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Abstract

This paper proposes a framework for reducing dimensionality in Stochastic Discount
Factor (SDF) models by selecting only the most relevant factors, utilizing sparsity-inducing
regression techniques, and separating the time series considered during factor selection
from that used for predicting returns. We argue that traditional factor-based asset pric-
ing models assume high sparsity levels arbitrarily and propose ensuring a similar scarcity
of factors. To this end, we suggest an alternative criterion for setting the penalization pa-
rameter of a shrinkage regression, ensuring the selection of a predefined number of factors.
The paper applies the proposed framework to a large set of factors, widely used shrinkage
techniques, and various candidate time periods, and demonstrates that even simple regres-
sions can achieve positive results when combined with the proposed methodology. Our
work provides a suitable framework for researchers to screen useful factors while using the
SDF approach and offers an additional criterion of choice for the penalization parameter,
especially useful for ensuring sparsity.
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1 Introduction

Ever since the proposal of the Capital Asset Pricing Model (CAPM) by Sharpe (1964) and

Lintner (1965), factor-like models have been the subject of numerous studies. While the original

model only considered the market factor, several refinements have been proposed over time, with the

Fama-French 3/5 factors model (see Fama and French, 1993, 2015) being the most notable benchmark

for market efficiency.

The search for factors that potentially explain some part of the cross-section of expected returns

has led to hundreds of factors being claimed as relevant in the literature. However, Cochrane (2011)

argues that researchers may have gone too far in publishing an overwhelming number of factors,

rendering it impractical and conceptually inadvisable to consider them all jointly. He refers to this

phenomenon as a “factor zoo” and advocates against using too many factors to explain the cross-

sectional average of returns.

This criticism has raised an important question: which factors truly matter? With an over-

whelming number of potentially relevant factors, this situation presents itself as a high-dimensional

problem. One straightforward solution is to use shrinkage techniques to impose sparsity, such as the

LASSO (Tibshirani, 1996), the Elastic Net (Zou and Hastie, 2005), the Adaptive LASSO (Zou, 2006)

- or any of the many other available techniques.

Feng et al. (2020) tackled the issue of the “factor zoo” by using a double-LASSO selection

procedure (see Belloni et al., 2014) favoring a more parsimonious asset pricing model and setting a

new benchmark to which newly proposed factors should be compared. However, when factors are

highly correlated, the LASSO estimator can be unstable, as pointed out by Kozak et al. (2020) and

Figueiredo and Nowak (2016), and other regression techniques may be better suited to the task.

Sun (2023) applied the Ordered Weighted LASSO (OWL, Figueiredo and Nowak, 2016) to

“dissect the factor zoo” and identify factors that are jointly able to explain cross-sectional returns.

Similarly, Freyberger et al. (2020) used the Adaptive Group LASSO (see Huang et al., 2010) to “dissect

non-parametrically the factor zoo”. Unlike Feng et al. (2020), both of these studies placed a greater

focus on out-of-sample predictability rather than determining a parsimonious model.

The degree to which shrinkage is applied is crucial when utilizing any of the regression tech-

niques mentioned, and researchers must adjust the penalization parameter(s) appropriately. Numer-

ous methodologies have been proposed, with some prioritizing predictability, such as K-fold Cross-

Validation (CV, Stone, 1974), and others emphasizing in-sample fits, such as the Bayesian Information

Criterion (BIC, Schwarz, 1978) and the Akaike Information Criterion (AIC, Akaike, 1974). However,

it is worth noting that none of these commonly used criteria focus on ensuring a minimum level of

sparsity.
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Our contributions encompass three main fronts. Firstly, we introduce a framework for re-

searchers seeking to address the issue of the factor zoo through the SDF methodology. This framework

enables the distinction between the time series used for estimating covariances between factors and

test assets to find the relevant factors, and the time series used for returns predictions. We show that

if a researcher aims to validate her hypothesis through out-of-sample returns of hedge portfolios, factor

selection must be done in a rolling-window scheme. Secondly, we propose a new benchmark for eval-

uating factor selection models’ out-of-sample predictability, inspired by the acclaimed Fama-French 3

factors model (Fama and French, 1993). This benchmark is more stringent than simply verifying the

hedge portfolios’ resulting Sharpe ratios.

In addition to proposing a framework for selecting factors in the SDF methodology, we also

suggest methods for guaranteeing a certain level of sparsity in shrinkage regressions. In our study, we

applied basic shrinkage regression techniques (Elastic Net, LASSO, and Adaptive LASSO) to the SDF

problem, but found that simply using traditional Bayesian Information Criteria to set the penalization

parameter did not result in impressive predictive capability. However, when we enforced a pre-defined

level of sparsity - by only including factors with the largest absolute coefficient values - or ensured the

selection of the exact number of desired factors - by adjusting the penalization parameter accordingly -

we observed significant out-of-sample performance improvements. We were able to generate long-short

portfolios with annualized Sharpe ratios as high as 2.00.1

After applying our proposed framework and sparsity-guaranteeing mechanisms to the SDF

problem, we were able to observe how dissociating the periods used for factor selection and returns

prediction impacted the SDF dimensionality problem. Traditionally, the literature has used the same

period, usually 120 months, for both selecting the factors and predicting the returns. However, our

results suggest that a shorter window of 60 months is more suitable for factor selection, while a longer

time series of 180 to 240 months should be considered for predicting assets’ returns. We found that

this dissociation led to more accurate out-of-sample predictions, improving the overall performance.

This paper is structured into five sections. The current section served as an introduction to the

related literature and the achievements of this study. In the second section, we present the framework

proposed, which includes the Stochastic Discount Factor model, exploration of the factor zoo high-

dimensional environment, traditional and new ways of setting the level of sparsity, and time-variant

windows for screening relevant factors - and predicting assets’ returns. The third section describes

the data used in this paper, as well as the methodology for constructing the anomaly factors and test

portfolios. In the fourth section, we present obtained results and propose a stricter benchmark for

out-of-sample predictability. Finally, in the conclusion, we summarize the contributions and results.

1Net of trading costs.
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2 Methodology

We adopt the Stochastic Discount Factor (SDF) model (see Cochrane, 2009), as in recent works

by Feng et al. (2020), Freyberger et al. (2020), and Sun (2023), to investigate the joint explanation of

cross-sectional returns. We present the SDF model in Subsection 2.1, before examining the similarities

and differences between risk price and risk premium. In Subsection 2.2, we introduce the zoo of

factors, a high-dimensional environment that poses a clear challenge for factor selection. We explore

how sparsity can be imposed in high-dimensional problems in Subsection 2.3 and propose ways of

guaranteeing a desired degree of it. Finally, in Subsection 2.4, we introduce a rolling-window approach

to the factor selection problem.

2.1 Model setup

Denoting the SDF as m, we start from a linear specification of it,

m := r−1
0 [1 − b′(f − E[f ])], (1)

where r−1
0 is a constant zero-beta rate, f is a K × 1 vector of K factor returns and b is the K × 1

vector of SDFs coefficients - interpreted as risk prices.

Our goal is to identify relevant factors from the vast array of factors available in the literature

by examining their impact on the SDF. Specifically, we seek factors that are responsible for movements

in the SDF, as evidenced by their non-zero risk prices, i.e., these risk prices should be reflecting the

marginal utility of the factors in explaining the cross-section of average returns.

The existence of useless factors and redundant factors in the high-dimensional environment

of factor selection and building is a well-known problem. Useless factors simply do not contain any

relevant information for the cross-section of asset returns, are not correlated with useful factors, and

hence their prices are zero. Redundant factors, on the other hand, have their effects explained by

other, relevant, factors and can be rewritten as a combination of them. In other words, redundant

factors have zero risk prices but are correlated with the relevant factors.

The literature also distinguishes what is known as the risk premium, which is measured by the

second pass free parameter in Fama and MacBeth (1973)’s regression. The covariance matrix of factor

returns determines the relationship between risk price and risk premium, which can be expressed as

ζ = E[ff ′]b, see Cochrane (2009), where ζ denotes the K × 1 vector of risk premiums.

Despite such an embryonic relationship, price and risk premium have substantially distinct

interpretations. The premium is related to an investor’s willingness to hedge a certain risk factor,

regardless of whether or not this factor helps to price the average cross-section of returns. It is
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therefore possible for a factor not included in the SDF model to exhibit a non-zero premium if it is

correlated with some useful factor(s). However, since our goal is to identify which factors are relevant

for pricing the average cross-section of asset returns, our attention is focused on SDF loadings, i.e.

risk prices, rather than risk premiums. The challenge lies in selecting only the relevant factors that

contain unique information that is not captured by any other factor, and therefore have non-zero risk

prices.

Back to the theoretical model, it requires that any admissible value for the SDF factor m

satisfies the fundamental asset pricing equation, i.e., E[Rm] = 0, as thoroughly explored in Cochrane

(2009). However, it is also noted that this equality may not hold when the SDF factor m is unknown

and must be estimated from some model. To address this issue, we define the pricing error (e(b)) as the

deviation from zero of the fundamental asset pricing equation and denote the SDF as m(b), unknown

due to its dependence on the also unknown risk price b. The pricing error can then be written as:

e(b) = E[Rm(b)]

= E[R]E[m(b)] + Cov(R, m(b))

= r−1
0 E[R]E[1 − b′(f − E[f ])] + r−1

0 Cov(R, 1 − b′(f − E[f ]))

= r−1
0 (E[R] − Cov(R, f)b)

= r−1
0 (µR − Cb),

(2)

where R is a N × 1 vector of excess return of N assets, µR := E[R] is the N × 1 vector of assets’ excess

return expectation and C := Cov(R, f).

As the pricing error quadratic form is defined as Q(b) = e(b)′We(b), where W is some appropri-

ate N × N weighting matrix, it is possible to estimate the risk prices b by minimizing their quadratic

error Q(b), as follows:
b̂ = arg min

b
Q(b)

= arg min
b

[(µR − Cb)′W (µR − Cb)],
(3)

leading to
ˆ̂b = (Ĉ ′Ŵ Ĉ)−1Ĉ ′Ŵ µ̂R, (4)

where Ĉ = Ĉov(R, f) = (1/T )
∑T

t=1(Rt − µ̂R)(ft − µ̂f )′, µ̂f = (1/T )
∑T

t=1 ft and µ̂R = (1/T )
∑T

t=1 Rt

- notice that, as a constant, r0 could be disregarded at the optimization problem. In this specification
ˆ̂b is an empirical estimate of b̂, which makes use of sample estimates of C and µR.

In choosing a functional form for the weighting matrix W , Ludvigson (2013) proposes two

options. When there are plenty of test assets, she recommends a surprisingly simple choice: the
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identity matrix. This matrix ensures that the weights are not tilted towards any particular subset

of test assets, which can be useful in situations where these assets have economic interpretation.

Another option is to set W := E(RR′)−1, which connects Q(b) to the Hansen-Jagannathan (H-J)

distance. According to Ludvigson (2013), in settings where test assets are somewhat limited (i.e.,

when K is large compared to N), using the H-J distance leads to more stable estimators.

In addition, it is also noteworthy that our model reflects a projection of the SDF in a specific

subspace, as both anomaly factors and test assets are constructed solely from the information on

stocks’ returns (as discussed in Subsections 3.1 and 3.2). This approximation is widely accepted in the

literature that explores the high-dimensionality of the zoo of factors - see Feng et al. (2020); Freyberger

et al. (2020); Sun (2023).

In subsection 3.2, we showed that our test portfolios are abundant and have clear economic

interpretations. Therefore, the identity matrix is the obvious choice for the weighting matrix W , and

we can write the optimization problem as:

ˆ̂b = arg min
b

[(µ̂R − Ĉb)′(µ̂R − Ĉb)] (5)

2.2 The zoo of factors

The factors considered in this study are constructed based on published asset pricing anomalies,

which are defined by Brennan and Xia (2001) as “statistically significant differences between the realized

average returns associated with certain characteristics of securities, or on portfolios of securities formed

based on those characteristics, and the returns that are predicted by a particular asset pricing model”.

However, the literature on factors that supposedly explain the cross-section of expected returns

has rapidly expanded, producing hundreds of articles, as shown by Hou et al. (2020), who even

compiled a data library of 447 published anomaly variables. Cochrane (2011) labeled this situation

as a “zoo of factors”, likening the vast variety of animals in a zoo to the myriad of factors - each

emitting a particular noise - in the literature. The criticism is that there are now too many factors,

and researchers should focus on two aspects. Firstly, they should propose a parsimonious benchmark

that new factors should be submitted and, secondly, they should pursue models that more accurately

predict the market returns.

In addition, the traditional Fama and MacBeth (1973) regression faces theoretical issues, as

in a high-dimensional world, the number of factors (K) is likely to be greater than the number

of test assets (N), making the standard Fama-MacBeth approach infeasible. Furthermore, in high-

dimensional settings, variables are likely to be correlated, leading to the selection of redundant factors.

Additionally, when factors are correlated, the Fama-MacBeth approach may suffer from weak factor
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identification, as pointed out by Kleibergen (2009). Therefore, alternative methods are required to

effectively estimate the factor loadings and test for the significance of the estimated coefficients.

2.3 Achieving sparsity in a high-dimension environment

Regularization and dimension-reducing techniques have emerged as possible solutions to the

SDF problem, given that traditional methodologies are unable to survive the curse of dimensionality.

However, before we delve into these techniques, it is important to ask ourselves a key design question:

is it reasonable to assume sparsity in asset pricing?

According to Feng et al. (2020), the asset pricing literature has implicitly relied on the concept

of sparsity for a long time. Researchers typically compare new factors against a model with a small set

of control variables, usually the Fama-French three/five-factor models (see Fama and French, 1993,

2015) - sometimes plus momentum (see Jegadeesh and Titman, 1993). These models represent a

selection of a few factors from the vast zoo of factors that could be relevant for explaining cross-

sectional expected returns. This approach results in a parsimonious representation of the universe

of factors. What distinguishes this type of sparsity from a machine learning-based one? We believe

that, distinctively from traditional asset pricing models, the former does not have biases toward any

explanatory factor.

The machine-learning literature has produced several methodologies that can help tackle the

curse of dimensionality. In this paper, we focus on some of the most widely used techniques, such

as Elastic Net (eNet), LASSO, and Adaptive LASSO (A-LASSO). These methods work by adding a

penalty term Ω(b) to Equation 5, such that:

ˆ̂b = arg min
b

[(µ̂R − Ĉb)′(µ̂R − Ĉb)] + Ω(b) (6)

The definition of Ω(b) varies for each regression technique. The LASSO estimator (Tibshirani,

1996) includes a L1 norm penalty function for parameters. On the other hand, the Elastic Net

regression (Zou and Hastie, 2005) combines LASSO’s L1 norm penalization with Ridge’s (Hoerl and

Kennard, 1970) L2 norm. Lastly, the Adaptive LASSO (Zou, 2006) introduces a weighting vector (ŵ)

to the LASSO penalty. The penalty term for each regression can be expressed as:

• LASSO: Ω(b)LASSO = λ
∑K

j=1 |bj |

• Elastic Net: Ω(b)eNet = λ
∑K

j=1[(1 − α)|bj |2 + α|bj |]

• Adaptive LASSO: Ω(b)A−LASSO = λ
∑K

j=1 ŵj |bj |

Special attention should be given to λ - the penalty parameter. It is a term in the objective

function, set by the researcher, that encourages sparsity and prevents overfitting. It dictates how severe
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the penalization will be, i.e., how much shrinkage will occur. There are several techniques available to

help us set penalization parameters, such as K-fold Cross-Validation (CV) and Information Criteria,

both Bayesian (BIC) and Akaike (AIC).

Cross-Validation, proposed by Stone (1974), partitions the data into training and validation

sets, fits the model on the training set, and evaluates its performance on the validation set. It is a

robust technique to avoid overfitting and does not rely on any assumptions about the distribution

of the data. On the other hand, Bayesian Information Criterion (BIC) (Schwarz, 1978) and Akaike

Information Criterion (AIC) (Akaike, 1974) evaluate the trade-off between model fit and complexity,

with BIC tending to choose more parsimonious models than AIC.

One advantage of using Information Criteria over Cross-Validation is that they are computa-

tionally efficient and can be applied easily to large datasets. However, Information Criteria rely on

strong assumptions about the data distribution and can be sensitive to violations of these assumptions.

In contrast, CV is more robust to such violations, at the cost of being computationally expensive and

requiring a large sample size to obtain accurate estimates of the prediction error. As suggested in

Freyberger et al. (2020), we believe the BIC is more adequate for our application.

We could have employed more complex regression techniques to reduce the dimensionality of

the SDF problem. For instance, Sun (2023) used the Ordered-Weighted LASSO (OWL, see Figueiredo

and Nowak, 2016), as it should allow for the selection of more correlated regressors, while Freyberger

et al. (2020) used the adaptive group LASSO (Huang et al., 2010) to propose a nonparametric method

for studying which characteristics provide incremental information for the cross-section of expected

returns. Despite the potential benefits of more complex regression techniques, we have chosen to

stick with simpler methodologies. Our rationale for this decision is that by using less sophisticated

techniques, we can focus on properly setting up our methodology and ensuring that any positive results

we obtain are not simply a byproduct of the superior technique applied.

While all the regression techniques discussed above impose some degree of sparsity, it is possible

that the selected factors still outnumber what the researcher considers reasonable. In such cases, it

may be useful to have a methodology that guarantees a pre-defined degree of sparsity. In the next

topics, we will present different approaches to achieving this goal, which we refer to as “forcing” and

“ensuring” sparsity.

2.3.1 Forcing sparsity

One way to force sparsity is by considering only the regressors with the larger coefficient mag-

nitudes, as done by Sun (2023) in his out-of-sample exercise. The approach involves determining the

maximum number of regressors (n) to be considered in the analysis, and if the shrinkage process
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selects more than n variables, only the top n variables, ranked accordingly, are retained. To ensure

that this approach works properly, it is crucial to ensure that the absolute values of the coefficients

are comparable. This can be simply achieved by demeaning the regressors and scaling them to have

the same standard deviation.

Forcing sparsity in this manner has its advantages, such as a lesser degree of sparsity, allowing

for more drastic variable selection, and its fairly easy implementation. However, this methodology may

jeopardize theoretical properties, as arbitrarily disregarding selected regressors gives up the certainty

of being backed by the chosen regression’s properties.

2.3.2 Ensuring sparsity

Is it possible to ensure a pre-defined degree of sparsity without compromising the theoretical

properties of the chosen estimator? In the following paragraphs, we will develop a methodology that

addresses this question.

The severity of the selection placed upon candidate regressors is controlled by the penalty

parameter(s) (λ for our purposes). While the literature has provided criteria to assist with setting the

parameter, the most widely used methods (CV, BIC, and AIC) do not guarantee a specific level of

sparsity. Cross-validation focuses on out-of-sample prediction, while Information Criteria, although

penalizing the number of selected variables, do not guarantee a significant degree of variable selection.

In contrast to the traditional approach of using existing criteria, we suggest selecting the pe-

nalization parameter to achieve a predetermined number of factors - denoted as n. By fixing the

number of selected factors, we can maintain the regression properties while ensuring the desired level

of sparsity. The researcher can then adjust the penalization parameter dynamically to ensure that

exactly n factors remain after the screening process. The penalization parameter (λ) can be set as

follows:

• Starting at some reasonable λ, run the shrinkage regression of choice and count how many
factors are selected:

– If the number of selected factors is too small, decrease λ;
– If the number of selected factors is too large, increase λ.

• Repeat the process until the regression returns the desired number of factors:

– Notice that the pace at which λ is changing should be adjusted as the number of selected
factors is approaching n.

2.4 Time-varying factor selection framework

As researchers, we should always be aware that our study objectives should guide the time

frame we consider when estimating the factors-assets covariance matrix (Ĉ): choosing the appropriate
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time frame is crucial to avoid potential biases and ensure the validity of our findings. For instance,

when searching for a time-invariant asset pricing model, we should consider the longest possible time

series of returns, as was done by Feng et al. (2020) when examining factor loadings to establish a

benchmark for newly proposed factors.

Shifting focus to good out-of-sample returns prediction, Sun (2023) selects variables by estimat-

ing Ĉ using all available data2 before conducting out-of-sample exercises to evaluate the performance

of hedged portfolios constructed based on the selected variables. However, we believe that when the

focus is on out-of-sample predictability, using the full panel of data is not recommended as it intro-

duces a look-ahead bias, using “future data” to predict “past” asset returns. We will address this

issue later, but in order to do so, we need to properly define how out-of-sample performance should

be assessed.

2.4.1 Out-of-sample analysis

We propose an out-of-sample analysis inspired by the approach taken in Freyberger et al. (2020),

with an additional rolling window parameter. In their study, Freyberger et al. (2020) estimate the

covariance matrix Ĉ and perform variable selection regressions in rolling windows of 120 months. The

selected factor returns are then used as test asset returns regressors in a simple OLS regression, which

uses the same 120-month rolling window of data. The OLS coefficients are then used to predict test

assets’ returns one period ahead, and a trading strategy consisting of hedge portfolios is constructed:

if the strategy generates sufficient alpha, the variable selection is considered successful.

To improve on the methodology proposed by Freyberger et al. (2020), we suggest disjointing the

rolling windows for estimating Ĉ and running the shrinkage regressions (RWĈ) from the one for fitting

the OLS prediction regression (RWOLS). This separation allows for a more accurate evaluation of the

Stochastic Discount Factor problem in a time-varying manner. Specifically, it enables exploration

of distinct time frames for computing correlations between factors and assets (and selecting relevant

factors), and for capturing the relationship between the returns of selected factors and test assets.
The schematic representation of the proposed variable selection framework is presented in Figure

1, and goes as follows:

• To predict asset returns at time T , calculate Ĉ using data from T − 1 to T − RWĈ ;

• Estimate µ̂R using the same time frame, and fit the chosen shrinkage method - as shown in

Equation 6;

• Over a different time frame (from T − 1 to T − RWOLS), regress the returns of selected factors

(Retfactorf ,t−1) against each test asset’s returns (Rettest:asseti,t), delayed by one period, as in:
2Sun (2023) also breaks the time series into two disjoint parts when observing the time-varying nature of

the selected factors. However, his approach will suffer from the look-ahead bias described in Subsection 2.4.2.
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Figure 1: Variable section rolling-window framework scheme
Illustration of the proposed time-variant factor selection framework. In this scenario, factor selection considers
data from t−1 to t−RWĈ and assets’ returns at time t are predicted using a time series from t−1 to t−RWOLS .

Rettest:asseti,t = αi + βi,f Retfactorf ,t−1;

• Use the OLS coefficients to project all test assets’ returns for time T ;

• Build neutral long-short portfolios based on predicted returns, buying (selling) the top (bottom)

decile;

• Repeat the process for all possible time frames, storing the long-short portfolio returns;

• Calculate a (some) metric(s) for validating the strategy’s performance - in our application, the

classic Sharpe Ratio(see Sharpe, 1998).

This methodology allows for the examination of the SDF problem in a variety of applications,

providing complete disassociation between the time frame used to compute covariances and select

factors, and the time series used to forecast returns based on that selection. This methodology

could be used in studies that focus on more stable factor models, using decades of data to estimate

covariances, or in studies that use shorter time spans, such as intraday covariance estimations.

2.4.2 Complete panel look-ahead bias

As discussed in Section 2.4, the look-ahead bias arises from the unintended use of data that

captures events yet to occur for predicting asset returns.

Figure 2: Full panel variable section framework scheme
Illustration of a full panel factor selection framework. In this scenario, factor selection considers all data available
(in our application from January 1980, to December 2018) and assets’ returns at time t are predicted using
a time series from t − 1 to t − RWOLS . The look-ahead bias is characterized by the utilization of data from
periods later than t.

In summary, the use of the complete data panel when estimating covariance matrices and factor

models introduces a look-ahead bias that can compromise the accuracy of empirical findings. As shown
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in Figure 2, this bias results from the use of data that is not yet available at the time of predicting

asset returns. To avoid this problem, we suggest the use of the methodology described in the previous

subsection.

3 Data

We utilize data from the Center for Research in Security Prices (CRSP) and Compustat

databases, covering the period from January 1980 to December 2018. The data set consists of 468

months of data on all common stocks listed on NYSE, AMEX, and NASDAQ, covering the same

80 characteristics used by Sun (2023). Risk-free rate and market excess returns are obtained from

Kenneth French’s online data library. In the first subsection, we detail how the anomaly factors were

calculated and provide an overview of the zoo of factors. In the last subsection, we explain how we

constructed the test assets.

3.1 Anomaly factors

The market factor aside, we examine 80 additional characteristics as possible regressors. We

exclude micro stocks that have a market capitalization less than the 20th percentile of NYSE-listed

stocks.3

We compute the factors as the spread returns between top and bottom decile portfolios, con-

trolling for size. This approach is like a more tail-oriented version of Fama and French (1993)’s

methodology, which uses deciles instead of 30% percentiles. For our estimation, the key consideration

is whether the factor survives the dimensionality-lowering procedure, and all factors are calculated on

a high-minus-low basis - regardless of whether they are characterized on low-minus-high manners.4

We demean and adjust all factors to share the same standard deviation as the market factor. This

facilitates interpretation and makes the magnitudes of estimated coefficients comparable. Finally, we

remove characteristics that cannot produce factors for all available dates.

3.1.1 A tour through the zoo

Now, let’s take a tour through the zoo of factors with the help of Sun (2023)’s Figure 3, which

displays factor correlation using two distinct measures.

In Figure 3(a), we see the correlations between the β’s calculated using the time series method-

ology presented in Section 2. The figure shows that around 16% of the anomaly factors have absolute

3Micro stocks are classified on a monthly basis.
4Only the signal of estimated b̂ are impacted, and the coefficients’ magnitudes remain intact.
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Table 1: Anomaly factors
This table lists all used factors. The abbreviation is consistent with Green et al. (2017) and Sun (2023). Detailed
information is available at Green et al. (2017).

Abbreviation Description Abbreviation Description
absacc Absolute accruals mom1m 1-month momentum
acc Working capital accruals mom36m 36-month momentum
aeavol Abnormal earnings announcement volume mom6m 6-month momentum
agr Asset growth ms Financial statement score
baspread Bid-ask spread mve Size
beta Beta mve ia Industry adjusted size
betasq Beta squared nincr Number of earnings increases
bm Book-to-market operprof Operating profitability
bm ia Industry adjusted book-to-market pchcapx ia Industry adjusted % change in capital expenditures
cash Cash holding pchcurrat % change in current ratio
cashdebt Cash flow to debt pchdepr % change in depreciation
cashpr Cash productivity pchgm pchsale % change in gross margin - % change in sales
cfp Cash flow to price ratio pchquick % change in quick ratio
cfp ia Industry adjusted cfp pchsale pchinvt % change in sale - % change in inventory
chatoia Industry adjusted change in asset turnover pchsale pchrect % change in sale - % change in A/R
chcsho Change in share outstanding pchsale pchxsga % change in sale - % change in SG&A
chempia Industry adjusted change in employees pchsaleinv % change in sales-to-inventory
chinv Change in inventory pctacc Percent accruals
chmom Change in 6-month momentum pricedelay Price delay
chpmia Industry adjusted change in profit margin ps Financial statement score
chtx Change in tax expense quick Quick ratio
cinvest Corporate investment retvol Return volatility
currat Current ratio roaq Return on assets
depr Depreciation roavol Earning volatility
dolvol Dollar trading volume roeq Return on equity
dy Dividend-to-price roic Return on invested capital
ear Earnings announcement return rsup Revenue surprise
egr Growth in common shareholder equity salecash Sales to cash
ep Earnings-to-price saleinv Sales to inventory
gma Gross proditability salerec Sales to receivables
grcapx Growth in capital expenditure sgr Sales growth
grltnoa Growth in long term net operating assets sp Sales-to-price
hire Employee growth rate std dolvol Volatility of liquidity (dollar trading volume)
idiovol Idiosyncratic return volatility std turn Volatility of liquidity (share turnover)
ill Illiquidity stdacc Accrual volatility
invest Capital expenditure and inventory stdcf Cash flow volatility
lev Leverage tang Debt capacity/firm tangibility
lgr Growth in long term debt tb Tax income to book income
maxret Max daily return turn Share turnover
mom12m 12-month momentum zerotrade Zero trading days

correlation coefficients greater than 0.5: while some factors exhibit significant correlation, there is a

notable degree of independence among them. However, if we measure the factors’ β’s using factor

loadings (coefficients of explanatory variables in the second stage Fama-MacBeth regression), Fig-

ure 3(b) shows that more than 60% of the correlation coefficients (absolute value) are greater than

0.5, indicating (again) that the Fama-MacBeth regression may encounter severe complications in this

application.

3.2 Test assets

The literature offers different views on the ideal set of test assets for SDF models, with some

scholars advocating the use of individual stocks and others promoting the utilization of sorted portfo-
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Figure 3: Factor correlation coefficients
The heat maps display matrices of correlation coefficients of considered anomaly factors. Measurement “by
time series” means that correlation coefficients are computed through factors’ time series data, while “by factor
loadings” means they are computed through factor loadings obtained after Fama-MacBeth’s first-stage regres-
sion. Retrieved from Sun (2023)’s Figure 1.

lios. While some studies have used individual stocks (see Harvey and Liu (2021) and Lewellen (2015)),

Feng et al. (2020) have argued that characteristic-sorted portfolios have more stable betas, generally

present better signal-to-noise ratios, and are more protected from missing data issues.5 In line with

these arguments, we generate our test assets by sorting the stocks into portfolios based on their factors’

characteristics.

Following the methodology of Sun (2023), we construct a comprehensive set of bi-variate sorted

portfolios as our test assets, in line with the approach proposed by Feng et al. (2020) and Freyberger

et al. (2020). The approach involves creating all 5 × 5 bivariate-sorted portfolios, formed by inter-

secting stocks’ size with each of the 80 characteristics considered in the previous subsection. The

construction process is similar to that described in Subsection 3.1 for anomaly factors, but resulting

portfolios are both long-only and less extreme.

At the end of the process, any bi-variate portfolio that fails to generate diversified portfolios

for all dates of interest will be excluded from the set of test assets. Therefore we end up using a total

of 1896 diversified portfolios as the full set of test assets.

4 Empirical analysis

In this section, we apply the methodology presented in Section 2 to scan the “zoo of factors” -

and reduce its dimension - using common shrinkage regression techniques such as Elastic Net (eNet),

LASSO, and Adaptive LASSO (A-LASSO). We test four different periods - 60, 120, 180, and 240

months - for both RWĈ and RWOLS . Note that our results do not account for trading and slippage

costs.

5Fama and French (2008) and Hou et al. (2015) have also advocated for the usage of sorted portfolios as
test assets.

15



We begin by presenting the results obtained when all selected factors are considered, before

moving on to the approaches for achieving sparsity proposed in Subsection 2.3. The section concludes

with a discussion on a new benchmark for assessing the out-of-sample performance of the resulting

portfolios.

4.1 Shrinking the Zoo

In this subsection, we explore the efficacy of applying shrinking regressions to reduce the “zoo

of factors”. We set the penalty parameters using the BIC and include all selected factors to predict

returns. Table 2 displays the Sharpe Ratios of the resulting pure alpha trading strategies.

Table 2: Out-of-sample returns prediction results - all factors
This table reports out-of-sample annualized Sharpe ratios of hedge portfolios going long-short the 10% of stocks
with the highest-lowest predicted returns, considering all selected factors through a penalization parameter set
by BIC, for different combinations of shrinkage estimators, RWĈ , and RWOLS .

RWĈ 60 120 180 240
RWOLS eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO
60 0.60 0.71 0.24 0.51 0.82 0.74 0.72 0.74 0.41 0.74 0.91 0.43
120 0.82 0.88 0.59 0.69 0.86 0.94 0.91 0.94 0.71 0.82 0.90 0.54
180 0.94 1.02 0.54 0.76 1.06 0.90 1.03 1.05 0.87 0.81 0.81 0.66
240 0.89 1.14 0.43 0.69 0.95 0.86 0.95 0.91 0.76 0.82 0.92 0.60

The results of the less-labored application of the shrinking regressions are not very promising at

first glance. The LASSO methodology shows the best Sharpe ratio (1.14, for RWĈ = 60, RWOLS =

240) as well as the best average Sharpe ratio (0.91, compared to 0.79 and 0.64 for the eNet and

the A-LASSO, respectively). However, overall, the resulting portfolios face difficulties in achieving

significant Sharpe Ratios - especially the ones generated by the Adaptive LASSO methodology.

The average number of selected factors in each regression/covariance estimation period can

shed some light on the impact of sparsity - see Table 3. Comparing Tables 2 and 3, we can see that

out-of-sample predictability tends to increase as the number of selected factors decreases. Therefore,

imposing a stricter degree of sparsity could potentially lead to better predictability. In the next

subsection, we will explore two methods for guaranteeing sparsity, and evaluate their effectiveness in

terms of out-of-sample predictability and sparsity.

Table 3: Average number of selected factors
This table reports the average number of selected factors when setting the penalization parameter by BIC, for
different combinations of shrinkage estimators and RWĈ .

RWĈ 60 120 180 240
eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO

Average #
of factors 15.6 9.4 22.4 17.3 9.2 20.2 17.6 10.7 21.5 16.6 10.9 20.1
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4.2 Guaranteeing sparsity

The sparsity assumption, which posits that only a few factors are truly relevant in explaining

asset returns while the rest can be safely disregarded, has been implicitly present in asset pricing

models since their inception. For instance, when a new factor is proposed, it is typically tested

against a benchmark that only includes a few key factors, such as Fama-French’s factor models (Fama

and French, 1993, 2015) plus momentum (Jegadeesh and Titman, 1993) - a clearly parsimonious

representation of the vast universe of potential factors. However, while shrinkage regression can help

achieve sparsity, it does not guarantee it. Therefore, explicitly enforcing a certain sparsity degree in

asset pricing models may be beneficial.

Table 4: Out-of-sample returns prediction results - top n factors
This table reports out-of-sample annualized Sharpe ratios of hedge portfolios going long-short the 10% of stocks
with the highest-lowest predicted returns, considering only the top n selected factors through a penalization
parameter set by BIC, for different combinations of shrinkage estimators, n, RWĈ , and RWOLS .

RWOLS 60
RWĈ 60 120 180 240

eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO
Top 3 1.31 1.25 1.30 1.25 1.23 0.98 1.00 1.12 1.22 0.98 1.15 1.11
Top 5 1.18 1.06 1.20 1.09 1.14 1.22 0.81 0.93 1.01 1.03 1.11 1.06
Top 10 0.59 0.64 0.65 0.63 0.97 0.87 0.86 0.82 0.75 0.83 1.00 0.64

RWOLS 120
RWĈ 60 120 180 240

eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO
Top 3 1.27 1.25 1.16 1.36 1.37 1.12 1.09 1.24 1.30 0.95 1.05 1.02
Top 5 1.22 1.12 1.23 1.26 1.36 1.32 0.86 1.05 1.06 0.84 0.86 1.08
Top 10 0.93 0.86 0.80 0.79 1.10 1.15 0.94 1.00 0.98 0.87 0.91 0.68

RWOLS 180
RWĈ 60 120 180 240

eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO
Top 3 1.50 1.38 1.22 1.46 1.56 1.22 1.27 1.39 1.45 1.13 1.20 1.12
Top 5 1.37 1.26 1.13 1.37 1.50 1.46 1.02 1.22 1.22 0.94 0.91 1.23
Top 10 1.16 1.01 0.71 0.83 1.27 1.15 1.09 1.15 1.12 0.92 0.95 0.79

RWOLS 240
RWĈ 60 120 180 240

eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO
Top 3 1.54 1.28 1.26 1.39 1.46 1.13 1.30 1.42 1.33 1.20 1.29 1.12
Top 5 1.34 1.20 1.24 1.32 1.45 1.17 1.08 1.16 1.04 1.07 0.98 1.26
Top 10 1.08 1.10 0.85 0.77 1.13 1.01 0.98 1.12 1.00 0.88 1.04 0.85

The notion of sparsity that is widely adopted in asset pricing models is based on traditional

and well-tested pricing models. However, it should be possible to achieve similar levels of sparsity

through shrinkage regressions, without having to input any prior expectations.

In Subsection 2.3 we defined two methods for explicitly guaranteeing sparsity in asset pricing

models. To evaluate their effectiveness, we report Sharpe ratios obtained from portfolios that force

sparsity using only the top n factors, sorted by the magnitude of their coefficients, in Table 4.
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The results from Table 4 suggest that utilizing only the top n factors significantly improves

the observed Sharpe ratios. Additionally, the analysis reveals some interesting patterns. For instance,

reducing the number of factors, shortening the period for covariance estimations, and lengthening the

period for predicting returns generally enhance out-of-sample performance.

When the top n factors were used for return prediction, the LASSO regression achieved the

best performance among the tested methods, with an average Sharpe ratio of 1.15 and a maximum

Sharpe ratio of 1.56 (Top 3, RWĈ = 120, RWOLS = 180). In comparison, the average Sharpe ratios

for the eNet and A-LASSO were both 1.08, while the best observed Sharpe ratio for eNet was 1.54

(Top 3, RWĈ = 160, RWOLS = 240) and 1.46 for A-LASSO (Top 5, RWĈ = 120, RWOLS = 180).

Although forcing sparsity considering only the top n factors improve results, this method could

potentially compromise the regression’s properties. To address this issue, we propose ensuring a pre-

defined degree of sparsity by adjusting the penalization parameter, as described in Subsection 2.3.2.

The results of this approach are presented in Table 5.

Table 5: Out-of-sample returns prediction results - fixed n factors
This table reports out-of-sample annualized Sharpe ratios of hedge portfolios going long-short the 10% of stocks
with the highest-lowest predicted returns, fixing the number of selected factors as n dynamically setting the
penalization parameter, for different combinations of shrinkage estimators, n, RWĈ , and RWOLS .

RWOLS 60
RWĈ 60 120 180 240

eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO
Fixed 3 1.29 1.38 1.22 1.17 1.12 1.20 1.30 1.24 1.33 1.34 1.23 0.97
Fixed 5 1.11 1.06 1.11 0.91 1.13 1.10 0.79 0.85 1.00 1.00 1.09 0.97
Fixed 10 0.81 0.62 0.74 1.00 0.86 0.78 0.95 0.85 0.92 0.79 0.54 0.54

RWOLS 120
RWĈ 60 120 180 240

eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO
Fixed 3 1.53 1.56 1.47 1.21 1.25 1.38 1.39 1.26 1.38 1.34 1.26 0.89
Fixed 5 1.37 1.35 1.41 0.97 1.35 1.19 0.91 0.98 1.11 0.87 1.04 1.13
Fixed 10 0.88 0.91 1.08 1.08 0.97 1.02 0.87 0.87 1.08 0.90 0.73 0.70

RWOLS 180
RWĈ 60 120 180 240

eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO
Fixed 3 1.70 1.91 1.67 1.30 1.31 1.56 1.56 1.41 1.50 1.51 1.45 0.93
Fixed 5 1.57 1.72 1.43 1.04 1.46 1.38 1.05 1.10 1.25 1.01 1.23 1.19
Fixed 10 1.13 1.04 1.01 1.12 1.00 1.05 0.95 1.07 1.19 0.91 0.82 0.91

RWOLS 240
RWĈ 60 120 180 240

eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO eNet LASSO A-LASSO
Fixed 3 1.74 2.00 1.57 1.48 1.33 1.39 1.52 1.49 1.44 1.61 1.58 0.99
Fixed 5 1.56 1.74 1.55 1.05 1.45 1.15 1.11 1.19 1.19 0.96 1.24 1.13
Fixed 10 1.24 1.29 1.05 0.97 0.91 0.99 0.89 0.98 1.10 0.82 0.83 0.88

Our results suggest that adjusting the penalty factors is a much more effective method of

ensuring sparsity than simply selecting factors based on their coefficient magnitudes. Fixing the
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number of factors improves the average Sharpe ratios for all regression methodologies, with the eNet,

LASSO, and A-LASSO achieving average Sharpe ratios of 1.16, 1.19, and 1.15, respectively. Moreover,

the best results also improve significantly, with the LASSO yielding a top Sharpe ratio of 2.00 (Fixed

3, RWĈ = 60, RWOLS = 240), the Elastic Net got up to 1.74 (Fixed 3, RWĈ = 60, RWOLS = 240),

and the Adaptive LASSO achieving a ceiling of 1.67 (Fixed 3, RWĈ = 60, RWOLS = 180).

Our empirical investigation reveals some intriguing patterns. First, our results suggest that

factor sparsity is important, as both methods applied show improved out-of-sample results, with

Sharpe ratios generally better when considering only three factors. Additionally, shorter periods

for evaluating covariances between factors and assets tend to perform better, indicating that these

covariances should be observed close to the time of prediction. Finally, it appears that longer periods

for regressing selected factors’ returns (delayed by one period) over test assets’ returns are desirable,

indicating that return predictions usually perform better when made over longer time series.

4.3 Fair comparison

Practitioners often use an annualized Sharpe ratio, gross of trading costs, above one as a “rule

of thumb” for considering hedge portfolios’ returns interesting. However:

• No “rule of thumb” should be accepted in relevant scientific research and;

• As all the factor anomalies considered in our study were found significant returns predictors in

other studies, abnormal results may be a byproduct of their documented relevance.

Solely observing the resulting Sharpe ratios of hedge portfolios could raise doubts about the

true benefits of guaranteeing sparsity in an SDF model framework. Therefore, in order to compare

bananas to bananas, we need to use a more stringent benchmark that is adherent to relevant scientific

research.

Table 6: Out-of-sample returns prediction results - benchmark
This table reports out-of-sample annualized Sharpe ratios of hedge portfolios going long-short the 10% of stocks
with the highest-lowest predicted returns, setting the factors as Fama and French (1993), for different RWOLS .

RWOLS 60 120 180 240
3-factors Fama-French 1.38 1.57 1.64 1.49

One way to achieve a fair benchmark is to mimic usual procedures for testing pricing anomalies

while adjusting to our framework. In that spirit, we generated out-of-sample results by fixing the

classic 3-factor model (Fama and French, 1993) factors as relevant - the idea is to bring the classic

benchmark to our set-up. The performance of this benchmark for all OLS windows considered is

presented in Table 6.
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After cross-examining the results presented in Tables 2, 4, and 5 with the new benchmark

performance on Table 6, we can see that outperforming the proposed benchmark is not a simple task.

Simply running the out-of-sample exercise with the 3 Fama-French factors yields Sharpe ratios (gross

of trading costs) as high as 1.64 for RWOLS = 180. For instance, even the best results for Tables 2 and

4 - 1.14 (LASSO, RWĈ = 60, RWOLS = 240) and 1.54 (LASSO, Top 3, RWĈ = 120, RWOLS = 180)

respectively - were unable to outperform the Fama-French based selection.

However, several hedge portfolios were able to outperform this stricter proposed benchmark.

In fact, as shown in Table 7, these portfolios share some common characteristics:

• Fixed n methodology, with n ∈ {3, 5};

• RWĈ = 60 and;

• RWOLS ∈ {180, 240}.

Our findings suggest that the zoo of factors can be reduced satisfactorily by utilizing even the

most basic dimension-reducing techniques and confronting them with a stricter benchmark. Specif-

ically, our results show that when using monthly data in an SDF framework and considering only

eNet, LASSO, and A-LASSO as candidate regression techniques, the most relevant factors should be

selected by analyzing a shorter time span of approximately 60 months, predicting returns based on a

longer time series exceeding 180 months, assuming significant pre-defined sparsity by selecting fewer

than 5 factors, and ensuring set sparsity by adjusting the penalty parameter appropriately.

Table 7: Outperforming hedge portfolios
This table reports the portfolios presented on Tables 2, 4 and 5 that yielded better annualized Sharpe ratios
than the best-performing benchmark portfolio - presented on Table 6.

Regression Methodology RWĈ RWOLS SR
LASSO Fixed 3 60 240 2.00
LASSO Fixed 3 60 180 1.91
eNet Fixed 3 60 240 1.74
LASSO Fixed 5 60 240 1.74
LASSO Fixed 5 60 180 1.72
eNet Fixed 3 60 180 1.70
A-LASSO Fixed 3 60 180 1.67

It is important to acknowledge that utilizing more robust regression methodologies, such as the

OWL (see Sun, 2023) or the Adaptive Group LASSO (see Freyberger et al., 2020), in the proposed

framework has the potential to yield even more expressive results. However, since this article does not

focus on the analysis of those more complex regression models, future research should be undertaken

to validate whether our findings hold under those methods.
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5 Conclusion

In this paper, we have proposed a framework for addressing the issue of high dimensionality in

Stochastic Discount Factor (SDF) models by utilizing penalization regressions, which effectively avoid

biases. Our framework can be applied to any horizon of interest and involves separating the time series

considered during factor selection from that used for predicting one-period-ahead returns. While we

have suggested the use of shrinkage techniques and Ordinary Least Squares (OLS) regression for

factor selection and return projection, respectively, our framework can accommodate any other factor

selection and prediction methodologies.

Furthermore, we have argued that traditional factor-based asset pricing models assume high

sparsity levels arbitrarily, making it possibly interesting to ensure a similar scarcity of factors. To this

end, we have shown a previously used methodology and suggested an alternative criterion for setting

the penalization parameter of a shrinkage regression: set it dynamically, ensuring that a predefined

number of jointly relevant factors are selected. This criterion can be useful when researchers have

prior beliefs about the number of factors to be considered.

Additionally, we have proposed a stricter benchmark for evaluating our portfolios’ results: test

assets are based on anomaly factors that are supposedly relevant, therefore a positive alpha could be a

simple byproduct of their construction. This benchmark is a mixture of our out-of-sample framework

with the classic Fama-French 3 factors model.

We have applied our methodology to a large set of 80 factors proposed in the literature, plus the

market factor, using widely used shrinkage techniques (Elastic Net, LASSO, and Adaptive LASSO),

and considering candidate time periods of 60, 90, 120, and 180 months - for both factor selection

and returns prediction. When considering all selected factors and setting the penalization parameter

through the Bayesian Information Criterion (BIC), the results were not inspiring. However, as we

forced sparsity and considered only factors with the highest coefficients, the results improved sensibly.

Moreover, when utilizing our methodology to select only a pre-defined number of factors by dynam-

ically setting the penalization parameter, we were able even to surpass the stricter benchmark. We

found that shorter windows for factor selection and longer windows for return prediction yield better

results - the rationale is that the relevance of factors should be closely related to the present moment,

and the relationship between selected factors’ returns and test assets’ returns should be estimated

looking at a longer horizon.

Our work should provide a suitable framework for researchers to screen useful factors while using

the SDF approach, and offer them an additional criterion of choice for the penalization parameter

- especially useful for ensuring sparsity. Our results demonstrate that even simple regressions, in

combination with our proposed framework and penalization criterion, can achieve positive results.
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