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Abstract

There is ample evidence that volatility management helps improve the risk-adjusted

performance of momentum portfolios. However, it is less clear that it works for

other factors and anomaly portfolios. We show that controlling by the upside and

downside components of volatility yields more robust risk-adjusted performances

across a broad set of factors and anomaly portfolios, as well as exchange-traded

funds. In particular, we propose semivolatility-managed portfolios that, apart from

deleveraging if downside volatility is high, also exploits the higher expected returns

in times of good volatility. We find that our semivolatility-managed portfolios that

control for both skewness and downside volatility perform better than unmanaged

portfolios and the extant (semi)volatility management proposals.

1 Introduction

There is a hot debate on whether volatility management indeed leads to higher risk-

adjusted performance and utility gains for the investor (Barroso and Santa-Clara, 2015;

Eisdorfer and Misirli, 2017; Moreira and Muir, 2017; Liu et al., 2019; Cederburg et al.,

2020; Barroso and Detzel, 2021). The motivation for such a strategy is simple. Volatility

is more persistent than expected returns, and hence timing risk exposure makes more

sense than expected returns to boost the return-to-variability ratio. This should work as

long as past volatility does not positively correlate with future returns (see, for instance,

the excellent discussion in Ai et al., 2022).

In view that returns are not Gaussian, investors should perhaps beware more of down-

side risk given that they worry mostly about underperforming (Roy, 1952; Markowitz,

1959; Sortino and van der Meer, 1991; Ang et al., 2006). Accordingly, we offer a frame-

work that relies on semivolatility management in order to reflect how investors perceive

risks. Wang and Yan (2021) take a similar route. They find that scaling by downside
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volatility yields significantly better performance relative to scaling by volatility because

the former is relatively better at predicting future returns. We complement their analysis

by showing how to exploit upside risks, as well.

Our approach rests on realized partial second moments, allowing us to control not only

for downside volatility, but also for conditional skewness and kurtosis. In particular, we

consider three partial second moments: downside volatility (or negative semivolatility),

upside volatility (or positive semivolatility), and partial volatility below a certain quantile.

Downside volatility has a long pedigree in finance (Roy, 1952; Markowitz, 1959). See,

among others, Markowitz et al. (1993), Ballestero (2005), and Estrada (2007) for recent

applications in portfolio allocation. There is also a vast literature on decomposing the

realized volatility into their downside and upside components (Barndorff-Nielsen et al.,

2008; Bollerslev et al., 2020b, 2022b). For instance, Bollerslev et al. (2020a) find that

downside and upside variances behave very differently over time, even if both help predict

future realized volatility. As for finer decompositions based on partial second moments,

Bollerslev et al. (2022a) show how to employ machine-learning methods to choose quantiles

that maximize the out-of-sample forecast performance of time series models based on

realized partial (co)variances.

The interesting aspect of combining these partial variances is that it permits controlling

for higher moments. For instance, the downside-to-upside volatility ratio reflects skewness,

whereas the partial volatility below a low quantile (say, first quartile) gauges tail thickness,

and hence to some extent kurtosis. Accordingly, apart from scaling portfolios by the total

variance as in Moreira and Muir (2017), we propose scaling by the ratio of the downside

to upside variance, the ratio of the downside variance to the upside volatility, and by the

product between the downside-to-upside variance ratio and the partial variance below the

first quartile. Our first proposal not only controls for downside risk, but also exploits

upside risk. It does not affect much the investment position in times of conditional

symmetry, though. The second scaling strategy handles this issue by using the upside

volatility rather than variance. Even if the downside and upside volatilities coincide,

risk exposure changes because of the extra downside volatility. The same happens in our

third scaling method, with the difference that it focuses more on the tail of the conditional

distribution. This means that our second and third proposals actually control for higher-

order moments: skewness and downside variance in the second, whereas skewness and

(downside) kurtosis in the third.

We empirically assess our semivolatility-managed portfolios using a very broad set of

test strategies. It features not only factors and anomaly portfolios as in Barroso and

Santa-Clara (2015), Moreira and Muir (2017), Liu et al. (2019), Cederburg et al. (2020),

Barroso and Detzel (2021), and Wang and Yan (2021), but also exchange-traded funds
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(ETFs). We include the latter for two reasons. First, they are tradeable, in contrast to

factors and anomaly portfolios. Second, we can obtain very precise realized estimates of

partial variances using ETF returns at the 1-minute frequency. To carry out a robust

assessment, we account for every point that Liu et al. (2019) and Cederburg et al. (2020)

raise against Moreira and Muir’s (2017) empirical analysis. The first point is about re-

stricting attention exclusively to real-time information. Moreira and Muir (2017) estimate

the scaling constant using the full sample, thereof inducing a look-ahead bias. This is a

minor point because, in principle, the scaling constant does not affect risk-adjusted per-

formance measures. However, the optimal weight between the managed and unmanaged

portfolios that expands the mean-variance frontier depends on the alpha estimate (i.e.,

intercept of the spanning regression). As before, this obviously depend on the full sample,

casting doubt on the genuine ability of spanning regressions to distinguish performance.

We tackle both these issues. First, we employ only real-time information to estimate

the scaling constant. Perhaps surprisingly, this actually improves the performance gains

of managed portfolios. Second, we do not rely exclusively on spanning regression tests

to check whether semivolatility management indeed entail performance gains relative to

unmanaged and volatility-managed portfolios. We provide direct comparisons of Sharpe

ratios and, due to our interest in downside risk, of Sortino ratios. To test whether the

difference in Sharpe and Sortino ratios are significant, we employ Ledoit and Wolf’s (2008)

bootstrap-based test rather than Jobson and Korkie’s (1981) test as in Cederburg et al.

(2020). The former avoids the assumption of iid Gaussian returns in the latter, which

makes no sense in the context of volatility timing. We nonetheless report the results of

both tests, revealing that the Jobson-Korkie test apparently rejects too often the null

hypothsis of equal risk-adjusted performances. Finally, Cederburg et al. (2020) argue

that Moreira and Muir’s (2017) volatility-management strategy could well reach imprac-

ticable leverage levels in the absence of a more realistic restriction. To make sure our

(semi)volatility-managed portfolios are indeed feasible, we truncate scaling to a reason-

able value of at most two.

We find that our semivolatility-managed proposal that controls for both downside

variance and skewness offers more robust risk-adjusted performance gains than the extant

methods in the literature. In particular, it yields significant gains in both Sharpe and

Sortino ratios, especially for the worst-performing factors and anomaly portfolios. Scaling

by the downside-to-upside volatility ratio has little effect for the bulk of the factors and

anomaly portfolios, though. Controlling either for downside volatility or for both skewness

and kurtosis pay off across the board, as opposed to volatility management that helps

mostly the best-performing factors and anomaly portfolios.

Finally, we also discuss how the pricing errors of the Fama-French three- and five-
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factor models change as we move from unmanaged to managed factors. To do so, we

employ Barillas et al.’s (2020) procedure for nonnested factor model comparisons. We

find that, using the three-factor model, semivolatility management pays off at the 5%

significance level if we time either downside volatility or both volatility and skewness. For

the five-factor model, scaling by downside volatility yields Sharpe ratio improvements at

the 5% level, whereas managing both volatility and skewness significantly ameliorates the

Sharpe ratio at the 1% level. In particular, the maximum attainable Sharpe ratio of the

Fama-French factor model increases from 1.08 to 1.38 once we replace unmanaged factors

by our semivolatility-managed factor that controls for both volatility and skewness.

Our study on (semi)volatility management is part of a larger literature on factor

timing. Moreira and Muir (2017) claim that investors can improve Sharpe ratios by de-

creasing exposure to risk factors when their volatility is high. Barroso and Detzel (2021)

show however that these gains disappear in times of low sentiment once we account for

transaction costs. Bianchi et al. (2022) show how to improve the volatility-managed mo-

mentum portfolio by controlling for conditional skewness. DeMiguel et al. (2021) entertain

weights on multifactor portfolios that depend on the market volatility, instead of focusing

on individual portfolios. They show that volatility-management of the multifactor portfo-

lio weights outperforms the unconditional multifactor portfolio, net of transaction costs,

regardless of whether sentiment is high or low. Volatility is not the unique timing variable

in this literature, though. For instance, Haddad et al. (2020) time their risk factors using

the book-to-market spread of the principal components of a large panel of equity factors.

There are also many papers that condition risk premia on macroeconomic indicators: e.g.,

Bass et al. (2017), Amenc et al. (2019), Bender et al. (2019), and Gómez-Cram (2022).

The remainder of the paper proceeds as follows. Section 2 describes the data and

methodology, whereas Section 3 discusses whether (semi)volatility management indeed

yields risk-adjusted performance gains across different factors, anomaly portfolios, and

exchange-traded funds. Section 4 concludes.

2 Data and methodology

In this section, after describing the data, we discuss the extant volatility and semivolatil-

ity management strategies in the literature, and then propose our version based on partial

variances. Next, we go through our assessment methodology. Apart from spanning re-

gressions as in Moreira and Muir (2017) and the Jobson-Korkie test as in Cederburg et al.

(2020), we entertain Ledoit and Wolf’s (2008) test for Sharpe ratio differentials as well

as Barillas et al.’s (2020) cross-section relative test for nonnested factor models. Finally,

given our interest in downside risk, we also extend the Ledoit-Wolf test to compare Sortino
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ratios.

2.1 Data description

We employ a wide array of test assets that we classify in three groups. The first set

comprises ten equity factors: market (MKT), size (SMB), and value (HML) from Fama

and French (1993); momentum (MOM) from Carhart (1997); betting against beta (BAB)

from Frazzini and Pedersen (2014); investment (CMA and IA) and profitability (RMW

and ROE) from Fama and French (2015) and Hou et al. (2015); and expected growth

(EG) from Hou et al. (2021). Daily data on MKT, SMB, HML, MOM, RMW, and

CMA returns are from Kenneth French’s website at http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french, whereas BAB returns come from Andrea Frazzini’s website

at http://people.stern.nyu.edu/afrazzin. Data on IA, ROE and EG are available at

http://global-q.org/factors.html. This is exactly the group of factors that Moreira

and Muir (2017) consider, except for the addition of the EG factor.

Table 1 displays the (annualized) descriptive statistics for the monthly factor returns.

EG, MKT and BAB exhibit the highest average returns respectively at 9.65%, 8.26% and

8.21%, whereas SMB, RMW and CMA display the smallest mean returns respectively at

2.45%, 3.10% and 3.17%. Although it features not-so-high average returns, momentum is

definitely the riskiest factor, with a volatility of 16.30%, downside semivolatility of 12.48%,

and a shocking minimum return of -52.27%. This is actually consistent with the stylized

fact that momentum typically goes up by escalator, but goes down by elevator (Barroso

and Santa-Clara, 2015). For the sake of comparison, the second riskiest is MKT, with a

slightly higher volatility of 18.52%, downside semivolatility of 12.27%, and a minimum

return of -29.13%. As expected, all factor returns are far from Gaussian, displaying

some skewness and very thick tails judging by their excess kurtosis. In particular, the

distributions of MOM, SMB and HML returns are heavily skewed and leptokurtic.

The second refers to a large panel of anomaly portfolios that helps characterize the

cross-section of expected returns (Kozak et al., 2020). We extract daily returns on

207 anomaly portfolios from Chen and Zimmermann’s (2022) database, available at

https://www.openassetpricing.com/. They construct each portfolio following closely

the guidelines of the corresponding original paper.1 As such, their returns strongly cor-

relate with the returns on the anomaly portfolios that appear in Serhiy Kozak’s website

at https://www.serhiykozak.com/data, for instance. The sample period varies across

anomaly portfolios. The longest time spans are for price from Blume and Husic (1973) and

spinoff from Cusatis et al. (1993), with 25,297 daily observations from January 2, 1926 to

1 See full documentation at https://drive.google.com/file/d/1PDFl3pKwbY8DH5S9PWH_

Op16HPo2wZL1/view.
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December 31, 2021. The shortest sample lengths are for deferred revenues from Prakash

and Sinha (2013) and for takeover vulnerability and active shareholders from Cremers

and Nair (2005), with 4,137 daily observations from October 1st, 1990 to February 28,

2007.

Figure 1 exhibits box plots for the main descriptive statistics of the 207 anomaly

portfolios. Average returns are typically between 3% and 8% per annum, with very few

anomaly portfolios displaying negative returns. The exceptions are governance index

from Gompers et al. (2003); firm age from Barry and Brown (1984); pension funding

status from Franzoni and Marin (2006); sales growth over overhead growth from Abar-

banell and Bushee (1998); and cash-flow-to-price variance from Haugen and Baker (1996).

Most anomaly portfolios have annualized volatility between 8% and 16% and downside

semivolatility between 5% and 11%. There is a lot of dispersion as what concerns skew-

ness, whereas anomaly portfolios typically display a large amount of excess kurtosis.

The third group of test assets consists of 71 exchange-traded funds, whose 1-minute

returns we collect from the Pi Trading database, available at https://pitrading.com/.2

Access to intraday data is paramount to alleviate concerns about the precision of the

monthly realized partial moments. Indeed, there is not much room for precision if we have

to estimate monthly realized semivariances using daily data. Accordingly, we compute

their monthly realized measures using 1-minute returns to ensure small-sample bias does

not drive the results. Although the ETF data covers the period running from July 1998 to

February 2017, the starting date varies across funds. Table 2 describes the sample period

of each ETF we consider. In particular, Dow Jones Industrial Average ETF (DIA), iShares

MSCI Japan Index Fund (EWJ), and SPDR S&P 500 (SPY) are the only funds for which

we have data for the entire sample period of 224 months. In turn, the shortest time series

is of 70 months for PowerShares S&P 500 Low Volatility Portfolio (SPLV), ranging from

May 2011 to February 2017.

Figure 2 displays box plots for the main descriptive statistics of the 71 exchange-traded

funds. There is a lot of dispersion in average returns, with the bulk of the cross-section dis-

tribution around 5% per annum. There are many ETFs with very negative mean returns,

though. Consistently, we also observe many ETFs with very negative skewness. Both

volatility and semivolatility are typically higher for ETFs than for factors and anomaly

portfolios, ranging mostly from 20% to 40% and from 15% to 30%, respectively. ETF

returns are also very far from Gaussian, exhibiting both negative skewness and excess

kurtosis.

2 We do not use all of the 573 exchange-traded funds in the database, because most of them do not

have enough liquidity.
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2.2 Timing (downside) risk

Although the literature refers to volatility management, the practice is to actually time

realized (semi)variances. Moreira and Muir (2017) indeed claim that targeting variance

yields slightly better performance than timing volatility. As such, they entertain the

following volatility-management strategy:

f(σ),t =
c(σ)
σ̂2
t−1

ft, (1)

where σ̂2
t−1 is the conditional variance estimate at month t− 1 and ft is the buy-and-hold

portfolio (excess) return. The scaling constant c(σ) standardize the managed portfolio so

that it has the same unconditional variance of the unmanaged portfolio.

Wang and Yan (2021) argue that (2) should perform better than (1) because downside

semivariance negatively correlates with future returns more strongly than variance. Ac-

cordingly, they time downside risk by restricting attention to the negative semivariance:

f(−),t =
c(−)

σ̂2
(−),t−1

ft, (2)

where σ̂2
(−),t = 1

T

∑T
d=1 min(0, rd,t)

2 and rd,t are returns at day d (or minute in the ETF

case) within month t. The scaling constant c(−) now standardizes the managed portfolio

so that it has the same unconditional negative semivariance of the unmanaged portfolio.

Next, we introduce our risk timing strategies based on partial second moments that

account to some extent for higher-order moments. The first attempts to control for both

downside and upside risks, deleveraging if the former is high, while scaling up if the latter

is high. In particular, we scale by the downside-to-upside variance ratio:

f(+/−),t = c(+/−)
σ̂2
(+),t−1

σ̂2
(−),t−1

ft, (3)

where σ̂2
(+),t = 1

T

∑T
d=1 max(0, rd,t)

2 and c(+/−) ensures the unconditional downside vari-

ance remains the same, as before. A problem with (3) is that, under distributional sym-

metry, the positive and negative semivariances coincide, keeping the portfolio unchanged

irrespective of the volatility levels. As such, it essentially times skewness, scaling up or

down according to whether symmetry is positive or negative.

Our second proposal deals with the symmetry issue by replacing the upside variance

by the upside volatility in the numerator:

f(
√
+/−),t = c(

√
+/−)

σ̂(+),t−1

σ̂2
(−),t−1

ft (4)

with c(
√
+/−) denoting the scalar that keeps the unconditional negative semivariance con-

stant. To understand exactly which risks we control with (4), we decompose the reciprocal
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of the investment position into the product of the semivolatility ratio σ̂(−)/σ̂(+) and the

downside volatility σ̂(−). The downside-to-upside volatility ratio accounts for skewness,

exploiting upside risk when symmetry is positive and deleveraging when skewness is neg-

ative. At the same time, the second term in the decomposition controls for (downside)

volatility, even in times of symmetric returns.

Our last strategy aims to control for tail risk, by contemplating the partial variance

below the first quantile: namely, σ̂2
(q),t = 1

T

∑T
d=1 min(q, rd,t)

2, where q denotes the first

quartile of the empirical distribution of the returns at the highest frequency (Bollerslev

et al., 2022a). It is obviously much harder to estimate partial moments at the tails.

This is why we restrict attention to the first quantile and exclusively to exchange-traded

funds, for which we can estimate monthly partial variances very precisely using 1-minute

returns.3 This results in managed portfolios of the form

f(q),t =
c(q)

σ̂2
(q),t−1

σ̂2
(+),t−1

σ̂2
(−),t−1

ft (5)

with c(
√
+/−) denoting the scaling constant that ensures that the managed and unman-

aged portfolios have the same unconditional negative semivariance. As before, while

the downside-to-upside volatility ratio scales leverage up and down according to whether

skewness is positive or negative, the first fraction ensures that we deleverage if there is

too much mass on the negative tail. This implies that (5) controls to some extent for both

skewness and (downside) kurtosis.

In the empirical application, we consider several configurations for the above risk

timing strategies, in order to take Liu et al.’s (2019) and Cederburg et al.’s (2020) critiques

into account. First, we fix the scaling constant as in Moreira and Muir (2017), using the

entire sample to compute the unconditional variance of the unmanaged portfolio, as well

as using only real-time information. Second, we do not allow leverage to run amok by

constraining their magnitude to at most two. The aim is to mitigate concerns about

the (in)feasibility, in practice, of the investment positions. To understand how leverage

constraints affect the (semi)volatility-management performance, we report results with

and without imposing leverage restrictions.

One last remark is that the scaling constant should not affect per se Sharpe and Sortino

ratios given that they do not depend on the unconditional variance of the portfolio returns.

However, once we constrain leverage to prevent unrealistic investment positions, the value

of the scaling factor becomes more relevant. By using exclusively real-time information,

our estimate of the unconditional (semi)variance of the unmanaged portfolio becomes

more local. This also ends up alleviating leverage constraints.

3 Our findings are nonetheless similar for values of q between the 5th and 25th percentiles. The

results are available from the authors upon request.
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2.3 Assessing performance gains

Our interest lies on understanding whether timing risk leads to investors’ utility gains.

As such, we check whether (semi)volatility-managed portfolios indeed outperform their

unmanaged counterparts. To do so, we employ not only the testing approaches previously

used in the literature, but also some additional analyses.

The first test rests on spanning regressions, as in Moreira and Muir (2017). We regress

returns to the managed portfolio on returns to the unmanaged (buy-and-hold) portfolio:

f(·),t = α + β ft + ut, (6)

where ut is a white noise. If α differs from zero in (6), the managed strategy helps expand

the mean-variance frontier. This means there is a linear combination of the managed

and unmanaged portfolios that achieves a higher Sharpe ratio than before. The spanning

regression test then checks whether there is enough statistical evidence to reject the null

hypothesis H0 : α = 0 in favor of the alternative hypothesis H1 : α 6= 0. This does not

boil down to a direct comparison of Sharpe ratios, though. Cederburg et al. (2020) show

that a positive alpha in the spanning regression does not necessarily lead to Sharpe Ratio

improvements. In addition, the optimal weight on f(·) in the factor combination depends

on α, thereof requiring ex-post information.

The second set of tests explicitly compares the risk-adjusted performance of managed

portfolios relative to their original buy-and-hold versions. For instance, Cederburg et al.

(2020) employ Jobson and Korkie’s (1981) test to assess whether managed portfolios

indeed improve on the Sharpe ratio of unmanaged portfolios. Let the returns on strategies

i and j be stationary with mean µ = (µi, µj)
′ and covariance matrix

Σ =

(
σ2
i σij

σij σ2
j

)
.

Jobson and Korkie’s interest is in the difference between their Sharpe ratios, namely,

∆ = SRi− SRj, with SR = µ/σ. We estimate both means and variances by their realized

counterparts.

Let θ = (µi, µj, σ
2
i , σ

2
j )
′. Under the assumption of iid Gaussian returns, Memmel

(2003) first establishes that
√
T (θ̂ − θ)

d−→ N(0,Ω), with

Ω =


σ2
i σij 0 0

σij σ2
j 0 0

0 0 2σ4
i 2σ2

ij

0 0 2σ2
ij 2σ4

j

 ,

and then obtains the asymptotic variance of ∆̂ by the delta method. The main problem

with the Jobson-Korkie test is that Memmel’s derivation assumes iid Gaussian returns.
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This assumption makes no sense in the context of (semi)volatility management, though.

If (semi)volatility changes over time in a persistent fashion, returns are neither iid, nor

unconditionally Gaussian. Ledoit and Wolf (2008) nonetheless derive a bootstrap version

of the test that allows not only for serial correlation and conditional heteroskedasticity in

the returns, but also heavy tails. Accordingly, although we also report the Jobson-Korkie

test, we rely mostly on the Ledoit-Wolf test in our empirical assessment.

Given our interest in downside risks, we extend both Jobson-Korkie and Ledoit-Wolf

tests for Sortino ratio comparisons. The interest now lies on ∆(−) = SR(−),i − SR(−),j,

with SR(−) = µ/σ(−). As before, we stack the parameters of interest into a vector θ(−) =

(µi, µj, σ
2
(−),i, σ

2
(−),j) and then estimate both means and semivariances by their realized

counterparts. To establish the asymptotic behavior of ∆̂(−), we assume as in Barndorff-

Nielsen et al. (2008) that asset prices follow a Brownian semimartingale process:

Pk,t =

∫ t

0

ak,s ds+

∫ t

0

σk,s dWk,s,

where ak,s is a locally bounded, predictable drift process and σk,s is càdlàg volatility

process, for asset k ∈ {i, j}.
In the case of iid Gaussian returns, it follows that σk = σk,s is constant over time

and that var(σ̂2
(−)) = (5/4)σ4. In addition, normality also implies that cov(σ2

(·),i, σ
2
(·),j) =

cov(σ2
i , σ

2
j )/4 = σ2

ij/2, in view not only that σ2
(−),k = σ2

(+),k = σ2
k/2 for k = i, j but also that

cov(σ2
i , σ

2
j ) = cov(σ2

(+),i, σ
2
(+),j) + cov(σ2

(+),i, σ
2
(−),j) + cov(σ2

(−),i, σ
2
(+),j) + cov(σ2

(−),i, σ
2
(−),j).

As such, the covariance matrix of θ̂(−) reads

Ω(−) =


σ2
i σij 0 0

σij σ2
j 0 0

0 0 (5/4)σ4
i σ2

ij/2

0 0 σ2
ij/2 (5/4)σ4

j

 .

Applying the delta method then yields that, under iid Gaussian returns, the asymptotic

variance of ∆̂(−) is 1
T

(
σ2
i

σ(−),i)
2 − 2σij

σ(−),iσ(−),j
+

σ2
j

σ2
(−),j

+
5µ2i σ

4
i

16σ6
(−),i

− µiµjσ
2
ij

4σ3
(−),i

σ3
(−),j

+
5µ2jσ

4
j

16σ6
(−),j

)
. To

relax the iid Gaussian assumption, it suffices to follow the block-bootstrap procedure of

Ledoit and Wolf (2008).4

For completeness, we entertain three scenarios for the above tests. The first is as in

Moreira and Muir (2017), without any restriction on leverage or on the use of ex-post

information. The second restricts leverage to at most two, in order to avoid unfeasible

investment positions. The third uses only real-time information to set the value of the

scaling constants, apart from constraining leverage as in the second.

4 A small Monte Carlo study shows the asymptotic validity of both Jobson-Korkie and Ledoit-Wolf

tests for Sortino ratios. These results are available upon request.

10



Our third assessment rests on testing the difference in the squared maximum Sharpe

ratio that we can attain from two nonnested factor models, in order to determine which

model yields smaller pricing errors. Barillas et al. (2020) extend the asymptotic theory

of Barillas and Shanken (2017) to accommodate nonnested models and nontraded fac-

tors, under the assumption of jointly stationary and ergodic returns with finite fourth

moments.5 For a given set of factors F , the square of the maximum-attainable Sharpe

ratio is µ′FΣ−1F µF , where µF is the vector of average returns and ΣF is the covariance

matrix of the factors. The test then gauges the differences in squared Sharpe ratios.

In particular, we assess whether the squared maximum-attainable Sharpe ratios of the

Fama-French three- and five-factor models increase once we replace the original factors

with their managed counterparts.

Finally, we complement our cross-sectional analysis by testing for first-order stochastic

dominance in the empirical distributions of Sharpe and Sortino ratios of the anomaly

portfolios and ETFs. More specifically, we carry out Barrett and Donald’s test (2003) to

check whether each (semi)volatility-management strategy displays first-order stochastic

dominance with respect to their unmanaged counterparts. The plots of the empirical

distributions are also very helpful to understand how each (semi)volatility management

strategy behaves as we move from the lowest to highest performing factors, anomaly

portfolios and exchange-traded funds.

3 How does risk timing fare empirically?

To build managed portfolios, we estimate the realized partial variances at month t

using daily returns on factors and anomaly portfolios and 1-minute ETF returns within

month t. To estimate the scaling factor using only real-time information, we burn in the

first 24 months for initialization purposes. We then expand the estimation window as we

move along the sample so as to include the entire past. In what follows, we mainly discuss

our findings for the feasible portfolios that restrict attention only to real-time information

and truncate the magnitude of the investment position.

The first panel of Table 3 reports the OLS estimates of the spanning-regression al-

phas for the sample of factor returns, with p-values based on heteroskedasticity-and-

autocorrelation consistent (HAC) standard errors. The second and third panels document

respectively the differences in Sharpe and Sortino ratios between managed and unman-

aged factors, which we assess using both Jobson-Korkie and Ledoit-Wolf tests. There

are two patterns that strike the eyes. First, a statistically nonzero alpha in the span-

5 They also show how to control for the small-sample bias in the estimation of the squared Sharpe

ratio of nontraded factors.
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ning regression does not automatically translate into significant changes in risk-adjusted

portfolio. There are many managed factors with positive alphas that entail lower Sharpe

ratios than their unmanaged counterparts. Second, it is much harder to find significant

evidence of better performance with direct comparisons than with spanning regressions.

Along the same lines, the Ledoit-Wolf bootstrap-based test sets a much higher bar than

the Jobson-Korkie test based on the iid Gaussian assumption.

In line with Moreira and Muir (2017), we find that volatility management yields signif-

icantly positive alphas for MKT, HML, MOM, RMW, BAB, IA, ROE, and EG. However,

once we focus on the direct comparisons, volatility-managed factors do not perform so

well. Timing volatility helps improve the Sharpe ratio of the momentum factor at the

5% significance level, as well as the Sortino ratios of MOM and ROE with p-values only

slightly above 5%. Timing downside variance as in Wang and Yan (2021) fails to produce

alpha for only two factors in the spanning regressions (CMA and IA). In contrast, we find

little evidence that it ameliorates the risk-adjusted performances of the factors, except for

RMW and BAB. Timing skewness has the worst performance in the spanning regressions,

failing to produce significantly positive alphas for MOM, CMA, IA and EG. It nonethe-

less enhances the risk-adjustment performance of three factors: HML, RMW and BAB.

Timing both skewness and downside variance seems to payoff, though. It fails to pro-

duce alpha only for MOM and CMA, whereas it yields at the 5% significance level higher

Sharpe ratios for HML, RMW and BAB, and higher Sortino ratios for HML, RMW, BAB

and ROE.

Altogether, timing second moments does not work so well for MKT, SMB, CMA, IA

and EG, whereas only volatility management improves on MOM. This justifies ex-post

why Barroso and Santa-Clara (2015) focus exclusively on timing momentum. At any

rate, timing both skewness and downside variance yields the best overall performance for

managed factors.

We now turn our attention to the broader set of test portfolios. Table 4 documents

how (semi)volatility management performs relative to just buying and holding anomaly

portfolios and exchange-traded funds. The spanning regressions yield significantly positive

alphas for 142 anomaly portfolios (out of 207) when timing downside risk. This figures

slightly decreases to 138 if we time both skewness and downside risk, but drops drastically

to 110 and 102 if we time only total volatility or skewness, respectively. The direct

comparisons of Sharpe and Sortino ratios reveal similar relative performances, with f(−)

and f(
√
+/−) easily outclassing both f(σ) and f(+/−). The Jobson-Korkie test indicates a

very small advantage to timing only downside variance, which improves the Sharpe ratio

of 63 anomaly portfolios and the Sortino ratio of 89 portfolios, relative to timing both

skewness and downside variance (63 and 86, respectively). The more realistic assessment
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based on bootstrap flips the advantage to timing both downside variance and skewness:

34 against 30 and 38 against 35, respectively.

We next examine the performance of timing (partial) second moments for 71 ETF

returns in excess over the 1-month T-bill rate. The motivation is twofold. First, our

realized measures of partial variances are much more precise due to the access to 1-

minute ETF returns. Second, investors can easily trade ETFs as opposed to the above

risk factors and anomaly portfolios. Unfortunately, Table 4 reveals that (semi)volatility

management does not perform as well as one would expect from our previous findings.

Timing both skewness and downside variance yields once more the largest number of

significantly positive alphas (17) and differences in Sharpe and Sortino ratios (17 and 19,

respectively). Timing skewness and kurtosis performs at par with f(σ) and f(−), whereas

timing skewness performs the worst of all.

For the sake of brevity, we omit the results for the less realistic settings without

leverage restrictions and using the full sample for the estimation of the scaling factor. A

very brief summary is as follows. If we do not restrict attention to real-time information,

the risk-adjusted performance worsens very slightly across the board. If we keep leverage

unchecked, investment positions become impractically large in magnitude, resulting in

extremely unrealistic alphas in the spanning regressions.

Lastly, we complement the above time-series analyses with some cross-sectional tests.

Table 5 documents the t-statistics of the difference in the squared maximum Sharpe ratio

we can attain from managed and unmanaged Fama-French three- and five-factor models.

We compute the t-statistics for nonnested models with nontraded factors, as in Barillas

et al. (2020). Although every timing strategy helps reduce pricing errors, and hence

improve the maximum-attainable Sharpe ratio, these enhancements are significant only

for f(−) and f(
√
+/−). Table 6 reports pairwise tests of first-order stochastic dominance

(Barrett and Donald, 2003). Given that these tests are noncommutative and do not

account for local dominance, we check whether the risk-adjusted performances of managed

portfolios stochastically dominate those of the unmanaged portfolios, and vice-versa. We

find no evidence at the usual significance levels that unmanaged portfolios dominates

any of the (semi)volatility- managed portfolios. In contrast, we find relatively strong

evidence that f(σ), f(−) and f(
√
+/−) stochastically dominate the unmanaged portfolio for

both anomaly portfolios and exchange-traded funds.

Perhaps more important than the stochastic dominance analysis between managed

and unmanaged portfolios is to understand which anomaly portfolios and ETFs each tim-

ing strategy seems to improve. Figures 3 and 4 report the cross-sectional distribution of

Sharpe and Sortino ratios of the managed and unmanaged anomaly portfolios, respec-

tively. They reveal that timing only skewness helps only the worst-performing anomaly
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portfolios, whereas volatility management works best with the top-performing anomaly

portfolios. Timing both skewness and downside volatility also enhances the Sharpe ratios

of the worst-performing portfolios, while working as well as timing only downside volatility

in the bulk of the distribution. In addition, timing risk seems to have a stronger impact

on Sortino ratios than on Sharpe ratios. Figures 4 and 5 unveil a slightly different pattern

for exchange-traded funds. Timing skewness helps only funds with negative Sharpe ra-

tios, whereas the remaining timing strategies perform best for funds with positive Sharpe

ratios.

To sum up, our empirical investigation reproduces well enough the extant analyses

in the literature: e.g., the spanning regressions in Moreira and Muir (2017) and the

direct comparisons in Cederburg et al. (2020) and Wang and Yan (2021). In addition,

it contributes by entertaining novel timing strategies that aim to control for higher-order

(partial) moments. Our results are quite encouraging, especially if we scale risk exposures

by both skewness and downside volatility. Despite the methodological differences, this

seems in line with Bianchi et al.’s (2022) evidence that adjusting for conditional skewness

improves the risk-adjusted performance of the volatility-managed MOM portfolio.

4 Conclusion

It is still subject to ongoing debate what are the benefits, if any, of volatility timing

on active portfolio management. This work contributes to the literature by entertaining

timing strategies that target different combinations of partial second moments to control

for higher-order moments. It also innovates in assessing how (semi)volatility manage-

ment performs for exchange-traded funds. Our empirical analysis evince that volatility

management does not enhance the risk-adjusted performance of the vast majority of risk

factors, anomaly portfolios, and exchange-traded funds. Our timing strategy that con-

trols for both downside volatility and skewness performs more robustly across the board,

particularly improving the Sharpe and Sortino ratios of the worst-performing portfolios.

We still need to check how trading costs affect our results, as well as to extend our

analysis in two directions. The first is to consider multiple rather than individual tests as

in DeMiguel et al. (2021). The second is to propose a more general timing strategy that

explicitly accounts for jumps. As it stands, we deal with jumps only implicitly by looking

either at the downside-to-upside variance ratio or at the partial variance below the first

quartile.
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Table 1: Descriptive statistics for the monthly returns on the factors

We describe the set of factors we consider by reporting the number of monthly time-series observations in ‘size’, sample period in columns ‘start’

and ‘end’, annualized average, minimum, and maximum returns, annualized standard deviation in ‘volatility’, annualized downside deviation

in ‘semivolatility’, skewness, and excess kurtosis. MKT is the Fama-French market factor, as measured by the excess returns on the market

portfolio; SMB is the Fama-French size factor, as measured by the small-minus-big mimicking portfolio; HML is the Fama-French value factor, as

measured by the high-minus-low mimicking portfolio; MOM is the momentum factor, as measured by the winners-minus-losers portfolio; RMW

is the Fama-French profitability factor, as measured by the robust-minus-weak mimicking portfolio; CMA is the Fama-French investment factor,

as measured by the conservative-minus-aggressive mimicking portfolio; BAB is the betting-against-beta factor; IA is the investment q-factor;

ROE is the profitability q-factor; and EG is the expected growth q-factor.

factor size start end mean minimum maximum volatility semivolatility skewness excess kurtosis

MKT 1,139 07/1926 05/2021 8.26% -29.13% 38.85% 18.52% 12.27% 0.17 7.60

SMB 1,139 07/1926 05/2021 2.45% -16.82% 36.70% 11.02% 6.59% 1.88 18.82

HML 1,139 07/1926 05/2021 4.09% -13.96% 35.46% 12.17% 6.89% 2.07 18.24

MOM 1,133 01/1927 05/2021 7.66% -52.27% 18.36% 16.30% 12.48% -2.96 26.82

RMW 695 07/1963 05/2021 3.10% -18.48% 13.38% 7.55% 4.91% -0.30 11.95

CMA 695 07/1963 05/2021 3.17% -6.86% 9.56% 6.93% 4.19% 0.32 1.53

BAB 1,086 12/1930 05/2021 8.21% -21.95% 18.65% 11.29% 7.44% -0.68 7.02

IA 648 01/1967 12/2020 4.01% -7.16% 9.24% 6.55% 3.93% 0.15 1.22

ROE 648 01/1967 12/2020 6.07% -14.46% 10.38% 8.87% 5.98% -0.91 5.72

EG 648 01/1967 12/2020 9.65% -9.72% 11.51% 6.85% 3.51% 0.11 3.95
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Table 2: List of exchange-traded funds in our sample

For each ETF ticker in the sample, we display its description and sample period. The column ‘size’ reports

the number of monthly time-series observations, whereas ‘start’ and ‘end’ document the first and last month

of the sample.

ticker ETF size start end

DBC PowerShares DB Commodity Index Fund 133 02/2006 02/2017

DIA SPDR Dow Jones Industrial Average ETF 224 07/1998 02/2017

DUST Direxion Daily Gold Miners Bear 3x Shares 75 12/2010 02/2017

DVY iShares Dow Jones Select Dividend Index Fund 160 11/2003 02/2017

DXD ProShares UltraShort Dow30 128 07/2006 02/2017

EDC Direxion Daily Emerging Markets Bull 3X Shares 99 12/2008 02/2017

EDZ Direxion Daily Emerging Markets Bear 3x Shares 99 12/2008 02/2017

EEM iShares MSCI Emerging Markets Index Fund 167 04/2003 02/2017

EFA iShares MSCI EAFE 171 12/2002 02/2017

ERX Direxion Daily Energy Bull 3x Shares 100 11/2008 02/2017

ERY Direxion Daily Energy Bear 3x Shares 100 11/2008 02/2017

EWJ iShares MSCI Japan Index Fund 224 07/1998 02/2017

EWT iShares MSCI Taiwan Index Fund 171 12/2002 02/2017

EWW iShares MSCI Mexico Index Fund 171 12/2002 02/2017

EWY iShares MSCI South Korea Index Fund 171 12/2002 02/2017

EWZ iShares MSCI Brazil Index Fund 171 12/2002 02/2017

FAS Direxion Daily Financial Bull 3x Shares 100 11/2008 02/2017

FAZ Direxion Daily Financial Bear 3x Shares 100 11/2008 02/2017

FXI iShares FTSE/Xinhua China 25 Index Fund 149 10/2004 02/2017

GDX Market Vectors Gold Miners ETF 130 05/2006 02/2017

GDXJ Market Vectors Junior Gold Miners ETF 88 11/2009 02/2017

GLD SPDR Gold Shares 148 11/2004 02/2017

HYG iShares iBoxx $ High Yield Corporate Bond Fund 119 04/2007 02/2017

IBB iShares Nasdaq Biotechnology Index Fund 171 12/2002 02/2017

IJR iShares S&P SmallCap 600 Index Fund 171 12/2002 02/2017

IVV iShares S&P 500 Index Fund 171 12/2002 02/2017

IWD iShares Russell 1000 Value Index Fund 171 12/2002 02/2017

IWF iShares Russell 1000 Growth Index Fund 171 12/2002 02/2017

IWM iShares Russell 2000 Index Fund 201 06/2000 02/2017

IWN iShares Russell 2000 Value Index Fund 171 12/2002 02/2017

IWO iShares Russell 2000 Growth Index Fund 171 12/2002 02/2017

JNK SPDR Barclays Capital High Yield Bond ETF 111 12/2007 02/2017

KBE SPDR KBW Bank ETF 136 11/2005 02/2017

KRE SPDR KBW Regional Banking ETF 129 06/2006 02/2017

MDY SPDR S&P MidCap 400 ETF 217 02/1999 02/2017

NUGT Direxion Daily Gold Miners Bull 3x Shares 75 12/2010 02/2017

OIH Market Vectors Oil Services ETF 193 02/2001 02/2017

PFF iShares S&P U.S. Preferred Stock Index Fund 120 03/2007 02/2017

QID ProShares UltraShort QQQ 128 07/2006 02/2017

QLD ProShares Ultra QQQ 129 06/2006 02/2017

QQQ PowerShares QQQ 216 03/1999 02/2017

RSX Market Vectors Russia ETF 119 04/2007 02/2017

SCO ProShares UltraShort DJ-UBS Crude Oil 100 11/2008 02/2017

SDS ProShares UltraShort S&P500 128 07/2006 02/2017

SH ProShares Short S&P500 129 06/2006 02/2017

SLV iShares Silver Trust 131 04/2006 02/2017

SMH Market Vectors Semiconductor ETF 202 05/2000 02/2017

SPLV PowerShares S&P 500 Low Volatility Portfolio 70 05/2011 02/2017

SPXL Direxion Daily S&P 500 Bull 3x Shares 100 11/2008 02/2017

SPXS Direxion Daily S&P 500 Bear 3x Shares 100 11/2008 02/2017

SPY SPDR S&P 500 224 07/1998 02/2017

SSO ProShares Ultra S&P500 129 06/2006 02/2017

TLT iShares Lehman 20+ Year Treasury Bond Fund 176 07/2002 02/2017

TNA Direxion Daily Small Cap Bull 3x Shares 100 11/2008 02/2017

TWM ProShares UltraShort Russell2000 122 01/2007 02/2017

TZA Direxion Daily Small Cap Bear 3x Shares 100 11/2008 02/2017

UCO ProShares Ultra DJ-UBS Crude Oil 100 11/2008 02/2017

UNG United States Natural Gas Fund 119 04/2007 02/2017

USO United States Oil Fund 131 04/2006 02/2017

VXX iPath S&P 500 VIX Short-Term Futures ETN 98 01/2009 02/2017

XHB SPDR S&P Homebuilders ETF 133 02/2006 02/2017

XIV VelocityShares Daily Inverse VIX Short-Term ETN 76 11/2010 02/2017

XLB Materials Select Sector SPDR Fund 171 12/2002 02/2017

XLF Financial Select Sector SPDR Fund 218 01/1999 02/2017

XLI Industrial Select Sector SPDR Fund 171 12/2002 02/2017

XLK Technology Select Sector SPDR Fund 171 12/2002 02/2017

XLP Consumer Staples Select Sector SPDR Fund 171 12/2002 02/2017

XLY Consumer Discretionary Select Sector SPDR Fund 171 12/2002 02/2017

XME SPDR S&P Metals and Mining ETF 129 06/2006 02/2017

XOP SPDR S&P Oil & Gas Exploration & Production ETF 129 06/2006 02/2017

XRT SPDR S&P Retail ETF 129 06/2006 02/2017
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Table 3: Performance of (semi)volatility management for factor returns

The first panel displays the OLS estimates of the spanning regression alphas, with their HAC standard errors within parentheses.

We respectively denote by ∗, ∗∗ and ∗ ∗ ∗ significance at the 10%, 5% and 1% levels. The second and third panels report direct

comparisons of Sharpe and Sortino ratios, respectively. For each (semi)volatility management proposal, we document the difference

in risk-adjusted performance (namely, ∆ and ∆(−)), with the p-values of the Jobson-Korkie and Ledoit-Wolf tests within parentheses

and brackets, respectively. We highlight the significance of the Ledoit-Wolf test using asterisks, as before. The description of the

factors is as in Table 1.

MKT SMB HML MOM RMW CMA BAB IA ROE EG

spanning-regression alpha estimates

f(σ) 3.20** -0.07 1.79** 7.00*** 1.38*** 0.17 3.40*** 1.18** 3.78*** 2.90***

(0.0247) (0.9224) (0.0366) (0.0000) (0.0097) (0.6964) (0.0008) (0.0191) (0.0000) (0.0000)

f(−) 2.91** 1.32** 3.37*** 4.38** 2.48*** 0.02 5.36*** 0.51 4.05*** 2.86***

(0.0288) (0.0447) (0.0001) (0.0107) (0.0001) (0.9153) (0.0000) (0.1061) (0.0000) (0.0001)

f(+/−) 1.86* 1.26* 3.13*** 0.56 2.84*** 0.14 4.64*** 0.46 2.34*** 0.52

(0.0876) (0.0776) (0.0000) (0.7478) (0.0005) (0.4633) (0.0000) (0.1358) (0.0004) (0.3666)

f(
√
+/−) 2.91** 1.49** 3.87*** 2.67 2.68*** 0.11 5.79*** 0.47* 3.34*** 1.86***

(0.0137) (0.0258) (0.0000) (0.1361) (0.0001) (0.4988) (0.0000) (0.0984) (0.0000) (0.0036)

Sharpe ratio differences ∆

f(σ) 0.07 -0.07 0.05 0.39** 0.16 -0.09 0.12 0.07 0.37 0.14

(0.3847) (0.3667) (0.5228) (0.0000) (0.1657) (0.3481) (0.1178) (0.4588) (0.0008) (0.1849)

[0.5217] [0.4177] [0.7215] [0.0247] [0.2918] [0.3764] [0.2512] [0.4963] [0.1193] [0.9987]

f(−) 0.05 0.08 0.20 0.13 0.31* -0.30 0.26** -0.07 0.41 0.01

(0.5130) (0.3724) (0.0082) (0.1498) (0.0094) (0.0511) (0.0007) (0.5900) (0.0009) (0.9638)

[0.6895] [0.3911] [0.1159] [0.4777] [0.0873] [0.0799] [0.0280] [0.6436] [0.6889] [0.9880]

f(+/−) 0.00 0.06 0.15* -0.13 0.28** -0.22 0.23*** -0.06 0.14 -0.26

(0.9941) (0.4296) (0.0155) (0.1525) (0.0019) (0.1397) (0.0001) (0.6002) (0.1908) (0.0103)

[1.0000] [0.5296] [0.0646] [0.4977] [0.0460] [0.8881] [0.0100] [0.6289] [0.5750] [0.2159]

f(
√
+/−) 0.06 0.11 0.22** 0.02 0.32** -0.24 0.31*** -0.05 0.34 -0.09

(0.4057) (0.1778) (0.0004) (0.8153) (0.0021) (0.1166) (0.0000) (0.6379) (0.0031) (0.4174)

[0.4963] [0.2805] [0.0240] [0.9154] [0.0273] [0.3284] [0.0020] [0.7089] [0.1972] [0.9960]

Sortino ratio differences ∆(−)

f(σ) 0.09 -0.14 0.10 0.74* 0.35 -0.17 0.22 0.15 1.10* 0.98

(0.4688) (0.2647) (0.5096) (0.0000) (0.0737) (0.3094) (0.0998) (0.3923) (0.0000) (0.0650)

[0.6835] [0.3804] [0.7275] [0.0553] [0.2998] [0.4117] [0.3438] [0.4917] [0.0566] [0.9567]

f(−) 0.07 0.16 0.45 0.24 0.78** -0.51 0.65** -0.05 1.51 0.77

(0.5785) (0.3125) (0.0039) (0.0615) (0.0011) (0.0405) (0.0000) (0.8419) (0.0001) (0.1676)

[0.7695] [0.4290] [0.1093] [0.4943] [0.0466] [0.1552] [0.0213] [0.9067] [0.1692] [0.5516]

f(+/−) 0.16 0.13 0.68** -0.16 0.87*** -0.34 0.67*** 0.04 0.67 -0.17

(0.2124) (0.3624) (0.0013) (0.1567) (0.0002) (0.1872) (0.0000) (0.8729) (0.0073) (0.6660)

[0.9554] [0.6069] [0.0120] [0.5716] [0.0087] [0.8421] [0.0067] [0.9167] [0.1912] [0.8688]

f(
√
+/−) 0.21 0.19 0.65** 0.06 0.87*** -0.38 0.84*** -0.01 1.22** 0.41

(0.0869) (0.1748) (0.0001) (0.6446) (0.0002) (0.1537) (0.0000) (0.9762) (0.0001) (0.3944)

[0.2818] [0.3884] [0.0120] [0.8581] [0.0073] [0.4557] [0.0027] [0.9887] [0.0393] [0.9900]
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Table 4: Timing risk of a broader set of test portfolios

We report the number of anomaly portfolios and exchange-traded funds for

which we find significantly positive alphas and differences in Sharpe and Sortino

ratios at the 5% significance level. For the direct comparisons of risk-adjusted

performances, we employ both Jobson-Korkie (JK) and Ledoit-Wolf (LW) tests.

alpha
∆ ∆(−)

JK LW JK LW

207 anomaly portfolios

f(σ] 110 51 25 64 24

f(−) 142 63 30 89 35

f(+/−) 102 44 19 63 25

f(
√
+/−) 138 63 34 86 38

71 exchange-traded funds

f(σ] 14 9 1 13 0

f(−) 11 6 1 10 0

f(+/−) 3 3 1 3 0

f(
√
+/−) 17 17 3 19 2

f(q) 12 9 0 12 0

Table 5: Comparison of the pricing errors of the Fama-French factor models, with and without timing

We report the t-statistics of the difference in the squared maximum Sharpe ratios that we

can attain from managed and unmanaged Fama-French factor models. We compute the

t-statistics for the case of nonnested models with nontraded factors (Barillas et al., 2020).

Asymptotic-valid critical values rest on the standard Gaussian distribution. We denote by

∗, ∗∗ and ∗ ∗ ∗ significance at the 10%, 5% and 1% levels.

timing strategy

f(σ) f(−) f(+/−) f(
√
+/−)

Fama-French three-factor model 1.17 1.86** 0.65 1.82**

Fama-French five-factor model 0.23 1.79** 1.05 2.00***
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Table 6: Stochastic dominance between managed and unmanaged portfolios

We report Barrett and Donald’s (2003) test of first-order stochastic dominance in the cross-

section distribution of Sharpe ratios of managed and unmanaged portfolios. We denote by

∗, ∗∗ and ∗ ∗ ∗ significance at the 10%, 5% and 1% levels, whose asymptotic-valid critical

values are respectively 1.073, 1.2239 and 1.5174.

timing strategy

f(σ) f(−) f(+/−) f(
√
+/−) f(q)

anomaly portfolios

dominates 1.08* 1.62*** 0.74 1.67***

dominated 0.34 0.05 0.49 0.20

exchange-traded funds

dominates 1.35** 1.18* 0.34 1.27** 0.93

dominated 0.25 0.25 0.42 0.25 0.17
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Figure 1: Descriptive statistics of the monthly returns on anomaly portfolios

We report their box plots for the average returns (mean), volatility (vol), and downside semivolatility

(semivol) in percentage per annum, as well skewness and excess kurtosis.

Figure 2: Descriptive statistics of the monthly returns on exchange-traded funds

We report their box plots for the average returns (mean), volatility (vol), and downside semivolatility

(semivol) in percentage per annum, as well skewness and excess kurtosis.
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Figure 3: Distribution of the Sharpe ratios of the managed and unmanaged anomaly portfolios

We report the empirical distribution of the Sharpe ratios of the 207 anomaly portfolios for the different

timing strategies.

Figure 4: Distribution of the Sortino ratios of the managed and unmanaged anomaly portfolios

We report the empirical distribution of the Sortino ratios of the 207 anomaly portfolios for the different

timing strategies.
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Figure 5: Distribution of the Sharpe ratios of the managed and unmanaged exchange-traded funds

We report the empirical distribution of the Sharpe ratios of the 71 exchange-traded portfolios for the

different timing strategies.

Figure 6: Distribution of the Sortino ratios of the managed and unmanaged exchange-traded funds

We report the empirical distribution of the Sortino ratios of the 71 exchange-traded portfolios for the

different timing strategies.
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