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Abstract

We study the predictive ability of high-frequency macro-financial indicators to nowcast
monthly inflation in an environment characterized by persistently high inflation rates,
namely the Brazilian economy of the past decades. Using novel machine learning meth-
ods within a mixed-frequency framework, we identify two key elements that improve
inflation nowcasts upon the survey of professional forecasters, particularly during pe-
riods of rising inflation. First, we show that shrinkage-based models combined with
timely releases of non-official consumer price indices and market expectations better
capture the inflation surge following the Covid-19 pandemic. Second, using the real-
time flow of data releases to guide model specifications leads to higher-quality nowcasts.
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1 Introduction

Recent episodes of stress on global supply chains following the Covid-19 pandemic and
the war in Ukraine have shown that inflationary waves can unfold extremely fast around
the globe while leading to considerable macroeconomic uncertainty as spiraling inflation
expectations become a real threat. In this scenario, real-time forecasts of inflation are of
utmost importance for central banking, macroeconomic policy and investment decisions.

Knowledge of current inflation is essential for the conduct of monetary policy, since it
allows a timely detection of inflationary shocks, and pins down the starting point of long
term inflation forecasts. However, as it is often the case with macroeconomic aggregates,
current inflation measures become available only with some delay. Therefore, policy makers
and economic agents have to rely on nowcasts of inflation. Moreover, Faust and Wright
(2013) argue that good forecasts begin with high-quality nowcasts, and the availability
of higher frequency data that correlates with current inflation is the ideal ingredient to
improve nowcasting models. At the same time, there is a rapidly increasing availability of
high-frequency data that comes in handy to monitor the state of the economy in real-time
(Evans, 2005; Giannone et al., 2008; Bańbura et al., 2012).

Building on these trends, we investigate the contribution of a large set of high-frequency
economic and financial variables to nowcast the headline inflation rate in an environment
characterized by persistently high price developments, namely the Brazilian economy of the
past decades. We draw on the inflation forecasting literature, which found that machine
learning methods are able to capture well the underlying joint dynamics of inflation, and
economic and survey indicators (Medeiros et al., 2021; Babii et al., 2021; Garcia et al.,
2017a), and compare the prediction accuracy of tree-based algorithms against penalized
regression methods. Specifically, for tree-based methods, we compare the random forest
from Breiman (2001); the bayesian additive regression trees from Chipman et al. (2012);
the generalized random forest from Athey et al. (2019) and the local linear forest from
Friedberg et al. (2020). As penalized regressions we use the Elastic Net, the LASSO and
Ridge, as well as the sparse-group LASSO (Simon et al., 2013; Babii et al., 2021).

The Brazilian hyperinflation history, together with Brazil’s recent decades of persistent
and relatively high inflation rates, generated an environment in which different consumer
price indexes are released by different agencies during different periods of the month. The
official inflation measure targeted by the Brazilian Central Bank, IPCA, is released by the
Brazilian statistical bureau (IBGE) usually ten days after the end of a given month (see
Figure 1). Additionally, the official Brazilian inflation measure has a mid-month version,
IPCA-15, which is computed based on prices observed from the 16th day of the previous
month until the 15th day of the current month, and is obviously a leading indicator of end-
of-the-month inflation. On a weekly basis, the Fundação Getúlio Vargas (FGV) computes
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the IPC-S, which is also a national consumer price index. IPC-FIPE is yet another consumer
price index released on a weekly basis by Fundação Instituto de Pesquisa Econômica (FIPE),
although it only covers the São Paulo municipality. Figure 2 shows a timeline of the arrival
of new inflation information within a given month. In addition to these intra-month price
measures, the Brazilian Central Bank also surveys market participants on a weekly basis
about their expectations regarding several economic variables, including their expectations
about IPCA for several horizons, and publishes them in the so-called FOCUS survey of
professional forecasters. The availability of such data makes Brazil an interesting case to
study the potential of nowcasting inflation.

Our target variable, IPCA, is sampled on a monthly frequency, whereas data on a
large set of predictors is either available at a weekly basis or released before the target
variable, generating a mixed frequency dataset. Often, the issue of mixed frequency data
has been addressed by converting the higher-frequency data to the sampling rate of the lower
frequency data, for example by temporally aggregating monthly indicators to quarterly, and
adding them as regressors in a usual setup. However, this approach does not make use of the
high frequency information available during the period of interest, and a common finding is
that exploiting intra-period information can reduce forecasting errors. Clark et al. (2022)
deal with the mixed frequency characteristics of the dataset using simple averages of the
high frequency observations over the low frequency period. We, on the other hand, use
the mixed-data sampling (MIDAS) approach put forward by Ghysels et al. (2004), which
allows for different weighting schemes of the high frequency data. 1

The broader literature on nowcasting usually focuses on factor models following the
success of Giannone et al. (2008) in real time analysis of GDP. An early use of this method-
ology for inflation nowcasting is Modugno (2013). However, Knotek and Zaman (2017)
show that carefully selecting variables is fundamental to the development of an effective
nowcasting model for US consumer prices. Thus, variable selection algorithms like LASSO
Tibshirani (1996) might be more promising than factor models when the interest lies on
inflation nowcasting. Support for this conjecture comes from the literature on inflation fore-
casting. For example, Medeiros et al. (2021) support show that variable selection methods
outperform factor models in their inflation forecasting application. More specifically, these
authors present compelling inflation forecasting results in favor of random forests. On the
other hand, Joseph et al. (2021) and Garcia et al. (2017b) show that penalized regression
models outperform nonlinear machine learning methods for short horizon forecasts, which
are more closely related to nowcasts. Such behavior might indicate that nonlinearities are
more prominent in longer horizon forecasts. Building on these evidences, we compare the
performance of linear variable selection methods such as penalized regression approaches
with that of nonlinear tree-based models for nowcasting Brazilian inflation.

1Also formally conceptualized in Ghysels et al. (2007) Andreou et al. (2010).



4

Our findings indicate that penalized regression methods outperform tree algorithms in
predicting monthly headline inflation. In comparison to market expectations, penalized
regression models have smaller forecast errors across all out-of-sample forecast periods. In
particular, the sparse group LASSO, on average, offers smaller RMSE during the first two
weeks of the month while the LASSO is better during the last two weeks of the month. These
two models are particularly good during the COVID-19 inflation surge, where professional
forecasters had a tendency to underestimate what would be the headline inflation for the
current month. We also document the usefulness of having timely releases of non-official
consumer price indices, since their inclusion in the models improves the nowcasts. Finally,
we show that adjusting model specifications based on the real-time flow of data releases
yields better inflation nowcasts compared to a single model based on the entire set of
predictors, which potentially assigns high coefficients to variables with no contemporaneous
data released by the time of the nowcast.

Our nowcast results are in line with inflation forecasting results of Garcia et al. (2017b)
and indicate that linear models with shrinkage and variable selection done via the LASSO
outperform tree-based methods. More specifically, both the LASSO and sparse-group
LASSO models deliver smaller root mean squared errors than the FOCUS survey of pro-
fessional forecasters. Cumulative sum of loss differentials indicate that the advantage of
LASSO-type models over the FOCUS comes from periods of rising inflation. Consistent
with the literature on the use of survey data in forecasting models (Bańbura et al., 2012),
we find that the inclusion of the professional survey forecasts improves the nowcasts of all
models. We also find that the higher frequency indicators are more relevant in the first half
of the month, in comparison to low-frequency variables. This implies that, for our inflation
nowcasting exercise, it is important to adjust model specification in real-time depending on
the forecast horizon of interest, and the arrival of intra-month data.

The paper proceeds as follows. Section 2 outlines the real-time dataset of the Brazilian
macroeconomy and how these variables relate to the CPI inflation series. In Section 3,
we illustrate the nowcasting setup and provide an overview of various mixed-frequency
modeling strategies to nowcast inflation dynamics. Next, we present our empirical results
in Section 4 and provide a guideline for updating CPI figures using the real-time data flow.
Finally, Section 5 concludes.

2 Data

To compute weekly nowcasts of inflation figures we need to select predictors that have
two features: relatively high correlation with price developments and earlier availability in
comparison to official inflation releases. In this sense, our dataset mainly consists of timely
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price indicators, financial variables and experts’ forecasts that carry predictive content
about the current month’s inflation rate of the Brazilian economy.2 More precisely, we
construct a real-time dataset of key macro-financial indicators that covers the period from
January 2003 up to December 2022 (T = 240 monthly observations), whereas information
on release dates is only available as of January 2013.3

The official inflation measure corresponds to the Brazilian consumer price index (IPCA),
which is the reference for the inflation-targeting system in Brazil.4 The IPCA reflects
consumption patterns of urban households in major Brazilian cities that earn from 1 to
40 minimum wages (90% of urban population). The Brazilian statistical office publishes
IPCA figures with an average lag of seven workdays after the end of the reporting month.
Figure 1 shows the IPCA evolution since mid 2000’s - a year after the Brazilian Central
Bank adopted the inflation targetting regime. In 2003, with the increase in political risk
due to the election of the worker’s party representative, there was an outflow of foreign
capital, increasing the exchange rate and pressuring domestic prices. This was followed by
a relatively calm period, in which the yearly IPCA fluctuated around 5%. It rose again
to the double digit figures with the political turmoil that initiated in 2013 and led to the
impeachment of president Rouseff in the beginning of 2015. And similar to what was
observed in other economies, inflation rose in 2019-2021 as response to pandemic shock.

We organized a dataset containing 20 predictors for IPCA, besides its own lags5. These
predictors can be divided into four categories: monthly price indicators, weekly price in-
dicators, daily financial variables, and daily expectations of professional forecasters. The
data and publication dates are obtained from many sources, including the Brazilian In-
stitute of Geography and Statistics (IBGE), Central Bank of Brazil (BCB), Brazil Stock
Exchange (B3), Getulio Vargas Foundation (FGV), Institute of Economic Research Foun-
dation (Fipe), Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP)
and Bloomberg. Table 1 presents a summary of the selected predictors for IPCA dynamics.

The first group of predictors consists of five indicators of prices primarily collected in
2We disregard monthly indicators of real economic activity for two reasons: (i) short or none availability

before official releases of the target inflation and (ii) non-significant cross-correlations up to six lags with
month-on-month inflation rates. Hence, economic activity variables do not fit our nowcasting purpose.

3Although our analysis focuses on price indicators and financial variables as the potential predictors for
inflation, the dataset also comprises vintages of hard and survey data for economic activity (e.g., industrial
production, unemployment rate, net payroll jobs, PMI manufacturing, retail and services indices, consumer
and business confidence, among others) along with publication dates.

4Besides, a sizeable number of inflation-linked government bonds use the IPCA as their reference.
5Although there are more indicators that potentially correlate with IPCA, we opted for a medium sized

dataset following the findings from Carriero et al. (2020), namely small and medium datasets are better for
nowcasting inflation than large datasets. Nonetheless, our dataset becomes large in the number of covariates
due to the high-frequency data, since each weekly variable needs four coefficients when using the MIDAS
structure.
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Figure 1: Monthly Brazilian consumer price index (IPCA) from Jun 2001 to Dec 2022 in black.
All lines correspond to different inflation indexes.

urban areas of major Brazilian cities. These indices are sampled at the monthly frequency
but released before the end of the reporting month, and essentially differ in terms of the
reference period and targeted prices. For instance, IPCA-15 mimics IPCA itself, but it
reflects prices collected from the 16th of the preceding month to the 15th of the reporting
month, allowing for early releases (usually at the beginning of the 4th week). Moreover,
IPA-M is a producer price index for agricultural and industrial products, INCC-M reflects
house construction costs and both IGP-M and IGP-10 comprise a weighted average of the
IPA, INCC and IPC-S indexes, being distinguished only by their reference periods. These
indexes are also displayed in Figure 1, and they are largely correlated with IPCA, although
some display a larger volatility. For example, IPA-M is largely affected by the exchange
rate, and in periods of political turmoil and during the Great Financial Crisis, IPA and the
indexes that include it in its calculation (IGP-M and IGP-10) increase more than the other
indexes.

Next, we have six timely indicators of prices sampled at the weekly frequency and
published with a lag of one or two days after the closing of a given week. As for general
consumption baskets, IPC-S accounts for earnings in the range of 1-33 minimum wages
while IPC-FIPE accounts for households in São Paulo city that earn from 1 to 10 minimum
wages. Moreover, we include prices of major energy components such as diesel, gasoline,
ethanol fuel and liquefied natural gas. These data are surveys of the wholesale fuel price
practiced by retailers of around 500 cities nationwide.6

6Compared to information on raw oil prices available in financial markets, these surveys have the ad-
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Figure 2 provides a timeline of the real-time data flow related to the above price in-
dicators in December 2022. As shown, IPCA figures have been released on the 10th of
January, 2023, but the timing of releases for the selected predictors mostly occurs through-
out the reporting month. For example, the first release is available for energy prices on 5
December while the next releases of these prices are provided in the following Mondays.
The timing calendar of the high-frequency indices IPC-S and IPC-FIPE is a bit slower
compared to energy prices, though very quick for international standards.7 Turning to the
low-frequency indicators, data on IGP-10 and IPCA-15 arrive relatively early in the month,
whereas INCC-M, IGP-M and IPA-M follow next before the end-of-month.

Figure 2: Timeline of data releases for price indicators in the reference period of December 2022.

The third group of predictors contains daily information from financial markets, includ-
ing interest rates, commodity and stock price indices, exchange rates and credit default
swaps. The choice of these variables is motivated by their relation to inflation expecta-
tions and findings in the literature on inflation forecasting. For example, Modugno (2013)
and Breitung and Roling (2015) show that commodity and crude oil prices are among the
most reliable indicators of inflation changes. Furthermore, central banks and practition-
ers have been monitoring financial variables on a daily basis to forecast the state of the
macroeconomy (Andreou et al., 2013).

Finally, we include one daily series of experts’ forecasts from the survey produced by the
Central Bank of Brazil and published in the subsequent business day. To be more precise,
this variable denotes the median of daily nowcasts for IPCA provided by the FOCUS survey
of professional forecasters (SPF). There are over 100 active participants in the survey and
they can answer, on a daily basis, what is their expectations regarding several price indexes
and macroeconomic indicators. The median forecast of the IPCA is closely monitored for
the market handout repport, and is released every Monday morning with data up until the
previous Friday (Marques, 2012).

vantage that distribution and retail margins are fully accounted for.
7It happens because both the IPC-S and IPC-FIPE are based on a four-week collection system, ending

on four set dates (07, 15, 22 and end-of-month). Thereby, computation of these indices considers the average
of prices collected during the four weeks preceding the closing date.
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Table 1: Database

Series Mnemonic Reference
time span

Publication
timing

Avg.
delay

Starting
date Source

Target inflation variable

Broad national CPI IPCA full month t
2nd week,

following month 7 2003M1 IBGE

Monthly price indicators

IPCA - extended IPCA-15 16th
t−1 to 15th

t
3rd/4th week,

reporting month 8 2003M1 IBGE

General market CPI IGP-M 21st
t−1 to 20th

t
last week,

reporting month 7 2003M1 FGV

General CPI - 10 IGP-10 11th
t−1 to 10th

t
2nd/3rd week,

reporting month 4 2003M1 FGV

Wholesale market PPI IPA-M 21st
t−1 to 20th

t
last week,

reporting month 7 2003M1 FGV

National construction cost INCC-M 21st
t−1 to 20th

t
last week,

reporting month 5 2003M1 FGV

Weekly price indicators

FGV’s CPI IPC-S four-week 1st day,
following week 1 2003M2 FGV

Fipe’s CPI FIPE four-week 2nd day,
following week 2 2003M1 Fipe

Diesel prices DIESEL full week 1st day,
following week 1 2004M5W2 ANP

Gasoline prices GAS full week 1st day,
following week 1 2004M5W2 ANP

Ethanol fuel prices ETOH full week 1st day,
following week 1 2004M5W2 ANP

Liquefied natural gas prices LNG full week 1st day,
following week 1 2004M5W2 ANP

Daily financial variables
Short-term interest rates SELIC end of day real-time 0 2003M1 BCB
Brazilian Real/U$$ forex FOREX end of day real-time 0 2003M1 BCB
Bovespa stock price index IBOV end of day real-time 0 2003M1 B3
Electric utilities index IEE end of day real-time 0 2003M1 B3
DI-rates (10Y maturity)∗ DI10 end of day real-time 0 2004M1 B3
DI-spread (10Y minus 3M)∗ SPREAD end of day real-time 0 2004M1 B3
Brazil credit default swaps CDS end of day real-time 0 2007M12D19 B3
Bloomberg commodity index BCOM end of day real-time 0 2003M1 Bloomberg

Daily expectations from the FOCUS survey of professional forecasters
IPCA nowcasts (median) SPF full day subsequent day 1 2003M1 BCB

Note: This table reports the full list of time series selected for the nowcasting exercise. The reference time
span relates to the data collection period. The publication timing provides the regular release calendar with
respect to the reference period while the average delay stands for the publishing lags (in business days). The
variables are not seasonally adjusted and transformed into month-on-month (MoM) % change in order to
guarantee stationarity of the time series; the only exceptions are the interest rates series (SELIC, DI10 and
SPREAD) which are transformed into monthly changes. MoM transformations for high-frequency variables
consider the same reference week or day from the preceding month. ∗DI-rates are yields of Brazilian
interbank deposit future contracts negotiated at B3.



9

3 Methodology

3.1 Nowcasting setup

Let the month-on-month inflation rate be denoted by yt while x
(m)
t represents a high-

frequency macro-financial predictor that can be sampled m times more frequently than
yt. Moreover, denote a monthly price indicator by xt, which is only available at the low-
frequency and released before yt. In this sense, time indices t = 1, . . . , T act as the common
monthly frequency between yt and covariates x

(m)
t and xt.

Next, we convert daily financial predictors to the sampling rate of weekly predictors
andwe assume a fixed month/week frequency ratio of m = 4, to focus on a single month-
ly/weekly mixture in order to avoid a proliferation of parameters due to a larger monthly/-
daily frequency mismatch. Therefore, high-frequency predictors in the dataset convey the
latest information available at days 8, 15, 22, and the end of each given month, such that
frequency alignment with the target variable yt is achieved. This particular choice of days
allows us to control for the issues of overlapping weeks across months and an irregular num-
ber of days across different months. Hence, for each time period t, the information set also

includes a set of m high-frequency observations X
(m)
t =

(
x
(m)
t , x

(m)

t− 1
m

, x
(m)

t− 2
m

, . . . , x
(m)

t−m−1
m

)′
,

where t− i
m denotes the ith past high-frequency period with i = 0, . . . ,m−1. In particular,

end-of-month observations correspond to x
(m)
t , observations from day 22 refer to x

(m)

t− 1
m

, and
so on up to day 8.

Building on these assumptions, we consider the baseline high-dimensional unrestricted
MIDAS regression to nowcast the inflation rate on a weekly basis:

ϕ(L) yt+h = c+

K∑
k=1

B(L1/m)x
(m)
k,t +

J∑
j=1

αj xj,t +

11∑
l=1

γl Dl,t+h + εt+h, (1)

where B(L1/m) =
∑m−1

i=0 βk,i L
i/m are unrestricted distributed lag coefficients that aggre-

gate over the m contemporaneous high-frequency lags of predictor x
(m)
k,t , with Li/mx

(m)
t =

x
(m)
t−i/m.8 The term ϕ(L) = (I − ρ1L) denotes the chosen autoregressive polynomial while

dummies Dl,t+h capture deterministic seasonal patterns. All in all, assuming a forecast
horizon of h = 0, the baseline model (1) is a direct nowcasting tool for updating predictions

8Although we restrict both the low- and high-frequency components of (1) to account only for contem-
poraneous information of the predictor space, one might include lags of xt and high-frequency distributed
lags in B(L1/m) that span over past low-frequency periods.
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of the low-frequency target yt+h as new observations of the high-frequency predictors come
in.

The fairly small frequency mismatch with m = 4 suggests the adoption of the autore-
gressive distributed lag (ADL) MIDAS structure, but with unrestricted parameters (here-
after U-MIDAS, see Foroni et al., 2015; Ghysels and Marcellino, 2018).9 This avoids the
nonlinear temporal aggregation of high-frequency lags that characterizes a standard MI-
DAS regression and subsequently complicates estimation and prediction in a relatively high
dimension (though penalized versions of MIDAS regressions have been put forward with
empirical applications to GDP nowcasting, see Marsilli, 2014; Siliverstovs, 2017; Uematsu
and Tanaka, 2019; Mogliani and Simoni, 2021; Babii et al., 2021).10

It is worth emphasizing that a particular low-frequency predictor xj,t only enters the
model specification (1) when the corresponding data for month t has already been released
by the time the nowcast is made . For instance, given that data on IPCA-15 is usually pub-
lished between the 19th and 23rd of the reporting month, such predictor does not enter the
baseline specification when nowcasts are made on days 8 and 15. In this sense, we constantly
check for real-time data availability of low-frequency predictors by the time of the nowcast
and adjust the model specification accordingly. Not adjusting the set of low-frequency pre-
dictors based on data availability by the time of the nowcast can lead to very imprecise
nowcasts due to non-zero coefficients αj being combined with non-contemporaneous data
releases of xj,t.

The baseline model (1) features mK + J + 13 parameters and thereby can easily lead
to parameter proliferation as the number of high-frequency predictors increases. In the
big data setting with many covariates, the effective sample size might be relatively short
compared to the number of parameters, leading to high estimation uncertainty. To accom-
modate potentially large sets of covariates, we implement a broad range of machine learning
techniques that apply some form of dimensionality reduction. We divide them into shrink-
age methods - penalized regression schemes that shrink coefficient estimates towards zero
- and tree-based methods that split the predictor space into a number of simple regions.
The key ideas of these methods are outlined next.

9See Appendix A.1 for an explicit representation of the high-frequency component of (1) in matrix form.
10The MIDAS approach can efficiently address the dimensionality issue arising from the number of high-

frequency lags in the model via tightly specified lag polynomials, but it is not suitable when the number of
predictors is very large.
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3.2 Overview of nowcasting models based on machine learning methods

The methods used to nowcast inflation can be categorized into two groups: shrinkage
techniques and tree-based methods. In the first group we have Elastic Net and its two
special cases: LASSO and Ridge.Additionally, we use the recently proposed sparse-group
LASSO with MIDAS structure. As for the tree-based methods, we use the random forest,
the generalized random forest, the local linear forest and the bayesian additive regression
trees. In this section, we describe the models by means of their major characteristics. Table
2 provides an overview of the machine learning methods we implement in the nowcasting
exercise.

Table 2: Summary of the models used in the paper

Model Short name Reference R function (package) Tuning parameters/Cross validation/Other criteria

Autoregressive model AR ar (stats) lag order p chosen using AIC
Random Forest RF Breiman (2001) randomForest (randomForest) number of skip-sampled predictors to split the tree (mtry)

using timeslice cross validation
Generalized Random
Forest

GRF Athey et al. (2019) regression_forest (grf) sample fraction, mtry, minimum node size, honesty frac-
tion, honest leaves, alpha, imbalance using regular cross
validation

Local Linear Forest LLF Friedberg et al. (2020) ll_regression_forest (grf) sample fraction, mtry, minimum node size, honesty frac-
tion, honest leaves, alpha, imbalance using regular cross
validation

Least absolute shrink-
age and selection op-
erator

LASSO Tibshirani (1996) glmnet (glmnet) λ using timeslice cross validation

Elastic Net EN Zou and Hastie (2005) glmnet (glmnet) α, λ using timeslice cross validation
Ridge Ridge Hoerl and Kennard (1970) glmnet (glmnet) λ using timeslice cross validation
Bayesian Additive Re-
gression Trees

BART Chipman et al. (2012) rbart (rbart) 200 trees, 1000 posterior simulations after burn in (100),
d=0.95, probability of death = 0.7

Sparse Group LASSO sg-LASSO Babii et al. (2021) cv.sgl.fit (midasml) α, λ using timeslice cross validation

Note: Time slice cross validation (when used) starts with a 36 month window and subsequent 12 month
fold slides.

Shrinkage methods

The main idea of shrinkage methods is to select the relevant predictors from a large
matrix of covariates using different penalization schemes such that a higher forecasting
precision is achieved (for empirical applications to inflation forecasting, see Garcia et al.,
2017b; Joseph et al., 2021; Medeiros et al., 2021; Aliaj et al., 2023, among others). These
approaches are particularly helpful in data-rich environments where the dimension of the
predictor space is large compared to the sample size. In this regard, shrinkage ensures that
forecasting under a high-dimensional mixed-frequency setting such as (1) becomes feasible.
Among shrinkage strategies for linear models, the least absolute shrinkage and selection
operator (LASSO), Ridge and Elastic Net regression enjoy a growing popularity within
economics.

To set the scene for penalized regressions, denote by y = (y1, . . . , yt)
′ the target inflation
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sequence while the high-frequency predictor space is given by x(m) = (x
(m)
1 , . . . ,x

(m)
t )′

with x
(m)
t = (X

(m)′

1,t , . . . , X
(m)′

K,t )′ being the mK × 1 vector of high-frequency data sampled
across the m increments of time t. Moreover, let x = (x1, . . . ,xt)

′ denote the low-frequency
predictor space with xt being the J-dimensional vector of low-frequency data. The baseline
matrix of covariates is then given by X = (ι,y−1,x

(m),x,d), where ι is a t-dimensional
vector of ones, y−1 is the first lag of y and d is a t × 11 matrix of seasonal deterministic
dummies.

Given the notation above, the Elastic Net estimator solves the penalized least-squares
problem:

β̂ = min
β̂

||y −Xβ||2 + λ

(
α |β|1 +

(1− α)

2
||β||2

)
, (2)

where α ∈ (0, 1] is a weight parameter that interpolates between LASSO (α = 1) and Ridge
regression (as α → 0). Hence, LASSO penalizes the sum of absolute coefficients via the
shrinking penalty using the ℓ1 norm while Ridge penalizes the sum of squared coefficients
via the ℓ2-norm. The regularization parameter λ controls the amount of shrinkage in the
parameter space β.11 Hence, estimator (2) shrinks coefficients of irrelevant predictors to-
wards zero or are set exactly to zero. The latter constitutes a LASSO-type shrinkage that
performs variable selection and results in a sparse and parsimonious model. On the other
hand, coefficients estimated via Ridge regression never become exactly zero, which yields
a dense model. All in all, the key benefit comes from achieving a substantial reduction in
forecast variances at the cost of a slight increase in bias.

Babii et al. (2021) argue that high-dimensional mixed-frequency representations, such
as (1), involve certain data structures that once taken into account should lead to increased
performance out-of-sample. These structures relate to groups covering the m relevant lags
of a single high-frequency covariate. To that end, the authors leverage on the sparse-
group LASSO (sg-LASSO) estimator and show that it selects not only the relevant groups
of predictors for the low-frequency target but also the appropriate lag structure within
each group. This structured sparsity is the attractive feature of sg-LASSO that aims to
improve upon the unstructured LASSO, which does not recognize serial dependence across
different high-frequency lags and thereby may be subject to random selection. Zhao and
Yu (2006) prove that LASSO selects the true model consistently if and (almost) only if
the irrelevant covariates are not highly correlated with the predictors in the true model; a
rather strong condition denominated “irrepresentable condition". In penalized U-MIDAS
regressions, multicollinearity emerges from the highly correlated unrestricted lags of a given
high-frequency covariate x

(m)
k,t . This implies that the unstructured LASSO randomly picks

among those strongly correlated lags of x(m)
k,t , leaving most of the remaining lag coefficients

11Note that as λ → ∞, the impact of the shrinkage penalty grows. Tuning of parameter λ is critical, and
hereby performed in a data-driven way using cross-validation (see Section 3.3).
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shrunk to zero.

To describe the estimation procedure of sg-LASSO, let the matrix of covariates now be
defined as XL = (ι,y−1,X

(m),x,d), where X(m) = (X
(m)
1 W, . . . ,X

(m)
K W ) and X

(m)
k =

(X
(m)
k,1 , . . . , X

(m)
k,t )′ is the t × m matrix of high-frequency series of the kth predictor for

k = 1, . . . ,K. The predetermined m × L matrix of weights W is based on orthogonal
Legendre polynomials of degree L that aggregate over the high-frequency lags. For example,
the Legendre polynomial of order L = 0 attributes same weights to all lags, the L = 1
polynomial is an increasing linear function and thereby favours more distant lags, the L = 2
polynomial features higher weights to very recent and more distant lags, and so on. These
predetermined weights essentially prevent us from paying the price of overparameterization
when m is relatively large.

The sg-LASSO estimator then solves the penalized least-squares problem:

β̂ = min
β̂

||y −XLβ||2 + 2λ (α |β|1 + (1− α) ||β||2,1) , (3)

where ||β||2,1 =
∑

G∈G |βG|2 is the group LASSO norm for a group structure G that hereby
constitutes all lags of a single high-frequency covariate.12 This implies that sg-LASSO
promotes sparsity between and within groups.

Tree-based methods

Decision trees are nonparametric models that work by recursively dividing the covariate
space X into Q ∈ N separable regions according to a (pre-determined) splitting rule. Since a
decision tree is a collection of dichotomous splittings, the interpretation of predictions from
trees is straightforward. However, due to its simplistic structure, single trees are subject to
overfitting.

First proposed by Breiman (2001), random forests (RF) are an extension of decision
trees in which the results from several non-correlated (or with very small correlation) trees
randomly chosen are gathered to form a prediction. The predictions of the trees in a
forest are averaged, in such a way that decreases the variance of the final predictions while
maintaining the flexibility of the trees. Specifically, for a random forest with B trees, the
prediction is given by

ŷ(x̃m) =
1

B

B∑
b=1

ŷb(x̃m), (4)

12Note that α ∈ [0, 1] determines the relative importance of LASSO-sparsity and the group structure,
whereas α = 0 leads to the group LASSO estimator.
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where ŷb(x̃m) is the prediction of the b-th tree. RF can deal with high dimensional data
without suffering from the curse of dimensionality, but in comparison to a single tree,
the forests lack interpretability (James et al., 2013). Nonetheless, random forests have
shown superior forecast ability in comparison to other machine learning and traditional
econometric models when used to forecast inflation (see Medeiros et al., 2021; Araujo and
Gaglianone, 2022, among others).

The Generalized Random Forest (GRF), proposed by Athey et al. (2019), is an enhanced
version of the RF. It is a two-step procedure, in which first a random forest is used to
generate weights that are later used in a GMM step - weights for points in the same leaf
will be higher and thus these points carry more weight in the estimation step Athey and
Imbens (2019). To find the weights start from (4):

ŷ (x̃m) =
1

B

B∑
b=1

[
Kb∑
k=1

βk,b1x̃m∈Jk,b

]
=

1

B

B∑
b=1

∑
xi∈Jb(x̃m)

yi
|Jb(x̃m)|

=
1

B

B∑
b=1

n∑
i=1

yi1xi∈Jb(x̃m)

|Jb(x̃m)|
=

n∑
i=1

αi(x̃m)yi, (5)

where 1x̃m∈Jk,b
is a indicator function that denotes that x̃m belongs to the region Jk in

tree b, and |·| denotes the cardinality of a set. The term αi(x̃m) in (5) is called forest weight
and denotes the fraction of trees that allocates x̃m in the same leaf as the covariate vector
xi, and is given by

αi (x̃m) =
1

B

B∑
b=1

1xi∈Jb(x̃m)

|Jb(x̃m)|
. (6)

In Equation (5), the regression forest will assign higher weights to sample points closer to
x̃m since the prediction is an average over a set of trees. The forests can adapt the weights,
such that a covariate that has little relation with yi will appear less frequently when making
splits (Athey et al., 2019). Athey and Imbens (2019) argue that trees can be seen as a way
to find weights for the new observation x̃m, based on the neighbor estimation sample points
that fall in the same leaf as x̃m.

Random forests have characteristics that are a potential issue for macroeconomic fore-
casting. First, forests inherit the piecewise output from the trees, producing a discontinuous
response, so they cannot explore well smoothness in the DGP. Forests’ predictions also have
a bias for points that are too close to the rectangle’s boundaries (Athey and Imbens, 2019).
To tackle these limitations, Friedberg et al. (2020) proposed the Local Linear Forest (LLF)
model. Similar to the GRF, the LLF also uses RF as a weight generator, but in the sec-
ond step instead of a GMM regression, one estimates a local linear regression. Specifically,
y(x̃m) will be the local average, which can be estimated together with a θ(x̃m) through the



15

following optimization problem:(
ŷ (x̃m)

θ̂ (x̃m)

)
= argmin

y,θ

{
n∑

i=1

αi (x̃m) (yi − y (x̃m)− (xi − x̃m) θ (x̃m))2 + λ ∥θ (x̃m)∥22

}
.

(7)
In (7), the term ŷ (x̃m) still a prediction for a new point, but with the slope of the local
linear regression θ (x̃m), which corrects for the local trend in xi − x̃m. For the local linear
forest, the parameter θ is not of interest and predictions are based on the intercept ŷ (x̃m).
The penalization term λ ∥θ (x̃m)∥22 has the role of avoiding overfitting to the local trend and
λ is typically chosen via cross-validation. As result, the LLF can approximate well smooth
functions as a local regression without becoming infeasible when the number of covariates
grows.

The last tree-based model that we use in this work is the bayesian additive regression
trees (BART), from Chipman et al. (2012). Like in the RF, BART predictions are also based
on the results from several trees, but unlike RF, the trees in BART will be sequentially
estimated using as dependent variable the residuals from the previous tree. In general
terms, each Bayesian (regression) tree is defined by T , a collection of interior nodes; and
M a set of parameter values that are associated with the terminal nodes. The set T is also
called tree structure and contains the information on the topology of the trees: whether a
node is terminal or not and how to make splits in non-terminal nodes.

A BART defines a function g(x,T ,M) which maps a row x (from the covariate matrix
X) to a particular θj ∈ M, j ∈ 1, . . . , |M|. Predictions in BART are obtained by sampling
from the posterior distribution.In this paper we follow closely the prior specification from
Chipman et al. (2012), by choosing the variable for a split using a uniform prior, as well
as the cutpoint for the split. We use a conjugate normal prior for the predictions on the
terminal nodes and a conjugate inverse χ2-square for the (constant) error term of the model.
Finally, the probability of growing another layer in a tree is given by α(1 + d)−β , where d
is the current depth of the tree, and α ∈ (0, 1) and β ∈ R+ are hyperparameters.

3.3 Tuning of hyperparameters and time series cross-validation

Selection of the regularized regression model parameters λ and α is done via rolling
cross-validation. Different from the standard cross-validation procedure in which folds are
randomly selected assuming that observations are iid, the rolling cross-validation will take
into consideration the time series structure of the data and avoid using future observations
to forecast values in the past. In practice, this means that the cross-validation procedure
takes place sequentially (time-slice cross-validation). In our empirical exercise, we start
with a three-year initial fixed window with folds of one year (Arlot and Celisse, 2010;
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Goulet Coulombe et al., 2022; Bergmeir et al., 2018).

For the RF, we tuned via rolling cross-validation the number of covariates to be used
at each node in the trees (mtry). For the GRF and LLF we used (the standard) cross-
validation procedure to find the optimal values of the minimum number of observations in
a terminal node, the sample fraction that should be used for estimating a single tree, mtry.
Furthermore, we also used CV to determine the honesty fraction (what fraction of the
sample should be used in the estimation and prediction steps) and whether empty terminal
nodes should be eliminated. Finally, α and imbalance penalty are hyperparameters that
control the relative size of child and parent nodes with respect to the number of observations
that they have assigned.

For BART, we follow closely the recommendations from Chipman et al. (2012). We
estimate 200 trees and 1000 posterior draws, with 100 draws as burn-in. For the tree
structure, we use α = 0.95 and β = 2, which penalizes bigger trees. For the variance term
we assume a unitary prior and for the normally-distributed predictions, we center the prior
at zero.

4 Results & Discussion

4.1 Real-time nowcasting exercise

To compute weekly nowcasts for month-on-month inflation rates, we use a sample from
January 2003 to December 2022 with T = 240 monthly observations based on data availabil-
ity of high-frequency macro-financial indicators. We run a recursive out-of-sample exercise
with rolling windows that span over 120 months such that January 2013 marks the start
of the evaluation period. This is based on the fact that publishing dates of price indicators
are mostly available from 2013. Moreover, predictors with missing data at the beginning of
the sample only enter the set of covariates by the time a full series of 120 observations gets
available.

We update our nowcasts on a set of fixed days. Namely, days 8, 15, 22 and end-of-
month using the most recent increments of low- and high-frequency data. In this sense, the
continuous process of updating a mixed-frequency dataset leads to missing weekly obser-
vations of x(m)

t at the end of the sample. This missing data that emerge when nowcasting
before the end-of-month generates a time-evolving sample’s “ragged edges".13 To complete

13For example, when nowcasting the target inflation on the 15th of January, we already have up-to-
date information from financial variables and inflation expectations while the corresponding data on high-
frequency price indicators might only be released in the following week. In the former case, a ragged edge
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the weekly dataset, we impute random walk forecasts based on vintages of high-frequency
data. Finally, we transform the implied month-on-month predicted rates into forecasts of
year-on-year inflation rates to assess Root Mean Squared Errors (RMSE) and Mean Abso-
lute Errors (MAE). However, we also investigate how relative forecast performance changes
over time by means of cumulative loss differentials and the fluctuation test of Giacomini
and Rossi (2010).

To benchmark our nowcasts based on machine learning techniques, we employ two
alternative settings. First, we benchmark our results against SPF’s inflation expectations
(median across experts’ nowcasts). Second, we apply the AR(p) forecast with seasonal
deterministic dummies:

yt = c+

p∑
j=1

ρj yt−j +

11∑
l=1

γl Dl,t+h + εt+h, (8)

which captures the autoregressive dynamics of the target variable and often provides com-
petitive forecasts when compared to approaches purely based on the low-frequency flow of
information. The number of autoregressive lags p is here set to be a maximum of four and
selected using the Akaike Information Criterion (AIC).

4.2 Out-of-sample results

Table 3 reports the forecasting results of competing models in terms of RMSE and
MAE relative to the SPF benchmark. The results clearly show that shrinkage methods
generally perform better than SPF nowcasts, especially at early month horizons, meaning
that penalized regressions better translate the predictive content of the selected predictors
into precise nowcasts for the IPCA target. To be precise, the sg-LASSO outperforms
in terms of RMSE when nowcasts are made on days 8 and 15 while LASSO beats the
benchmark on days 22 and end-of-month.14 Moreover, nowcasting gains become smaller
for horizons approaching the end-of-month, and thus relative performance increases with
the horizon. Overall, the average predictive gains of shrinkage-based methods, excluding
Ridge, amount to 5% compared to experts’ forecasts, which is indeed a tough competitor
to beat. On the other hand, tree-based methods are not able to outperform SPF nowcasts.
These methods are generally beaten by a considerable amount, even though slightly worse
nowcasts might be produced at early month horizons.

emerges for days 22 and end-of-month while the latter gives rise to a ragged edge for day 15 as well.
14These overall results also hold in terms of MAE. We hereby do not document the robustness analysis,

but nowcasting results have shown to be robust to alternative model specifications and shorter time series
windows for both estimation and rolling cross-validation.
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Table 3: RMSE and MAE for all out-of-sample periods

Metric Horizon SPF AR RW RF GRF LLF LASSO EN Ridge BART sgLASSO

RMSE day 8 1 1,33 1,81 1,05 1,09 1,07 0,95 0,95 0,95 1,02 0,92
RMSE day 15 1 1,72 1,90 1,21 1,26 1,25 0,98 0,98 1,03 1,17 0,96
RMSE day 22 1 2,35 2,59 1,39 1,53 1,50 0,94 0,94 0,99 1,34 0,99
RMSE end-of-month 1 2,84 3,13 1,55 1,77 1,79 0,95 0,95 1,03 1,48 0,99
MAE day 8 1 1,38 1,91 1,05 1,09 1,09 0,96 0,96 0,98 1,04 0,94
MAE day 15 1 1,74 1,93 1,21 1,24 1,26 0,99 0,99 1,06 1,16 0,97
MAE day 22 1 2,38 2,63 1,36 1,47 1,45 0,98 0,98 1,02 1,32 0,98
MAE end-of-month 1 2,87 3,17 1,53 1,71 1,73 1,01 1,02 1,11 1,46 1,06

Note: The table reports the RMSE and MAE for each competing model relative to SPF nowcasts. Smaller
values for each metric and nowcasting horizon (days 8, 15, 22 and end-of-month) are indicated by gray-
shaded cells.

The findings in Table 3 prompt the question whether relative forecasting errors are
constant throughout the evaluation period or largely affected by unusual events. To that
end, we report the cumulative sum of squared forecast error (CUMSFE) of model-based
nowcasts versus the SPF benchmark for nowcasts made on days 8, 15, 22 and end-of-month.
The CUMSFE is given by:

CUMSFEt0,t1 =

t1∑
t=t0

e2t,M1
− e2t,M2

(9)

for a benchmark model M1 (hereby, SPF) versus M2. A positive value of CUMSFEt0,t1

indicates an outperformance of M2 from t0 up to t1 in comparison with SPF nowcasts while
negative values imply the opposite.

Figure 3 clearly shows that the inflationary period following the Covid-19 pandemic is
a game changer in terms of loss differentials. In general, differences in predictive accuracy
between shrinkage methods and SPF nowcasts are modest throughout the years preceding
the pandemic while large forecasting gains build up from September, 2020. During this
period of persistent high inflation, we observe the largest jumps in CUMSFE for nowcasts
made on days 8 and 15 using sg-LASSO, but moderate gains are also achieved on days
22 and end-of-month using LASSO or Elastic Net, which mainly drive the results in Table
3. Moreover, early month nowcasts lead to higher CUMSFE by the end of 2022 and these
values decrease as we move towards end-of-month horizons. On the other hand, experts’
nowcasts are able to consistently outperform Ridge during calm times, meaning that variable
selection is key to obtain good quality nowcasts across weekly horizons.
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Figure 3: Cumulative sum of loss differentials (CUMSFE) of regularization MIDAS nowcasts
(LASSO, Ridge, Elastic Net and sg-LASSO) versus the survey of professional forecasters (SPF,
median) on days 8, 15, 22 and end-of-month. The gray shaded areas correspond to rising inflation
periods.
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These findings on relative performance over time are consistent to results of the fluctua-
tion test in Figure 4. Forecasting gains in comparison to SPF inflation expectations change
substantially over time, depending on the model and horizon, nevertheless, improvements in
nowcasting accuracy become crystal-clear in the aftermath of the pandemic. The sg-LASSO
gains on days 8 and 15 are occasionally significant at the 10% level throughout 2021. Simi-
larly, LASSO forecasts produce a few significant smaller losses in 2021 at horizons closer to
the end-of-month. In fact, the picture reveals a clear discrepancy between shrinkage- and
tree-based models, as expected from previous results. On top of that, a higher dispersion
of prediction accuracy across models can be observed during turbulent times such as the
2014-15 Brazilian economic crisis and the pandemic. At the same time, model-based and
SPF nowcasts are statistically equivalent during normal times and typically deliver loss
differentials close to zero.

Finally, we investigate the relative importance of the selected predictorsby means of
coefficient estimates for each month throughout the evaluation period. In Appendix A.3, we
present a heatmap of these period-wise coefficient estimates for sg-LASSO at each horizon.
That is, for each one of the four nowcasting moments there is a different heatmap, in which
dates are displayed in the x axis and covariates are displayed in the y axis. The numerical
value of a coefficient associated with a given variable for a specific date in the sample
period will determine the intensity of color in the graph. This gives a view of the evolution
of coefficients across all the sample periods and between different nowcasting moments.

Comparing all panels in Figure A.3, we observe that sg-LASSO prompts a fairly sparse
structure at early month horizons while a more dense structure prevailing at late month
horizons stems from a higher data availability of low-frequency price indicators. In the
former case (Figures A2a and A2b), SPF inflation expectations, high-frequency price in-
dicators, and the lagged IPCA(second variable from top to bottom, with a negative sign)
are the most relevant variables. At the same time, energy prices and financial variables
regularly enter the forecasting model, though with modest coefficients. When it comes to
horizons approaching end-of-month, the low-frequency but timely indicator IPCA-15 re-
veals an enormous importance via coefficient estimates that amount to 0.6 in many cases.
On the other hand, SPF inflation expectations now lose a big portion of their relevance.
One hypothesis is that professional forecasters adapt their survey responses to the release
of this indicator. As for the fuel prices, they do not have an associated coefficient in all
nowcasting moments at the beginning of the out-of-sample period, until the first months of
2014. The reason for that is the availability of the data (see Table 1): in order to have a
balanced panel, variables only enter in the out-of-sample exercise when they have at least
120 past observations for estimation of the models. The same happens with the credit
default swap (CDS), DI-rate and DI-spread.
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Figure 4: Fluctuation test from Giacomini and Rossi (2010), comparing the squared difference
between forecasts and observed values. Each line corresponds to the test statistic comparing a
specific machine learning method and SPF nowcasts, and graphs are separated by the corresponding
day of the nowcast. Areas between the horizontal dashed lines correspond to the 90% confidence
interval of the two-sided test. We used as window parameters of the test µ = 0.1 and five for the
number of lags in the variance of the DM test. The dashed vertical lines indicate relevant periods
in the Brazilian economy: (a) refers to the civil protests in 2013, (b) is the Brazilian economic
crisis that led to predident Rouseff impeachment, (c) is the corona crisis, and (d) is the invasion of
Ukraine.
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5 Concluding remarks

We have tested many machine learning methods for nowcasting inflation based on high-
frequency macro and financial indicators within a Mixed-Data Sampling (MIDAS) struc-
ture. Specifically, we compared Shrinkage regression methods and tree-based algorithms
forecasting performance in an out-of-sample exercise comprising 120 months using data
from Brazil.

Results indicate that linear models with shrinkage and variable selection done via the
LASSO outperform tree-based methods in terms of RMSE and MAE. This result is in line
with the findings from Joseph et al. (2021). It seems that for shorter data such as macroe-
conomic time series together with the short forecasting span do not favor the non-linear
characteristics of the trees. Fluctuation test shows that the LASSO performs significantly
better than the FOCUS survey of professional forecasts in the later period of rising inflation
following the Covid-19 pandemic.

Variable selection via the analysis of the coefficients from the sparse group LASSO
confirms the relevance of higher frequency indicators. At the beginning of the month, when
SPF predictions tend to be worse, the machine learning methods produce better forecasts
because they can explore the early information available in real time coming from the
weekly data. In the last two weeks of the month, the model and survey forecasts tend to
become closer, and low-frequency variables tend to gain higher coefficients. The differences
in the releases of the low-frequency indicators, namely the fact that monthly indicators
are released at different weeks within the reference month, led us to adapt the estimation
strategy. At each week within a month, we reestimated the model’s coefficients, in a way
that only variables that have been already released in time t would be used for estimating
the model at that point in time.

Taking together, the above results suggest that having a rich set of different price indexes
combined with survey data within a MIDAS structure seems to allow a rapid detection of
inflationary shocks. Furthermore, for monthly nowcasts, it is important to take into account
during the estimation procedure the data release differences in the low-frequency variables.
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Appendix

A.1 Mixed-frequency framework in matrix form

For expositional simplicity, let us reduce the general multiple-predictors case of the base-
line model (1) to the one-predictor case for both the low- and high-frequency components
and neglect seasonal dummies. From there, assume the latest data release for the target
inflation has been released for a given month t. Based on the information set available
up to t and a pre-sample observation y0, our baseline U-MIDAS structure, with a single
high-frequency predictor x

(m)
k,t and low-frequency predictor xj,t, can be estimated following

the matrix representation


y1
y2
...
yt

 =



1 y0 x
(m)
k,1 x

(m)

k,1− 1
m

x
(m)

k,1− 2
m

x
(m)

k,1− 3
m

xj,1

1 y1 x
(m)
k,2 x

(m)

k,2− 1
m

x
(m)

k,2− 2
m

x
(m)

k,2− 3
m

xj,2

...
...

...
...

...
...

...
1 yt−1 x

(m)
k,t︸︷︷︸

end-of-month

x
(m)

k,t− 1
m︸ ︷︷ ︸

day 22

x
(m)

k,t− 2
m︸ ︷︷ ︸

day 15

x
(m)

k,t− 3
m︸ ︷︷ ︸

day 8

xj,t−1





c
ρ1
βk,1
βk,2
βk,3
βk,4
αj


+


ε1
ε2
...
εt

 (A1)

Note that (A1) makes explicit that the high-frequency predictor x
(m)
k,t is sampled m

times more frequently than yt while keeping the low-frequency structure of model (1). This
way, frequency alignment between monthly and weekly variables requires exactly m × t

observations for the high-frequency predictor x
(m)
k,t such that it can be decomposed into m

increments within each period t.

Nowcasts for the inflation rate at periods t+1, . . . , T can then be updated on a regular
basis as high-frequency increments become available after t or by the time information
on the low-frequency predictor gets available before official releases of the target inflation.
Moreover, the process of updating the mixed-frequency dataset leads to missing data of x(m)

k,t

at the end of the sample when nowcasting before the end-of-month. This sample’s ragged
edge is supplemented with random walk forecasts based on vintages of high-frequency data
by the time of the nowcast.
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A.2 Period-wise performance of tree-based models

Figure A1: Cumulative sum of loss differentials (CUMSFE) of tree-based MIDAS nowcasts (Ran-
dom Forest, Generalized Random Forest, Local Linear Forest, Bayesian Additive Regression Trees)
versus the survey of professional forecasters (SPF, median) on days 8, 15, 22 and end-of-month.
The gray shaded areas correspond to rising inflation periods.
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A.3 Variable selection in sg-LASSO

(a) Day 8 (b) Day 15

(c) Day 22 (d) End-of-month

Figure A2: Heatmap of coefficient estimates using one of the best performing methods: sg-LASSO
(L = 0). Empty cells represent a coefficient estimate equal to zero, and thereby a predictor that
has not been selected for a given period t in the evaluation period.
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