network reflects the sum of its
interbank investments, interbank deposits and CET1 (Common Equity Tier I) in September 2022. This is
the same weight used by the DebtRank algorithm when calculating the process of bank failure due to
contagion.

Because r < 0, the interbank market network is disassortative, indicating that the

Brazilian financial system has highly connected FI’s that are frequently connected to

others with very few connections. This result follows the conclusion of Silva et al. (2016)
30The last release of the assortativity and degree metric of the Brazilian interbank network made by the
BCB was in April 2016 with data until September 2015. All other data comes from works that use the
true Brazilian interbank network. For more information, see BCB (2016).
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and Alexandre et al. (2022), indicating the existence of money centers in which a few large

banks have several connections with the market. This network topology makes the onset

of a default in these money centers directly affect a large portion of the system. Thus,

vulnerable neighbors to these money centers may, in turn, default, leading to a contagion

process throughout the network. Evidence of negative assortativity in financial networks

has also been reported in other empirical studies (Bottazzi et al., 2020).

Taking into account all the steps of our modeling process in the RS, the results of the

loss distribution described in Section 2.2.3 are shown in Tables 6 and 7. Table 6 shows how

many of the 100.000 simulated scenarios have at least one idiosyncratic default (default

scenarios) and how many have at least one contagion default (systemic risk scenarios).

This analysis is separated into systemically important financial institution (SIFI) and

non-systemically important financial institution (N-SIFI). This result shows the importance

of the contagion process for our model, as it is present in 81% of the simulated scenarios

with all banks.

Table 6: Summary statistics of the loss distribution of the banking system in the reduced
sample.

All banks SIFI N-SIFI
N. of default scenarios 100.000 70.434 100.000
N. of systemic risk scenarios 81.285 44.926 68.806

Notes: This table shows statistics of the loss distribution for 24
Brazilian banks in September 2022. SIFI stands for systemically
important financial institution and N-SIFI for non-systemically
important financial institution. The number of default scenarios
represents the number of scenarios in which at least one bank
idiosyncratically default. On the other hand, the number of
systemic risk scenarios represents the number of scenarios in which
at least one bank default due to the contagion process described
in Section 2.2.2.

In detail, Table 7 shows summary statistics of the loss distribution of the Brazilian

banking system in the RS. Panel A shows that, whiteout contagion, the maximum cost of

capital shortfall is close to BRL 271 billion and the one-year probability of the Brazilian

DIA default is close to 1.8% when considering only this operation. For the scenario where

the DIA makes the reimbursement of the covered deposits, the maximum cost is close to

BRL 792 billion and it’s associate PD is close to 53.3%. Lastly, when considering the cost

of all eligible deposits, the maximum cost is close to BRL 1.5 trillion and the PD is close
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to 72.5%.

On the other hand, Panel B shows that, with contagion, the maximum cost of capital

shortfall is close to BRL 510 billion and the probability of the DIA default is close to

33%. Note that even the contagion process increases banks’ PD by 36% on average, as

reported in Table 4, it increases 19 times the DIA’s PD. Finally, when considering the

reimbursement of the covered deposits, the maximum cost is close to BRL 1.4 trillion and

the DI default in 71% of all simulated scenarios. Note that, when considering the N-SIFI,

the maximum cost is close to BRL 93 billion and in all scenarios the DIA is sufficient to

pay the covered deposits.

Table 7: Summary statistics of the loss distribution of the banking system with and
without contagion in the reduced sample.

Cost of capital shortfall Cost of eligible deposits Cost of covered deposits
All banks SIFI N-SIFI All banks SIFI N-SIFI All banks SIFI N-SIFI

Panel A: without contagion process
Mean 25,46 24,56 0,91 325,03 251,22 73,81 170,12 131,49 38,63
Percentiles:

0% 0,00 0,00 0,00 4,95 4,74 0,22 2,59 2,48 0,11
25% 0,00 0,00 0,00 97,2 29,91 67,29 50,88 15,66 35,22
50% 2,47 2,47 0,00 204,28 127,21 77,07 106,92 66,58 40,34
75% 51,51 50,25 1,26 510,63 419,84 90,79 267,26 219,75 47,52
90% 53,69 50,66 3,02 613,72 512,61 101,11 321,22 268,30 52,92
95% 55,24 51,67 3,57 626,29 515,56 110,73 327,80 269,84 57,96
99% 154,42 149,51 4,92 1.334,58 1.212,16 122,41 698,52 634,45 64,07
99,9% 158,00 151,11 6,89 1.467,28 1.329,71 137,56 767,97 695,97 72,00
100,0% 271,38 262,32 9,06 1.514,13 1.346,91 167,22 792,50 704,97 87,52

N. of LOLR scenarios 1.758 1.461 0 72.520 70.434 7.123 53.344 42.695 0
Panel B: with contagion process

Mean 88,72 87,35 1,37 622,32 529,68 92,65 325,72 277,23 48,49
Percentiles:

0% 0,00 0,00 0,00 22,37 22,15 0,22 11,71 11,6 0,11
25% 0,42 0,42 0,00 191,69 112,95 78,74 100,33 59,12 41,21
50% 3,16 1,89 1,26 224,47 133,64 90,83 117,49 69,94 47,54
75% 238,53 236,36 2,18 1.340,44 1.239,00 101,44 701,59 648,49 53,09
90% 241,00 237,43 3,57 1.367,19 1.253,70 113,48 715,59 656,19 59,40
95% 243,37 238,95 4,42 1.386,92 1.264,51 122,41 725,91 661,84 64,07
99% 343,13 337,09 6,04 2.203,45 2.068,92 134,53 1.153,28 1.082,87 70,41
99,9% 346,28 338,90 7,39 2.230,53 2.078,41 152,13 1.167,46 1.087,84 79,62
100,0% 509,91 500,85 9,06 2.776,78 2.599,16 177,62 1.453,37 1.360,40 92,97

N. of LOLR scenarios 32.943 32.872 0 85.739 83.040 21.427 71.037 44.403 0

Notes: This table shows statistics of the loss distribution for 24 Brazilian banks in September 2022. SIFI
stands for systemically important financial institution and N-SIFI for non-systemically important financial
institution. Cost of capital shortfall uses the SRISK as the EAD in the process described in Section 2.2.3,
while cost of eligible deposits uses the total deposits and cost of covered deposits uses a share θ over the
total deposits. Because the exact covered deposits are not publicly available for each bank, but only the
total covered and eligible deposits of the system, we used this share θ over the total deposits as a proxy.
Panel A shows summary statistics of the banking system LD with only idiosyncratic default (without
contagion process). Panel B presents the same statistics when all the contagion process described in
Section 2.2.2 are considered. The number of LOLR scenarios represents the number of scenarios in which
the consumption of resources due to default exceeded the equity of the Brazilian deposit insurance in all
simulations. All values are in BRL billion except for the number of LOLR scenarios.
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4.2 Banks’ Probability of Default and Contagion Process in the

Full Sample

This section presents the exercise of comparing the results between the reduced sample,

discussed in Section 4.1, and the full sample. While the reduced sample considers all 24

listed banks in September 2022, a necessary condition for calculating the main systemic

risk measures, but with the downside of representing only 13.19% of the total member

institutions, this full sample considers all 182 banks in its analysis. Since we cannot

calculate measures such as SRISK and others to discuss the capital shortfall in time of

crisis, we focus on comparing the results of LD in terms of eligible and covered deposits.

Table 8 presents summary statistics for the risk measures estimated to build the loss

distribution of the Brazilian banking system in September 2022 with a full sample of

all member institutions. Compared to Table 4, we can observe, as expected, that our

model preserves the increase of 36% in the average probability of default, but with a lower

standard deviation.

Table 8: Summary statistics of structural PD and banks’ PD with and without contagion
in the full sample.

Structural PD
of Merton model (%)

Banks’ probability of default (%)

Panel A: without
contagion process

Panel B: with
contagion process

Mean 22,62 22,62 30,82
Std. Deviation 24,60 2,53 2,46
Minimum 0,00 12,22 20,56
Maximum 99,93 33,33 41,11
Percentiles: 25% 0,17 21,11 28,89

50% 13,65 22,78 30,56
75% 43,51 24,44 32,22

Notes: This table shows statistics of PD estimates for 182 Brazilian banks in September
2022. Structural PD represents the estimates of the Merton (1974)’s model used as an
input for the idiosyncratic PD of each bank. Banks’ PD are the default rates of the sample
banks in the Monte Carlo simulation. In details, Panel A shows summary statistics of
Banks’ PD with only idiosyncratic default (without contagion process). Panel B presents
the same statistics when all the contagion process described in Section 2.2.2 are considered.
As expected, note that the mean of the structural PD and the Banks’ PD without contagion
are practically the same.

Regarding the estimation of the interbank network, the full sample database produces
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an even more adherent result with the moments of the true Brazilian interbank network.

While in the RS the statistics for the density, assortativity and average degree are 0.31,

-0.54 and 14.4, respectively, the statistics in the FS are 0.02, -0.55 and 4.8, respectively.

Again, in the FS we are able to better capture the level of density and average degree

when we compare to the true Brazilian interbank network.

Lastly, considering that the RS represents 13.19% of the total member institutions but

89.71% of the total deposits, we analyze whether the loss distribution constructed using

the RS maintains the proportions of total deposits with respect to the FS. Comparing the

results of the LD for eligible and covered deposits in the FS in Table 9 with the results of

the RS in Table 7, we can verify that the RS was able to capture the proportional level

of the LD in the FS, especially in the tails (above the 90th quantile) of the distribution

for the SIFI, but it was unable to correctly capture the beginning and middle of the

distribution. This is because the SIFI’s are common in both databases, but the reduced

sample considers only a smaller portion of the N-SIFI’s.
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Table 9: Summary statistics of the loss distribution of the banking system with and
without contagion in the full sample.

Cost of elegible deposits Cost of covered deposits
All banks SIFI N-SIFI All banks SIFI N-SIFI

Panel A: without contagion process
Mean 419,10 251,06 168,03 219,35 131,41 87,95
Percentiles:

0% 24,12 2,37 21,75 12,63 1,24 11,39
25% 203,04 60,30 142,74 106,27 31,56 74,71
50% 305,05 137,58 167,47 159,66 72,01 87,65
75% 616,25 422,77 193,48 322,55 221,28 101,27
90% 706,82 485,98 220,85 369,95 254,36 115,59
95% 751,24 512,97 238,27 393,20 268,49 124,71
99% 1.430,96 1.159,32 271,64 748,96 606,79 142,18
99,9% 1.584,16 1.271,13 313,03 829,15 665,31 163,84
100,0% 2.195,86 1.834,42 361,44 1.149,31 960,14 189,18

N. of LOLR scenarios 97.923 70.624 92.983 75.510 42.523 19.874
Panel B: with contagion process

Mean 1.162,23 985,17 177,07 608,31 515,64 92,68
Percentiles:

0% 39,33 4,90 34,43 20,58 2,56 18,02
25% 949,21 796,67 152,54 496,81 416,98 79,84
50% 1.051,05 874,80 176,26 550,12 457,87 92,25
75% 1.362,03 1.160,21 201,82 712,88 607,25 105,63
90% 1.453,04 1.224,12 228,92 760,52 640,70 119,82
95% 1.496,67 1.250,09 246,58 783,36 654,30 129,06
99% 2.177,32 1.898,07 279,26 1.139,61 993,45 146,16
99,9% 2.329,77 2.008,34 321,43 1.219,40 1.051,16 168,24
100,0% 2.443,63 2.081,02 362,61 1.279,00 1.089,21 189,79

N. of LOLR scenarios 99.956 99.605 95.143 99.619 99.571 25.840
Notes: This table shows statistics of the loss distribution for 182 Brazilian banks in September 2022. SIFI
stands for systemically important financial institution and N-SIFI for non-systemically important financial
institution. Cost of eligible deposits uses the total deposits and cost of covered deposits uses a share θ
over the total deposits. Because the exact covered deposits are not publicly available for each bank, but
only the total covered and eligible deposits of the system, we used this share θ over the total deposits as
a proxy. Panel A shows summary statistics of the banking system LD with only idiosyncratic default
(without contagion process). Panel B presents the same statistics when all the contagion process described
in Section 2.2.2 are considered. The number of LOLR scenarios represents the number of scenarios in
which the consumption of resources due to default exceeded the equity of the Brazilian deposit insurance
in all simulations. All values are in BRL billion except for the number of LOLR scenarios.

4.3 Optimal Capital Requirement

In order to simulate the optimal capital requirement (CR) for the Brazilian financial

system, we used a similar theoretical framework in which portfolio risk is calculated in
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banking organizations. We also adopted a heterogeneous CR regime in which we have

different CRs for each bank depending on the prudential segment as in Alexandre et al.

(2022). Banks can also hold different levels of capital adequacy ratio (CAR) based on their

own strategy and balance structure. Through this analysis, we used granular balance sheet

information to estimate the PD of each FI as presented in Section 2.2.1, the amount of

capital expected in times of crisis (SRISK) presented in Section 2.1.2, and the systemic

risk contagion process presented in Section 2.2, which models the banking segmentation

cluster to capture bank runs due to panic and market similarity, the interbank network to

estimate the financial contagion in the banking system, and the net stable funding ratio

to capture long-run liquidity shortages.

Thus, we estimated the minimum CR that maintains stable the relationship between

SRISK and the economy’s loss distribution (LD) and that takes into account the interna-

tional framework of Basel III. The fundamentals of this approach over the LD consider

that (i) a lower CR decreases the CAR hold by banks and the amount of SRISK necessary

in the economy, which also decreases the total cost of bailout by the central bank and

the LD, and (ii) increased the bank’s probability of default, which increases, on the other

hand, the frequency and costs of extrajudicial settlements, and the LD. Therefore, because

there are effects of costs and benefits acting in opposite directions through PD and SRISK,

respectively, the maintenance of the relation between SRISK and LD through several

shocks characterizes an optimal trade-off scenario. To this purpose, we calculated the PD

of the whole system as a weight average of all banks’ PD in relation to its total deposits.

Because the CAR of each bank is the result of total regulatory capital over the risk-

weighted assets (RWA), we calculated a two-way fixed effects model to estimate the impact

that the probability of default has over these two variables to reconstruct the individual

and aggregate capital adequacy ratio at every new shock on the bank’s PD. We also

controlled this effect by considering loan operations by risk level, since it is expected

that banks may try to meet a higher capital requirement by either reducing assets, which

decreases loan supply, or increasing the loan interest rate, which leads to a reduction in

loan demand (Thakor, 2014; Alexandre et al., 2022). It is important to mention that we

also control this reduction in loan demand on its reflection on total deposits. Thus, we

are able to construct a link between our interest variables and also check the individual

consistency of the simulated CAR with the minimum required by Basel III. The results
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of our equation estimate that, on average, 1% increase in the bank’s PD reduces total

regulatory capital by 0.10%, increases RWA by 0.12%, and increases loan operations by

0.35%, which also increases the total deposits by 0.13%31.

Through Figure 5 it is possible to observe a more accelerated drop in SRISK in

relation to the LD of the economy as we decrease the CR and CAR of banks. Thus, the

moment when a next marginal drop maintains this relationship relatively stable for the

next simulations and it is in accordance with Basel III framework is characterized as the

optimal CR and CAR. Additional decreases from this point in CR would not bring long-

term benefits in reducing the LD and would continue to increase the burden of a greater

PD for the financial system. Note that this optimization problem is subject to binding

regulatory constraints such that an indefinite reduction in CR would be incompatible with

international accords.

Figure 5: Impact of the Capital Requirement shock on SRISK/LD and Probability of
Default.

Notes: CAR stands for capital adequacy ratio and CR for minimal capital requirement, which varies
depending on the bank prudential segment. The blue dashed line represents the threshold in which the
capital requirement of at least one bank would be bellow the minimum required of 8% by Basel III.

Our results show that the optimal capital adequacy ratio for the Brazilian financial
31The complete results are shown in Table 10 and Table 11 in Appendix 5. It is important to mention
that, although we are simulating the optimal capital requirement for 26 banks that has available market
data, we estimated the average effect considering all 244 Brazilian financial institutions between December
2000 and September 2022, which results in 9.653 observations.
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system in September 2022 is close to 13%. Also, the optimal interval for the minimum

capital requirement depending on the prudential segment varies between 8.6% and 10.3%.

Considering that the CAR calculated in our model is 15.9% and the reported by the BCB

(2022b) is 16.15%32, this reduction of 18% in our model implies an optimal CAR in the

entire financial system of 13.2%. Because a lower CAR is expected to lead to a financial

system more fragile and susceptible to systemic risk, the probability of default of the entire

system calculated by our model increases from 9.2% to 17.5%, a variation of 89%.

Taking into account that the percentage of extrajudicial settlements or interventions

made by the BCB on the Brazilian banking market is 8.2%, this positive variation of

89% in the PD implies a probability of default of the entire financial system of 15.5%.

Considering that the PD of the US financial system is 11.9% and the lowest historical

level of CAR in Brazil since 2000 was 12.9% in May 2001, the level of 15.5% for the

Brazilian PD as a consequence of a CAR of 13.2% can be argued as reasonable in view of

the benefits of a financial system with lower cost for the central bank in a financial crisis

scenario, greater loan supply and lower credit cost33.

In terms of impact of this new CAR, because the simulated capital requirement is

lower, the total amount of capital needed in an extreme financial crisis event would also

be lower. For our data set, which covers 79.89% of total assets but only 13.19% of total

member institutions, we estimate a total cost of bailout in the base scenario (without shock)

between 3.9 and 5.7 times the size of the Brazilian deposit insurance agency. Considering

the scenario with a 18% shock in the CAR, the total cost of bailout would be between 3.4

and 3.934. Therefore, one of the estimated benefits of this new CAR and CR would be

a reduction between 13% and 32% in the cost of bailout. In addition, another positive

estimated impact would be an increase in loan operations by 31.1% and in total deposits
32This indicator measures the capital adequacy of financial institutions in the Brazilian financial system and
is based on the definitions used in the Basel Capital Accord. The scope of the data coverage commercial
banks, universal banks, investment banks, savings banks or any financial conglomerate comprising any
of these entities. For more information, see BCB (2022b) series 21424 (I001 - Regulatory Capital to
Risk-Weighted Assets).
33It is worth to mention that our modeling process share similar premises presented by Alexandre et al.
(2022), but our results do not generate unrealistic minimum CAR for some banks (while the authors
mention results close to 1%, our minimum is close to 9.1%). Furthermore, we also consider several balance
sheet variables of each bank (used to construct our probability of default, systemic risk metrics, clusters,
interbank network, and NSFR) in our model instead of calibrating or assuming baseless values for these
parameters.
34The lower bound of the range is composed by the maximum value of the loss distribution and the
upper bound is composed by the sum of SRISK in the specific scenario. Note that the reduction in the
gap between the lower and upper bound after the shock is a consequence of the increase in PD in the
simulation.
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by 11.6%.

It is important to note that the optimal CAR of the system does not necessarily mean

the optimal minimum CR established by the regulator. Banks can hold levels of regulatory

capital ratio higher than the minimum demanded by the Central Bank for strategic reasons

or for expectations about its own portfolio or future macroeconomic conditions. Thus,

considering that in our model we allow a heterogeneous CR regime, while the official

minimum regulatory capital ratio in September 2022 varies between 10.5% and 12.5%

depending on the bank prudential segments, the minimum regulatory capital ratio with a

18% shock would result in a range between 8.6% and 10.3%, which is compatible with the

8% minimum established by Basel III (BCBS, 2011).

5 Final Remarks

This paper estimated different measures to understand how much systemic risk each

bank brings to the Brazilian market and proposed a bank run model that accounts for

idiosyncratic probability of default of banks and a systemic risk process in which additional

defaults occur through different channels of contagion.

Our approach follows a similar theoretical framework in which portfolio risk is calculated

in banking organizations and in which banking losses are estimated in deposit insurance

schemes. Through this analysis, we used granular balance sheet information to estimate

the PD of each FI and the systemic risk contagion process captured through the channels

of (i) panic due to deposit withdrawals and market similarity, (ii) interbank network, and

(iii) funding illiquidity.

Through the application of our model to a reduced sample of 24 banks and a full

sample of 182 banks for September 2022, we estimate the loss distribution, the PD of the

deposit insurance agency, and the optimal capital adequacy ratio of the Brazilian banking

system. We find that the DI would be able to bailout the system without contagion in

98.2% of the simulated scenarios and 67% when considering the contagion process in the

reduced sample. However, if the banks were liquidated and the DI needed to reimburse

the covered deposits in the worst-case scenarios, the PD of the DI with contagion in the

reduced sample for all banks would be 71% and, considering only the N-SIFI, the DI would

be able to reimburse all the covered deposits. In the full sample, the DI’s PD would be
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99.6% for all banks and 25.8% for the N-SIFI.

Regarding the optimal capital adequacy ratio, our results show a value close to 13.2%

with a minimum capital requirement interval depending on the prudential segment between

8.6% and 10.3%, 18% lower than the practiced in the Brazilian financial market, but

compatible with the 8% minimum established by Basel III. This reduction would increase

loan operations by 31.1% and total deposits by 11.6%, but would also increase the PD of

the banking system to the level of 15.5%.

Finally, this paper also shows the need to consider different channels of contagion as a

key element when designing the overall financial safety net.
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A Effects of Total Regulatory Capital, RWA and

Loans on FI’s PD

Table 10: Effects of Total Regulatory Capital, RWA and Loans on FI’s PD.

Probability of Default
Total Regulatory Capital −9.6151∗∗

(3.9319)

RWA 8.5554∗∗∗

(3.2882)

Loans 2.8652
(2.1761)

Observations 8,780
R2 0.0149
Adjusted R2 −0.0222
F Statistic 42.7658∗∗∗

Notes: This table presents the two-way fixed effects esti-
mates of the FI’s total regulatory capital, risk-weighted
assets (RWA) and loan operations by risk level on their
PD and Z-Score. The equations uses quarterly data from
December 2000 to September 2022 for 244 Brazilian finan-
cial institutions, resulting in public 9.653 observations
provided by the Central Bank of Brazil (BCB, 2022a).
All variables are in the natural log. Robust standard
errors double-clustered are in parentheses. ***, **, and
* denote statistical significance at 1%, 5%, and 10%,
respectively.
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B Effect of Loans on FI’s Total Deposits

Table 11: Effect of Loans on FI’s Total Deposits.

Total Deposits
Loans 0.3727∗∗∗

(0.0665)

Observations 7,665
R2 0.0962
Adjusted R2 0.0602
F Statistic 784.5530∗∗∗

Notes: This table presents the two-way fixed effects
estimates of the FI’s loan operations by risk level
on their total deposits. The equations uses quar-
terly data from December 2000 to September 2022
for 244 Brazilian financial institutions, resulting in
public 9.653 observations provided by the Central
Bank of Brazil (BCB, 2022a). All variables are in
the natural log. Robust standard errors double-
clustered are in parentheses. ***, **, and * denote
statistical significance at 1%, 5%, and 10%, respec-
tively.
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C Codes

Listing 1: Adapted Minimum Density method in R language.

1 min_dens_ improved = function (rowsums , colsums , c = 1, lambda = 1, k =

100, alpha = 1/sum( rowsums ), delta = 1/sum( rowsums ), theta = 1,

remove .prob = 0.01 , max.it = 1e5 , abs.tol = 1e-3, match_ moments =

TRUE , pr_max = TRUE , clear_ memory = TRUE , clear_ memory _it = 500,

target _ density = 0.0296 , target _ assortativity = -0.3872 , target _

degree = 6.7696 , target _pr_max = 25, target _tol = 0.1, sufficient _

moments = TRUE , sufficient _ alocation = 85, verbose = TRUE){

2

3 emp_ results = data.table ()

4 a = rowsums

5 l = colsums

6

7 if ( lambda > 1 | lambda < 0) stop(" lambda must be between 0 and 1")

8

9 # number of vertices

10 n = length (a)

11

12 # initial matrix

13 X = matrix (0, n, n)

14

15 # matrix of indices

16 mindex = matrix (1: length (X), n, n)

17

18 # Position vector for sampling

19 mu = 1: length (X)

20

21 # remove diagonal (it will be zero)

22 mu = mu[mu != diag( mindex )]

23

24 # sampled positions vector

25 v = numeric (0)

26

27 # Asset and liabilities deficit

28 ad = a - rowSums (X)

29 ld = l - colSums (X)
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30

31 # ’prior ’ probabilities

32 probs = Q(ad , ld , n)

33

34 if ( verbose ) cat(" Starting Minimum Density estimation .\n\n")

35

36 for (t in 1: max.it) {

37

38 if (t > k) lambda = 1

39

40 if (( runif (1) < remove .prob && t > 1 && length (v) > 0) || sum(probs[

mu]) == 0) {

41

42 # sample position to be removed

43 ij = sample (v, 1)

44

45 # check the position row and column indices

46 index = which( mindex == ij , arr.ind = T)

47 i = index [1]

48 j = index [2]

49

50 # sum the value back

51 ad[i] = ad[i] + X[ij]

52 ld[j] = ld[j] + X[ij]

53

54 # Remove the position value from X

55 X[ij] = 0

56

57 # include position back to the ones to be sampled

58 mu = c(mu , ij)

59

60 # remove it from the sampled

61 v = v[v != ij]

62 } else {

63 # position of the sample to be filled

64 ci = sample .int( length (mu), 1, prob = probs[mu])

65

66 # takes the position value

67 ij = mu[ci]
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68

69 # takes the position row and column indices

70 index = which( mindex == ij , arr.ind = T)

71 i = index [1]

72 j = index [2]

73

74 # adds value to X

75 Xnew = X

76 Xnew[ij] = lambda *min(ad[i], ld[j])

77

78 # computes new deficits

79 ## assets

80 adnew = ad

81 adnew[i] = adnew[i] - Xnew[ij]

82

83 ## liabilities

84 ldnew = ld

85 ldnew[j] = ldnew[j] - Xnew[ij]

86

87 # checks the new value function against the old value function

88 dif = V(Xnew , adnew , ldnew , c = c, alpha = alpha , delta = delta)

- V(X, ad , ld , c = c, alpha = alpha , delta = delta)

89

90 comp1 = dif > 0

91 comp2 = exp(theta*dif) > runif (1)

92

93 if (comp1 || comp2) {

94 # updates X, ad and ld

95 X = Xnew

96 ad = adnew

97 ld = ldnew

98 # includes the position in the sampled vector

99 v = c(v, ij)

100 # removes it from the vector to be sampled

101 mu = mu[mu != ij]

102 }

103 }

104 # updates probabilities

105 probs = Q(ad , ld , n)
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106

107 if (pr_max) {

108 # limiting the total regulatory capital (TRC)

109 limit_pr_emp = data.table ()

110 for (i in 1: nrow(X)) {

111 aux5 = X[i,] # limiting the asset exposure

112 aux7 = sum(aux5 >0) # number of connections with the market

113 aux8 = (aux5/PR_T1[i])*100 # the exposure compared to the FI ’s

TRC

114 aux9 = a[i] # checking if there is a connection

115 aux10 = sum(aux5)/aux9*100

116 if (aux9 ==0) { aux7 = NA }

117 aux11 = ifelse (aux8 > target _pr_max , (PR_T1[i]* target _pr_max/100) ,

aux5)

118 aux12 = (aux11/PR_T1[i])*100

119 aux13 = sum(aux11)/aux9*100

120 if (aux9 ==0) { aux13 = NA }

121 limit_pr_aux = data.table( conexoes = aux7 ,pr_max = max(aux8),

completude = aux10 ,pr_max_new = max(aux12),completude _new = aux13)

122 limit_pr_emp = rbind(limit_pr_emp ,limit_pr_aux)

123 X[i,] = aux11

124 }

125

126 # Additional information about the matrix

127 X = round(X ,0)

128 matrix _temp = graph_from_ adjacency _ matrix (X, weighted = T)

129 matrix _den = edge_ density ( matrix _temp) # network density

130 matrix _ assort = assortativity _ degree ( matrix _temp) # assortativity

131 matrix _ degree = mean( igraph :: degree ( matrix _temp)) # average degree

132

133 if ( verbose ) cat("- Iteration number : ", t, " -- total alocated :

", round (100*(sum(a - ad)/sum(a)) ,6)," %"," | Dens: ",round( matrix _

den ,4) ," | Assort : ",round( matrix _assort ,4) ," | Degree : ",round(

matrix _degree ,4) ," | Conex Min e Max: ",min(limit_pr_emp$conexoes ,na.

rm = TRUE)," e ",max(limit_pr_emp$conexoes ,na.rm = TRUE)," | PR Max:

",percent _ format (max(limit_pr_emp$pr_max_new ,na.rm = TRUE) ,0)," - ",

nrow(limit_pr_emp[pr_max_new > target _pr_max ])," | Complet . Min e Max:

",percent _ format (min(limit_pr_emp$ completude _new ,na.rm = TRUE) ,0)," e

",percent _ format (max(limit_pr_emp$ completude _new ,na.rm = TRUE) ,0),"
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\n", sep = "")

134

135 if (match_ moments ) {

136 if ( matrix _den < ( target _ density *(1+ target _tol)) & matrix _den >

( target _ density *(1- target _tol)) & matrix _ assort < ( target _

assortativity *(1- target _tol)) & matrix _ assort > ( target _ assortativity

*(1- target _tol)) & matrix _ degree > ( target _ degree *(1- target _tol)) &

matrix _ degree < ( target _ degree *(1+ target _tol)) & max(limit_pr_emp$pr_

max ,na.rm = TRUE) <= target _pr_max ) break

137 }

138 if ( sufficient _ moments ) {

139 if ( matrix _ assort < ( target _ assortativity *(1- target _tol)) &

matrix _ assort > ( target _ assortativity *(1- target _tol)) & (round (100*(

sum(a - ad)/sum(a)) ,6)) > sufficient _ alocation & matrix _ degree > (

target _ degree *(1- target _tol)) & matrix _ degree < ( target _ degree *(1+

target _tol)) ) break

140 }

141 } else {

142 if ( verbose ) cat("- Iteration number : ", t," -- total alocated : ",

round (100*(sum(a - ad)/sum(a)) ,6)," %"," | Dens: ",round( matrix _den

,4) ," | Assort : ",round( matrix _assort ,4) ," | Degree : ",round( matrix _

degree ,4) ," \n", sep = "")

143 }

144

145 emp_ results _aux = data.table( Iteration = t,Total_ Alocated =round (100*

(sum(a - ad)/sum(a)) ,6),Densid = matrix _den , Assort = matrix _assort , Degree

= matrix _degree ,Conex_Min=min(limit_pr_emp$conexoes ,na.rm = TRUE),

Conex_Max = max(limit_pr_emp$conexoes ,na.rm = TRUE),PR_Min = min(

limit_pr_emp$pr_max_new ,na.rm = TRUE),PR_Max = max(limit_pr_emp$pr_

max_new ,na.rm = TRUE),PR_ Target = target _pr_max ,PR_Exess = nrow(limit

_pr_emp[pr_max_new > target _pr_max ]),Completude _Min=min(limit_pr_emp$

completude _new ,na.rm = TRUE),Completude _Max=max(limit_pr_emp$

completude _new ,na.rm = TRUE), Delta_Dens = abs( matrix _den - target _

density ),Delta_ Assort = abs( matrix _assort - target _ assortativity ),

Delta_ Degree = abs( matrix _degree - target _ degree ),Tol = target _tol)

146 emp_ results = rbind(emp_results ,emp_ results _aux)

147 if (clear_ memory & (t %% clear_ memory _it)==0) {

148 print( paste0 (" Cleaning the memory at every ",clear_ memory _it ,"

iteration "))
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149 Sys.sleep (1) ; gc() ; Sys.sleep (1)

150 }

151 if (match_ moments ) {

152 if ( matrix _den < ( target _ density *(1+ target _tol)) & matrix _den > (

target _ density *(1- target _tol)) & matrix _ assort < ( target _

assortativity *(1- target _tol)) & matrix _ assort > ( target _ assortativity

*(1- target _tol)) & matrix _ degree > ( target _ degree *(1- target _tol)) &

matrix _ degree < ( target _ degree *(1+ target _tol)) ) break

153 }

154 if (sum(abs(ad) - 0) < abs.tol) break

155 }

156 if ( verbose ) {

157 if (t >= max.it) cat("\ nMaximum number of iterations reached ! Change

the max.it parameter or other settings .\n")

158 cat("\ nMinimum Density estimation finished .","\n * Total Number of

Iterations : ", t, "\n * Total Alocated : ", round (100*(sum(a - ad)/sum

(a)), 6), " % \n", sep = "")

159 }

160 rownames (X) = colnames (X) = names( rowsums )

161 return (list( Matrix = X,Final_ Results = emp_ results ))

162 }

163

164 V = function (z, ad , ld , c = 1, alpha = 1, delta = 1)

165 -c*sum(z > 0) - sum (( alpha ^2)*ad) - sum (( delta ^2)*ld)

166

167 Q = function (ad , ld , n){

168 Q = rep.int(ad , n)/rep(ld , each = n)

169 index = (Q < 1 | is.na(Q)) # Q < 1/Q

170 Q[index] = (1/Q)[index]

171 Q[is.na(Q) | is. infinite (Q)] = 0

172 return (Q) }

Notes: The original R Statistical Software (R Core Team, 2022) code is publicly available in the

NetworkRiskMeasures package published by Cinelli and Silva (2022). The authors implemented

the Minimum Density method based on Anand et al. (2015). All significant changes to the

original code begin at line 107.
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