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Abstract

In this paper our main goal is to compare time series forecasting accuracy for several
candidates within a wide collection of machine learning methods. In addition to the vast
number of existing methods in the literature, we propose a new variation of the Elastic
Net (ENet), the Weighted Lag Adaptive ENet (WLadaENet), which combines the popular
Ridge Regression with a regularization method tailored for time series, the WLAdaLASSO
(Konzen and Ziegelmann, 2016). The motivating idea is to increasingly penalize the coef-
ficients of lagged variables as the lag increases. To achieve our goal, we carry out Monte
Carlo simulation studies as well as a real data analysis of USA inflation. In our Monte
Carlo implementations, the WLadaENet presents a good performance both in terms of
variable selection when the true model is sparse and in terms of forecasting accuracy even
when the model is not sparse and nonlinearities are included. WLadaENet also performs
well to forecast the USA inflation. Nevertheless, L2Boost is the best inflation forecaster
for the USA data in the analyzed period.
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1. Introduction

High-dimensional machine methods have become increasingly important in the litera-
ture over the last few decades. In the context of time series analysis, the main reasons for
this are certainly i) the forecasting accuracy gain obtained from a model which is built hav-
ing a large number of potential covariates to select from, and ii) the availability of modern
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methods capable of performing selection, estimation and forecasting in high-dimensional
problems.

Many of the traditional methods present some drawbacks within the high-dimensional
context (see Tibshirani, 1996; Fan, 2014), for instance:

1. Estimates often have low bias but large variance, reducing the accuracy of the fore-
casts.

2. They can lack model interpretability. Considering a large set of predictors, it is
preferable to determine a smaller subset of predictors that most explain the variabil-
ity of the response variable.

3. When the number of predictors exceeds the sample size, ordinary least squares
(OLS) does not produce an identifiable solution.

4. Spurious correlation can play a strong negative role.

Machine learning (ML) methods are able to handle some of the issues above. These
methods are designed to improve out-of-sample prediction. Gu et al. (2020) and Mul-
lainathan and Spiess (2017) point out some key characteristics of (high-dimensional) ML
methods: ML contains a diverse collection of high-dimensional methods for statistical
prediction that combine two elements, namely, regularization and empirical tuning. The
high-dimensional nature of these methods enhances their flexibility relative to more tradi-
tional econometric prediction techniques (Gu et al., 2020). ML methods typically have a
regularizing element associated with them and the empirical tuning allows one to choose
the level of regularization appropriately (Mullainathan and Spiess, 2017).

In a seminal work, Tibshirani (1996) introduces the least absolute shrinkage and selec-
tion operator (LASSO), which soon became a benchmark in the regularization literature.
Zou (2006) investigates the oracle properties of LASSO, showing that it is not consistent in
variable selection in some situations. Then the adaLASSO (adaptive LASSO) is proposed
by Zou (2006), with distinct penalties for each of the coefficients, inheriting consistency in
variable selection under very general assumptions. Medeiros and Mendes (2016) study the
asymptotic properties of adaLASSO in sparse, high-dimensional, linear time-series mod-
els and find that its properties allow the adaLASSO to be applied to a variety of applica-
tions in empirical finance and macroeconomics. The authors also present an application to
forecast U.S. inflation using many predictors, where adaLASSO delivers superior forecasts
compared to traditional benchmarks such as autoregressive and factor models. Medeiros
and Vasconcelos (2016) employ high-dimensional methods (LASSO-family and bagging)
to forecast macroeconomic variables, and show that these methods provide smaller fore-
cast errors than autoregressive and factor models. Medeiros et al. (2016) use LASSO
and adaLASSO to forecast Brazilian inflation and observe that LASSO-based methods
have the smallest errors for short-horizon forecasts. Konzen and Ziegelmann (2016) test
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LASSO-type penalty methods for covaraite selection and forecasting, and propose the
WLadaLASSO (which is based on further penalizing lagged predictors) method, having
good results for U.S. risk premium and U.S. inflation forecasting. Medeiros et al. (2019)
added a variety of high-dimensional methods to forecast U.S. inflation, such as bagging,
Ridge Regression, Elastic Net (and its adaptive version) and Jackknife Model Averag-
ing (JMA), finding that Random Forests (RF) robustly outperforms the other methods. Gu
et al. (2020) provide a comparative analysis of methods in the machine learning repertoire,
using these methods to forecast stock returns, and identify the best performing methods as
trees-based models and neural networks.

In this work we employ a variety of ML methods (including methods based on shrink-
age, regression trees and boosting) to perform time series forecasting. In particular, we
propose a method we call WLadaENet (weighted lag adaptive Elastic Net), which com-
bines quadratic regularization (ridge) with adaptive weighted LASSO shrinkage similarly
to adaENet introduced by Zou and Zhang (2009), but further penalizes coefficients of
higher lag order terms as the WLadaLASSO proposed by Konzen and Ziegelmann (2016).
To compare the finite sample performances of the ML methods considered in our work,
particularly against WLadaENet, a Monte Carlo (MC) simulation study is carried out, with
three different data-generating processes. In summary, the MC studies highlight the good
performance of our proposal. WLadaENet presents a good performance in terms of vari-
able selection when the model is sparse and in terms of forecasting even when the model
is not sparse and nonlinearities are included. Furthermore, in our empirical analysis of the
USA inflation forecasting, WLadaENet performs well, been only slightly behind L2Boost.

Besides this introduction, the paper comprises 3 more sessions. Section 2 describes
all the forecasting machine learning methods implemented in this work, including our
novel WLadaENet proposal. In Section 3 all the Monte Carlo (MC) simulations as well as
empirical analysis are performed. Section 4 brings the concluding remarks.

2. Machine Learning Methods

2.1. Traditional Shrinkage Methods
Considering the linear time series model

yt+h = β0 + β1xt,1 + ... + βqxt,q + ut+h, t = 1, ...,T, (1)

where the forecast of yt+h, denoted as ŷt+h is given by

ŷt+h = β̂0 + β̂1xt,1 + ... + β̂qxt,q, t = 1, ...,T. (2)
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This section presents a class of methods that shrink the regression coefficients by imposing
a penalty on their size, i.e, the coefficients in 1 are obtained by solving the following
problem:

β̂(λ) = arg min
β0,...,βq


T−h∑
t=1

yt+h − β0 −

q∑
j=1

β jxt, j


2

︸                             ︷︷                             ︸
RS S (β0,...,βq)

+p(β1, ..., βq; λ)


, (3)

where β̂(λ) = (β̂0, β̂1(λ), ..., β̂q(λ)), p(·) is a penalty function and λ is a vector of tuning
parameters. In Table 1 we summarize some very traditional shrinkage methods along with
their specific penalty functions.

Table 1: Penalty functions (β̂∗j are obtained in a previous first stage)

Method Penalty: p(β1, ..., βq; λ)

Ridge λ
∑q

j=1 β
2
j

LASSO λ
∑q

j=1 |β j|

ENet λ[ρ
∑q

j=1 |β j| + (1 − ρ)
∑q

j=1 β
2
j]

adaLASSO λ
∑q

j=1 |β̂
∗
j |
−τ|β j|

adaENet λ[ρ
∑q

j=1 |β̂
∗
j |
−τ|β j| + (1 − ρ)

∑q
j=1 β

2
j]

WLadaLASSO λ
∑q

j=1(|β̂∗j |e
−αl j)−τ|β j|

WLadaENet λ[ρ
∑q

j=1(|β̂∗j |e
−αl j)−τ|β j| + (1 − ρ)

∑q
j=1 β

2
j]

2.2. Weighted Lag Adaptive Elastic Net (WLadaENet)
We propose a method that we call Weighted Lag Adaptive Elastic Net (WLadaENet),

a combination between adaENet and WLadaLASSO, where the idea is similar to the adap-
tive Elastic Net, but penalizing further the coefficients of higher-lagged covariates in a time
series context. The penalization of WLadaENet is given by

p(·) = λ

ρ q∑
j=1

ω̂∗j |b j| + (1 − ρ)
q∑

j=1

b2
j

 . (4)

Here, the estimator is obtained as the solution of the following minimization problem:

β̂WLadaENet = arg min
b0,...,bq

RS S (b0, ..., bq) + λ

ρ q∑
j=1

ω̂∗j |b j| + (1 − ρ)
q∑

j=1

b2
j


 , (5)
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where ω∗j =
[(
|β̂∗j |
)

e−αl j
]−τ

, if either OLS or Ridge are employed in the first stage. In

turn, if LASSO or ENet are employed, then ω̂∗j =
[(
|β̂∗j | + T−1

)
e−αl j
]−τ

. Similarly to
WLadaLASSO, τ > 0, α ≥ 0, l j represents the lag order and β̂∗j, j = 1, . . . , q, are the
coefficient estimates of the first stage.

2.3. Ensemble Methods
According to Hastie et al. (2009), ensemble learning consists in constructing a predic-

tion method F̂h by combining the strengths of simple base estimators f̂h,b, such that the
prediction rule is given by

ŷt+h = F̂h(xxxt) =
B∑

b=1

λb f̂h,b(xxxt), (6)

where λb can be seen as a learning rate or a weight.

2.3.1. Complete Subset Regression (CSR)
Subset selection methods retain only a subset of the covariates, eliminating the others

from the model. Usually, least squares regression is employed to estimate the coefficients
of the retained covariates. Elliott et al. (2013) introduce the Complete Subset Regression
which, for a given set of potential covariates, combines forecasts from all possible linear
regressions with a fixed number of covariates. For a set of K covariates, or predictor
candidates, there are nk,K = K!/[(K − k)!k!] combinations of k ≤ K variables. Elliott et al.
(2015) consider large-dimensional sets of potential predictors where CSR is unfeasible
and indicate a pre-testing procedure as a possible solution.

Consider the linear model yt+h = γ
Tzzzt + δ

Twwwt + ut+h , t = 1, . . . ,T , where zzzt is a Px1
vector of predictors which are always included in the forecast equation, and wwwt is a Kx1
vector of potential predictors. We follow Garcia et al. (2017) and Medeiros et al. (2019)
and use a pre-testing procedure where for each variable in wwwt we fit a linear regression of
yt+h by OLS and use the absolute values of the t-statistic to select the K̃ < K most relevant
variables. The CSR forecast is given by

ŷt+h = B−1
B∑

b=1

β̂T
b xxxt =

B−1

 B∑
b=1

β̂T
b

︸           ︷︷           ︸
(β̂CS R)T

xxxt, (7)

where B = nk,K̃ = K̃!/[(K̃ − k)!k!], xxxt = (zzzt,wwwt) and β̂b = (γ̂T
b , δ̂

T
b )T , b = 1, ..., B.
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2.3.2. Component-Wise L2 Boosting (L2Boost)
Boosting is a procedure that combines the outputs of many base or weak learners

iteratively in order to achieve high accuracy (Bühlmann and Yu, 2003; Hastie et al., 2009).
According to Friedman (2002) gradient boosting constructs additive regression models by
sequentially fitting a simple parameterized function (base learner) to current “pseudo”-
residuals by least-squares at each iteration, where the “pseudo” residuals are the gradient
of the loss functional being minimized, with respect to the model values at each training
data point, evaluated at the current step. The boosting technology builds an ensemble
model by conducting a regularized and supervised search in a high-dimensional space of
weak learners (Hastie et al., 2009).

Bühlmann and Yu (2003) present a computationally simple variant of boosting algo-
rithms, L2Boost, which is constructed from a functional gradient descent algorithm em-
ploying the L2-loss function. For L2Boost method the loss function is given by L(yt+h, F̂(xxxt)) =
[yt+h − F̂(xxxt)]2/2 such that the gradient of L(.) is ût+h = yt+h−F̂(xxxt), t = 1, ...,T−h. Based
on Bühlmann and Yu (2003), and Bai and Ng (2009) the Componentwise L2Boost algo-
rithm sequentially fits q simple linear models until a stopping rule is reached. The L2Boost
forecast is given by

ŷt+h = β̂0 + β̂1,B∗ xt,1 + ... + β̂q,B∗ xt,q. (8)

In order to avoid overfit Bühlmann (2006) proposes a stopping rule using the corrected
AICc criterion. For time series, Bai and Ng (2009) use the BIC as a stopping rule.

2.3.3. Random Forest (RF)
Breiman (2001) proposes the Random Forest to improve on the variance reduction ca-

pability of bagging predictors (Breiman, 1996) by reducing the correlation between the
trees. Regression trees partition the space of predictors into disjoint regions {Rk}

K
k=1. Ac-

cording to Hastie et al. (2009) a regression tree with K regions (terminal nodes or leaves)
can be formally defined by the equation

T (xxxt; θ) =
K∑

k=1

βkIRk(xxxt), (9)

with parameters θ = {Rk, βk}
K
k=1 and where IRk(.) is a product of indicator functions such

that IRk(xxxt) indicates whether xxxt ∈ Rk.
Minimizing the sum of squares, β̂k is given by the average of those yt+h in region R̂k

β̂k =

∑T−h
t=1 IR̂k

(xxxt)yt+h∑T−h
t=1 IR̂k

(xxxt)
. (10)
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The RF prediction is an ensemble of trees predictions, resulting in

ŷt+h = F̂RF
B (xxxt) = B−1

B∑
b=1

 Kb∑
k=1

β̂k,bIR̂k,b
(xxxt)

︸              ︷︷              ︸
Tb(xxxt ,θ̂b)

. (11)

2.3.4. Boosting Trees (B.Trees)
For boosting regression trees, Friedman (2001) considers the case where each base

learner is a K-terminal node regression tree. So the update at each iteration has the form

F̂b(xxxt) = F̂b−1(xxxt) + λ
K∑

k=1

β̂k,bIR̂k,b
(xxxt), (12)

where {R̂k,b}
K
k=1 are the regions defined by the terminal nodes of the tree at the bth iteration.

The trees are constructed to predict the pseudo-responses {ût+h,b}
T−h
t=1 by least squares. The

{β̂k,b}
K
k=1 are the corresponding least squares coefficients

β̂k,b =

∑T−h
t=1 IR̂k,b

(xxxt)ût+h,b∑T−h
t=1 IR̂k,b

(xxxt)
. (13)

The forecast of yt+h is given by

ŷt+h = F̂B.Trees
B (xxxt) = β̂0 + λ

B∑
b=1

 K∑
k=1

β̂k,bIRk,b(xxxt)

︸              ︷︷              ︸
Tb(xxxt ,θ̂b)

, (14)

where, for all b, Kb = K = d + 1 and λ ∈ (0, 1].

2.4. Factor Methods
The following methods avoid high-dimensional problems by using the common fac-

tors. We consider the following model:

wt, j = λ
T
j Gt + et, j , (15)

where Gt is the vector of common factors, λ j is a vector of loadings associated with Gt,
and et, j is the idiosyncratic component of wt, j, t = 1, ...,T − h and j = 1, ..., q.
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2.4.1. Factors
Here, the h-period-ahead forecast, using data for t = 1, . . . ,T − h, is given by

yt+h = γ
Tzzzt + δ

T g̃t + ut+h , (16)

where zzzt is a vector of predetermined variables, g̃t includes lags of ĝt, ĝt ⊆ Ĝt, and Ĝt are
the principal components estimates of the vector Gt in the factor model. The key task in
factors based methods is the correct specification of the number of factors. In this work
we follow Medeiros et al. (2019). The forecast can be written as

ŷt+h = β̂
T
BICxxxt , (17)

where xxxt = (zzzt, g̃t), zzzt includes lags of yt, g̃t include lags of ĝt and β̂BIC = (γ̂T
BIC, δ̂

T
BIC)T is

selected using the BIC from a coefficients set {β̂OLS (l): l = 1, .., L} estimated by OLS for
each lag.

2.4.2. Boosting Factors
To select predictors from a large set of candidates, where they have no natural ordering,

Bai and Ng (2009) propose the use of boosting in factor-augmented autoregressions. The
boosting algorithm employed is the same presented earlier for the L2Boost method, where
the BIC value is used as a stopping rule to prevent overffiting. The forecast is given by

ŷt+h = (β̂L2Boost)T xxxt , (18)

where xxxt = (zzzt, g̃t), zzzt includes lags of yt, g̃t include lags of ĝt and β̂L2Boost is estimated
through L2Boost method.

3. Numerical Implementations

In order to evaluate the forecasting performance of the statistical methods presented
earlier, we carry out several numerical exercises, including Monte Carlo simulations and
an empirical data analysis. All implementations are performed using software R. For all
shrinkage methods we used the package glmnet. The RF method is implemented using
the package randomForestSRC and B.Trees using the package gbm. For the shrinkage
methods the parameters λ and α ∈ {0, 0.5, 1, ..., 10}, whereas the order of WL methods are
selected according to the BIC. The parameter ρ of ENet and its adaptive versions is set to
1/2 (1/3 in glmnet function). For the adaptive methods we employ Ridge Regression in
the first stage to compute the weights ω j. For the CSR method we fix K̃ = 20 and k = 4,
following Medeiros et al. (2019) and using the first four lags of yt as fixed controls. The
method L2Boost employs the minimum BIC as the stopping rule, where we use λ = 0.2
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and the maximum number of iterations B = 10q. For RF and B.Trees we use the number
of trees B = 500 and the minimum number of observations by leaf nmin = 15. The number
of splits of B.Trees is fixed at d = 2, while for the RF this parameter is not fixed. RF is
implemented employing non-overlapping blocks bootstrap where the block size is 4. In
the factor methods we use the first four Principal Components.

The parameters of the AR model are estimated by Ordinary Least Squares (OLS) and
the order p is determined by BIC. A set of AR models {AR(p) : p ∈ {1, ..., L} ⊂ N} is
estimated and the selected model is the one which has minimum BIC. For the empirical
applications the number of lags used is L = 4.

3.1. Metrics of Prediction Performance
Following Garcia et al. (2017) and Medeiros et al. (2019) in this work we employ a

direct forecast approach such that the h periods ahead response variable, yt+h is modeled as
a function of a set of predictors measured at up to time t, considering the following general
model:

yt+h = Fh(xxxt) + ut+h, h = 1, . . . ,H, t = 1, . . . ,T, (19)

where yt+h is the dependent variable in period t + h and xxxt = (xt,1, ..., xt,q)T ∈ X ⊆ Rq is a
set of covariates which contains only variables observed and available at time t. Fh(.) is the
mapping between covariates and yt+h and ut+h is the forecasting error. There is a different
mapping Fh(.) for each forecasting horizon h and for each method. We use a fixed length
rolling-window scheme for all methods. Adopting a notation similar to Medeiros et al.
(2019), the direct forecast equation is given by

ŷt+h|t = F̂h,t−T w
h +1:t(xxxt), (20)

where F̂h,t−T w
h +1:t is the estimated target function based on data from time t − T w

h + 1 up to t
and T w

h is the window size. The window size varies depending on the forecasting horizon
h and the number of lagged variables used in the method.

All methods are evaluated based on a fixed number TPF = T − T0 of point forecasts.
For each forecast horizon h = 1, ...,H the methods are compared according the root mean
square error (RMSE) and the mean absolute error (MAE), which are defined as follows:

RMSE =

√√√
T−1

PF

T∑
t=T0+1

(ût+h)2 and MAE = T−1
PF

T∑
t=T0+1

|ût+h|, (21)

where ût+h = yt+h − ŷt+h.
Besides, Superior Predictive Ability (Hansen, 2005; Quaedvlieg, 2019) and Model

Confidence Set (Hansen et al., 2011) are performed to choose the best methods.
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3.2. Monte Carlo Simulation
In this section we analyze and compare the performance of almost all the methods

presented before through a Monte Carlo simulation study. As our simulated data does not
have a factor structure we do not report results for factors methods in this section. We
perform Monte Carlo simulations with 1000 replications, simulating n = 10 independent
time series with an AR(1) structure:

xt, j = ϕxt, j + ϵt, j, (22)

where ϕ = 0.5 and ϵt, j ∼ NIID(0, 1), j = 1, ..., n.
We consider three different data-generating processes (DGP).

DGP1: sparse model.

yt = 0.8yt−1 + 0.6xt−1,1 + 0.3xt−2,1 − 0.5xt−1,2 − 0.2xt−2,2

+ 0.4xt−1,3 + 0.3xt−2,3 + 0.4xt−1,4 − 0.3xt−1,5 + 0.2xt−1,6 + ut, t = 1, ...,T,
(23)

where ut ∼ N(0, 1) and all ut are mutually independent.

DGP2: dense linear model.

DGP 2: yt =

L∑
ℓ=1

aℓ (yt−ℓ) +
L∑
ℓ=1

n∑
j=1

bℓ, j
(
xt−ℓ, j

)
+ ut, t = 1, ...,T, (24)

where aℓ = 0.8 (−0.5)ℓ−1, bℓ, j = (0.5)ℓ (−1)ℓ+ j−1, ut ∼ N(0, 1) and all ut are mutually
independent. In this case, for each value of L, we generate and analyse the simulated data
employing all lagged variables from 1 to L, thus all coefficients are nonzero.

DGP3: dense nonlinear model.

DGP 3: yt =

L∑
l=1

{
al
[
g (yt−l; al)

]}
+

L∑
l=1

n∑
j=1

{
bl, j

[
g
(
xt−l, j; bl, j

)]}
+ ut , t = 1, ...,T, (25)

where g(z; c) = z/(1 + |c|z2). In terms of Taylor’s expansion g(z; c) = z − |c|z3 + |c|2z5 −

|c|3z7 + |c|4z9..., such that the DGP3 is similar to the DGP2 plus a nonlinear part.
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3.2.1. Variable and Model Selection
Restricted to linear models, for the first two DGP specifications we additionally report

in Table 2 some statistics related to model/variable selection.

Table 2: Simulation results: Descriptive statistics of models selection for DGP 1 and DGP 2
DGP 1: Sparse model DGP 2: Dense model

4 candidate lags 12 candidate lags 4 candidate lags 12 candidate lags

T 150 500 1000 150 500 1000 150 500 1000 150 500 1000

FVCI FVCI FVCI FVCI

Ridge 0.2273 0.2273 0.2273 0.0758 0.0758 0.0758 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LASSO 0.8928 0.9342 0.9472 0.9490 0.9744 0.9790 0.4114 0.4625 0.8274 0.1643 0.1300 0.1323
ENet 0.7389 0.7740 0.7749 0.8746 0.9142 0.9176 0.4873 0.5516 0.9073 0.1932 0.1546 0.1535
adaLASSO 0.9339 0.9771 0.9850 0.9575 0.9906 0.9946 0.3316 0.3567 0.5960 0.1392 0.1013 0.1131
adaENet 0.9225 0.9727 0.9825 0.9459 0.9887 0.9935 0.3469 0.3669 0.6058 0.1518 0.1044 0.1135
WLadaLASSO 0.9562 0.9900 0.9943 0.9680 0.9967 0.9981 0.2941 0.3874 0.5320 0.0851 0.1310 0.1674
WLadaENet 0.9566 0.9906 0.9952 0.9668 0.9968 0.9984 0.2904 0.3874 0.5334 0.0847 0.1317 0.1674
CSR 0.6230 0.6667 0.6763 0.8415 0.8563 0.8588 0.4545 0.4545 0.4545 0.1515 0.1515 0.1515
L2Boost 0.8329 0.8771 0.8867 0.8202 0.9015 0.9153 0.4938 0.5328 0.6928 0.3612 0.2578 0.2793

TMI TMI TMI TMI

Ridge 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LASSO 0.5922 0.9947 1.0000 0.2995 0.9757 1.0000 0.0000 0.0013 0.0714 0.0000 0.0000 0.0000
ENet 0.7800 0.9990 1.0000 0.4745 0.9907 1.0000 0.0000 0.0037 0.1518 0.0000 0.0000 0.0000
adaLASSO 0.4075 0.9529 0.9990 0.0565 0.9153 0.9987 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
adaENet 0.4397 0.9543 0.9990 0.0643 0.9278 0.9990 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WLadaLASSO 0.4243 0.9735 1.0000 0.0637 0.9717 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WLadaENet 0.4563 0.9793 1.0000 0.0829 0.9786 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CSR 0.0001 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
L2Boost 0.7574 0.9998 1.0000 0.6485 0.9988 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FRVI FRVI FRVI FRVI

Ridge 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LASSO 0.9451 0.9995 1.0000 0.8756 0.9975 1.0000 0.4114 0.4625 0.8274 0.1643 0.1300 0.1323
ENet 0.9766 0.9999 1.0000 0.9300 0.9991 1.0000 0.4873 0.5516 0.9073 0.1932 0.1546 0.1535
adaLASSO 0.9145 0.9952 0.9999 0.7698 0.9913 0.9999 0.3316 0.3567 0.5960 0.1392 0.1013 0.1131
adaENet 0.9246 0.9953 0.9999 0.7924 0.9927 0.9999 0.3469 0.3669 0.6058 0.1518 0.1044 0.1135
WLadaLASSO 0.9009 0.9973 1.0000 0.7007 0.9971 1.0000 0.2941 0.3874 0.5320 0.0851 0.1310 0.1674
WLadaENet 0.9070 0.9979 1.0000 0.7050 0.9978 1.0000 0.2904 0.3874 0.5334 0.0847 0.1317 0.1674
CSR 0.6705 0.7667 0.7878 0.4542 0.5516 0.5678 0.4545 0.4545 0.4545 0.1515 0.1515 0.1515
L2Boost 0.9728 1.0000 1.0000 0.9586 0.9999 1.0000 0.4938 0.5328 0.6928 0.3612 0.2578 0.2793

FIVE FIVE FIVE FIVE

Ridge 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - - - - - -
LASSO 0.8775 0.9150 0.9317 0.9550 0.9725 0.9773 - - - - - -
ENet 0.6690 0.7075 0.7087 0.8700 0.9072 0.9108 - - - - - -
adaLASSO 0.9396 0.9717 0.9806 0.9728 0.9905 0.9942 - - - - - -
adaENet 0.9219 0.9661 0.9773 0.9585 0.9884 0.9930 - - - - - -
WLadaLASSO 0.9725 0.9878 0.9926 0.9899 0.9966 0.9979 - - - - - -
WLadaENet 0.9712 0.9884 0.9938 0.9883 0.9968 0.9982 - - - - - -
CSR 0.6090 0.6372 0.6435 0.8733 0.8813 0.8826 - - - - - -
L2Boost 0.7917 0.8410 0.8534 0.8089 0.8934 0.9084 - - - - - -

NIV NIV NIV NIV

Ridge 44.0000 44.0000 44.0000 132.0000 132.0000 132.0000 44.0000 44.0000 44.0000 132.0000 132.0000 132.0000
LASSO 13.6171 12.8855 12.3235 14.2468 13.3297 12.770 18.101 20.3482 36.4060 21.6831 17.162 17.4666
ENet 21.0193 19.944 19.9051 25.1581 21.3117 20.8805 21.4407 24.2682 39.9232 25.4983 20.4126 20.259
adaLASSO 11.1996 10.9134 10.6582 11.0108 11.0684 10.7089 14.5902 15.6959 26.2219 18.3707 13.3685 14.9258
adaENet 11.9012 11.1070 10.7692 12.9883 11.3414 10.8542 15.2643 16.1446 26.6532 20.0439 13.7855 14.985
WLadaLASSO 9.9441 10.3865 10.2527 8.2447 10.3812 10.2553 12.9418 17.0468 23.4098 11.2356 17.2919 22.1009
WLadaENet 10.0491 10.3726 10.212 8.4804 10.3736 10.2171 12.778 17.0455 23.4694 11.1768 17.3846 22.0988
CSR 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000
L2Boost 16.8083 15.4067 14.9853 32.9025 23.0002 21.1782 21.728 23.4424 30.4811 47.6759 34.0347 36.8712

Note: statistics related to model/variable selection, where FVCI is the average fraction of variables correctly identified; TMI is the fraction of replications where the true model is
included; FRVI is the average fraction of relevant variables included; FIVE is the fraction of irrelevant variables excluded and NIV is the number of included variables. For each
specification, the value of statistic for the best performing method is highlighted in bold. Ridge Regression always select all variables and does not exclude any, while CSR always
selects K̃ = 20 variables and excludes the remaining ones.
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Although the Ridge Regression is not a variable selection method, we included its
statistics as a reference (when all variables are selected) to compare to the performances
of other methods. For each method, sample size and lag order, we report: (1) the average
fraction of variables correctly identified (FVCI); (2) the fraction of replications where
the true model is included (TMI); (3) the average fraction of relevant variables included
(FRVI); (4) the average fraction of irrelevant variables excluded (FIVE) and (5) the average
number of included variables (NIV). While Ridge Regression, by construction, always
select all variables and does not exclude any, the CSR always selects K̃ = 20 variables
and excludes the remaining ones. For each specification, the value of the best performing
method is highlighted in bold.

Considering DGP1, the adaptive methods, especially WLadaENet, have the best per-
formances for the statistics FVCI, FIVE and NIV. When we consider the statistics TMI and
FRV, the methods ENet and L2Boost perform better than the other methods, while CSR
rarely includes the true model (TMI near or equal to zero). For DGP2, as all coefficients
are different from zero, the statistic FIVE is zero for all methods and for each specification.
For the TMI statistic (besides Ridge) only LASSO and ENet present values different from
zero but very small, only for L = 4 and T ≥ 500. ENet, L2Boost (for T = 150 and 500)
and LASSO (for T = 1000) present the best performance in terms of the FVCI, FRVI and
NIV statistics when L = 4. For L = 12, L2Boost has the best performance (excluding
Ridge) for FVCI, FRVI and NIV.

3.2.2. Forecasting
In terms of forecasting, we consider the three DGP specifications. We remove the last

10 observations of each simulated time series data end employ the methods to perform
the one-step-ahead out-of-sample forecast for these observations using a rolling-window
scheme, where the window has size T − 10. We analyze situations where L ∈ {4, 12} and
T ∈ {150, 500, 1000}.

Table 3 shows the results for the one-step-ahead forecasts. We report the mean values
of RMSE and MAE across replications, and indicate in bold the method with the lowest
forecasting error for each specification. The cells in gray/blue indicate that the method
is included in the 50% Model Confidence Set (MCS) using the squared/absolute error
as loss function. For DGP1 and DGP2 the methods with best performance in terms of
errors are WLadaLASSO and WLadaENet, except for DGP2 when L = 4 and T = 1000,
where ENet has the lowest errors and is the only method included in the MCS. As we
use all point forecasts of all replications and, consequently, this data is very informative,
we have at most three methods included in the MCS and one or two methods in most
cases. For DGP3, which is nonlinear, when we have four lags the methods RF, B.Trees
and L2Boost have the best performance for the smallest simulated sample, and are the
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only methods included in the MCS. For the moderate and the largest sample sizes, Ridge
has the lowest errors and is the only method in the MCS. Finally, for 12 lags, the model
becomes approximately sparse, then WLadaLASSO and WLadaENet present the lowest
errors, being the best performing methods.

Table 3: Simulation results: Forecasting accuracy for the DGP 1, 2 and 3
Mean of RMSEs DGP 1: Sparse model DGP 2: Dense model DGP 3: Nonlinear model

(Mean of MAEs) 4 candidate lags 12 candidate lags 4 candidate lags 12 candidate lags 4 candidate lags 12 candidate lags

T 150 500 1000 150 500 1000 150 500 1000 150 500 1000 150 500 1000 150 500 1000

RW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

AR 0.9262 0.9175 0.9159 0.9269 0.9176 0.9159 0.9109 0.8983 0.8967 0.9172 0.9035 0.9027 0.7565 0.7525 0.7504 0.7558 0.7501 0.75
(0.9275) (0.9200) (0.9183) (0.9282) (0.9199) (0.9183) (0.9105) (0.8986) (0.8972) (0.9205) (0.9074) (0.9061) (0.7671) (0.7632) (0.7608) (0.7695) (0.7634) (0.7636)

Ridge 0.7274 0.6486 0.6342 1.8334 0.7171 0.6655 0.6007 0.523 0.5126 1.0237 0.5739 0.5338 0.7619 0.6616 0.6479 0.7334 0.7266 0.6733
(0.7254) (0.6451) (0.6323) (1.8488) (0.7189) (0.6652) (0.5998) (0.5225) (0.5126) (1.0286) (0.5722) (0.5337) (0.7748) (0.6723) (0.6588) (0.7444) (0.7352) (0.684)

LASSO 0.6456 0.5912 0.5809 0.6990 0.6023 0.5855 0.5906 0.5302 0.4952 0.6521 0.5520 0.5331 0.7491 0.6887 0.6683 0.7494 0.708 0.679
(0.6443) (0.5914) (0.5809) (0.6962) (0.6021) (0.5856) (0.5883) (0.529) (0.4959) (0.6513) (0.5539) (0.5339) (0.759) (0.6984) (0.6782) (0.7649) (0.7187) (0.6897)

ENet 0.6641 0.5989 0.5842 0.7572 0.6201 0.5954 0.5972 0.5282 0.4921 0.6964 0.5637 0.5404 0.7553 0.6938 0.6697 0.7535 0.7193 0.6829
(0.6622) (0.5970) (0.5831) (0.7530) (0.6182) (0.5942) (0.5946) (0.5264) (0.4934) (0.6947) (0.5655) (0.5413) (0.7652) (0.7039) (0.6794) (0.7691) (0.7313) (0.6937)

adaLASSO 0.6301 0.5836 0.5758 0.7115 0.586 0.5762 0.5696 0.5229 0.5002 0.6342 0.5259 0.5159 0.7406 0.681 0.6626 0.7441 0.6866 0.6649
(0.6290) (0.5840) (0.5763) (0.7099) (0.5869) (0.5766) (0.5676) (0.5219) (0.5011) (0.6328) (0.5269) (0.5169) (0.7521) (0.6914) (0.6732) (0.7592) (0.6963) (0.6753)

adaENet 0.6310 0.5842 0.5760 0.728 0.5867 0.5764 0.5722 0.5235 0.5000 0.6482 0.5275 0.5167 0.7441 0.6811 0.6624 0.7449 0.6891 0.6664
(0.6297) (0.5844) (0.5765) (0.7254) (0.5872) (0.5768) (0.5699) (0.5223) (0.5006) (0.6475) (0.5286) (0.5175) (0.7552) (0.6912) (0.6726) (0.7606) (0.6989) (0.6764)

WLadaLASSO 0.6168 0.5799 0.5746 0.6634 0.5805 0.5747 0.5548 0.5155 0.4966 0.5476 0.5093 0.4905 0.7263 0.6700 0.6591 0.7241 0.6662 0.6554
(0.6151) (0.5804) (0.5751) (0.6635) (0.5806) (0.5754) (0.5537) (0.5149) (0.4972) (0.5469) (0.5102) (0.4907) (0.7368) (0.6811) (0.6692) (0.7366) (0.6748) (0.6654)

WLadaENet 0.6170 0.5804 0.5746 0.6633 0.5806 0.5749 0.5546 0.5157 0.4969 0.5474 0.5088 0.4904 0.7258 0.6698 0.659 0.72 0.6663 0.6553
(0.6156) (0.5808) (0.575) (0.6632) (0.5806) (0.5754) (0.5537) (0.5149) (0.4976) (0.5469) (0.5097) (0.4906) (0.7356) (0.6806) (0.6696) (0.7326) (0.6749) (0.665)

CSR 1.3605 1.3028 1.2857 1.4464 1.3489 1.3245 0.9554 0.9366 0.9308 0.9750 0.9313 0.9259 0.7302 0.7233 0.7223 0.7367 0.7233 0.7207
(1.3633) (1.3082) (1.2897) (1.4459) (1.3522) (1.3261) (0.9583) (0.9379) (0.9323) (0.9775) (0.9371) (0.9310) (0.7405) (0.7331) (0.7323) (0.7497) (0.736) (0.7332)

L2Boost 0.6265 0.5852 0.5772 0.6660 0.5909 0.5800 0.5762 0.5248 0.5057 0.6230 0.5331 0.5192 0.7202 0.6761 0.6621 0.7449 0.6818 0.6657
(0.6263) (0.5856) (0.5775) (0.6658) (0.5921) (0.5805) (0.5739) (0.5236) (0.5060) (0.6227) (0.5342) (0.5205) (0.7306) (0.6859) (0.6722) (0.7558) (0.691) (0.6758)

RF 1.3050 1.0176 0.9151 1.3858 1.0666 0.9561 0.9367 0.8420 0.8008 0.9805 0.8739 0.8303 0.7196 0.691 0.6776 0.7322 0.706 0.6918
(1.2686) (0.9999) (0.9039) (1.3495) (1.0495) (0.9450) (0.9349) (0.8382) (0.7974) (0.9823) (0.8755) (0.8315) (0.7295) (0.7014) (0.6874) (0.7452) (0.7179) (0.7028)

B.Trees 1.4524 1.0613 0.9660 1.6040 1.0661 0.9676 0.9410 0.8390 0.8177 1.0001 0.8353 0.8110 0.7194 0.687 0.675 0.7327 0.6957 0.6769
(1.4109) (1.0401) (0.9504) (1.5656) (1.0446) (0.9518) (0.9400) (0.8354) (0.8140) (1.0004) (0.8357) (0.8121) (0.7292) (0.6984) (0.685) (0.7476) (0.7075) (0.6878)

Note: The table shows the means of root mean squared errors (RMSE) and means of mean absolute errors (MAE) in parenthesis for the forecasts across replications, relative to the
Random Walk (RW). The values in bold indicate the method with lowest values of RMSE and MAE for each horizon. Cells in gray/blue indicate that the method is included in the
50% MCS constructed based on the Tmax statistic using the squared (or absolute) errors.

3.3. Empirical Analysis: U.S. Inflation
In this section we employ all statistical methods seen previously to forecast U.S. in-

flation. We use the variables from the FRED-MD1 database compiled by McCracken and
Ng (2016), performing forecasts for the Consumer Price Index (CPI) in log change. The
dataset span ranges from January 1960 to December 2018, having 708 monthly observa-
tions and 122 variables classified in 8 groups as seen in Table 4.

Our in-sample period spans from January 1960 to December 2012, leading to an in-
sample size of 636 observations, with q = 488 covariates (considering 122 variables and 4
lags for each). Therefore, we have 72 out-of-sample observations to evaluate our forecasts,
from January 2013 to December 2018 (see Table 5). Furthermore, Figure 1 presents the
time series plot of U.S. inflation, where the red interval indicates the period for which we
perform the forecasts.

1The FRED-MD is a large database containing monthly observations of macroeconomic variables, de-
signed for the analysis of big data and is updated in real-time thorough the FRED database. The FRED-MD
is available at https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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Table 4: Variable Groups Summary

Description Number of variables

Group 1 Output and income 16
Group 2 Labor market 31
Group 3 Housing 10
Group 4 Consumption, orders, and inventories 7
Group 5 Money and credit 13
Group 6 Interest and exchange rates 21
Group 7 Prices 20
Group 8 Stock market 4

Table 5: Empirical application summary
Variables Lags q In-sample Sample size Out-of-Sample Point forecasts

CPI U.S. large sample 122 4 488 Jan 1960-Dec 2012 636 Jan 2013-Dec 2018 72

In Table 6 we report the results for the inflation forecast accuracy, all relative to the
Random Walk (RW). This table shows the root mean squared error (RMSE) and the mean
absolute error (MAE) for all forecasting methods. These forecast accuracy measures are
displayed for horizons from 1 to 12 months ahead as well as for the cumulative inflation
for 3, 6 and 12 months ahead. The gray/blue cells indicate that the method is included in
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Figure 1: Time series U.S. inflation
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the 50% Model Confidence Set (MCS) using the squared (or absolute in brackets) error
as loss function. As it can be seen, the RW, AR and Ridge are almost never included in
the MCS. On the opposite side, L2Boost is the only method that is always in the MCS.
Our proposal, WLadaENet, comes second in that respect, only not being in the MCS for
horizon 6 under the RMSE loss.

Table 6: Forecasting Accuracy for Predicting U.S. Inflation from 2013 to 2018: RMSE, MAE and MCS
Consumer price index (U.S.) 2013-2018

Forecast horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

AR 0.87 0.79 0.81 0.86 0.86 0.78 0.72 0.73 0.75 0.84 0.87 0.78 0.90 0.97 1.43
(0.92) (0.81) (0.82) (0.85) (0.89) (0.75) (0.66) (0.67) (0.72) (0.81) (0.78) (0.68) (0.94) (0.95) (1.38)

Ridge 0.96 0.91 0.83 0.96 0.98 0.85 0.87 0.92 0.95 1.08 1.03 0.89 0.85 0.82 1.21
(1.00) (0.89) (0.84) (0.96) (1.03) (0.87) (0.83) (0.89) (0.96) (1.11) (0.98) (0.81) (0.87) (0.84) (1.28)

LASSO 0.78 0.76 0.75 0.81 0.79 0.71 0.65 0.67 0.69 0.77 0.73 0.74 0.79 0.80 1.08
(0.80) (0.76) (0.70) (0.78) (0.79) (0.67) (0.59) (0.61) (0.65) (0.71) (0.66) (0.66) (0.80) (0.75) (1.02)

ENet 0.79 0.76 0.76 0.80 0.83 0.70 0.65 0.67 0.70 0.78 0.75 0.74 0.81 0.82 1.12
(0.81) (0.77) (0.72) (0.77) (0.80) (0.66) (0.59) (0.61) (0.65) (0.73) (0.68) (0.64) (0.83) (0.77) (1.04)

adaLASSO 0.80 0.72 0.75 0.79 0.80 0.72 0.68 0.69 0.71 0.76 0.72 0.71 0.77 0.76 1.00
(0.80) (0.73) (0.71) (0.75) (0.78) (0.68) (0.62) (0.62) (0.67) (0.73) (0.66) (0.67) (0.75) (0.69) (0.91)

adaENet 0.79 0.73 0.75 0.79 0.80 0.73 0.67 0.69 0.68 0.75 0.72 0.70 0.78 0.78 1.01
(0.79) (0.73) (0.71) (0.75) (0.79) (0.70) (0.61) (0.62) (0.64) (0.72) (0.65) (0.66) (0.77) (0.72) (0.94)

WLadaLASSO 0.74 0.74 0.72 0.78 0.78 0.72 0.64 0.69 0.68 0.76 0.71 0.70 0.76 0.75 0.96
(0.73) (0.74) (0.69) (0.73) (0.76) (0.68) (0.59) (0.62) (0.64) (0.73) (0.66) (0.66) (0.75) (0.68) (0.90)

WLadaENet 0.74 0.74 0.75 0.75 0.79 0.73 0.64 0.69 0.67 0.74 0.71 0.68 0.78 0.75 0.96
(0.74) (0.76) (0.72) (0.71) (0.76) (0.69) (0.56) (0.60) (0.63) (0.71) (0.64) (0.63) (0.78) (0.68) (0.90)

CSR 0.80 0.73 0.74 0.77 0.77 0.69 0.66 0.67 0.67 0.73 0.73 0.70 0.77 0.75 1.00
(0.84) (0.74) (0.70) (0.76) (0.78) (0.67) (0.62) (0.64) (0.64) (0.70) (0.68) (0.63) (0.78) (0.70) (0.94)

L2Boost 0.78 0.73 0.72 0.79 0.74 0.67 0.62 0.64 0.67 0.75 0.74 0.72 0.73 0.70 0.93
(0.77) (0.72) (0.68) (0.75) (0.72) (0.64) (0.56) (0.61) (0.65) (0.73) (0.69) (0.65) (0.72) (0.64) (0.87)

RF 0.78 0.73 0.73 0.78 0.77 0.69 0.64 0.67 0.69 0.76 0.75 0.71 0.78 0.77 1.02
(0.81) (0.73) (0.69) (0.73) (0.76) (0.64) (0.56) (0.60) (0.63) (0.70) (0.68) (0.62) (0.78) (0.70) (0.91)

B.Trees 0.81 0.75 0.76 0.78 0.77 0.68 0.64 0.69 0.70 0.78 0.78 0.73 0.84 0.81 1.13
(0.86) (0.73) (0.72) (0.74) (0.76) (0.63) (0.58) (0.60) (0.61) (0.71) (0.69) (0.63) (0.85) (0.76) (1.05)

Factors 0.83 0.80 0.80 0.82 0.77 0.73 0.71 0.70 0.71 0.76 0.75 0.73 0.86 0.90 1.23
(0.86) (0.81) (0.78) (0.81) (0.78) (0.70) (0.67) (0.65) (0.67) (0.71) (0.68) (0.65) (0.87) (0.85) (1.21)

B.Factors 0.81 0.76 0.76 0.81 0.80 0.73 0.68 0.70 0.71 0.78 0.77 0.73 0.82 0.85 1.19
(0.85) (0.77) (0.76) (0.81) (0.82) (0.70) (0.61) (0.64) (0.67) (0.72) (0.68) (0.64) (0.83) (0.82) (1.15)

Mean 0.77 0.73 0.73 0.77 0.76 0.70 0.65 0.66 0.68 0.75 0.73 0.68 0.77 0.75 0.95
(0.78) (0.73) (0.70) (0.73) (0.76) (0.67) (0.59) (0.62) (0.65) (0.71) (0.67) (0.62) (0.77) (0.69) (0.87)

Median 0.78 0.73 0.74 0.78 0.77 0.70 0.65 0.67 0.68 0.75 0.72 0.70 0.77 0.76 1.00
(0.79) (0.73) (0.70) (0.75) (0.77) (0.67) (0.59) (0.61) (0.64) (0.70) (0.65) (0.62) (0.77) (0.71) (0.93)

Note: The table shows the root mean squared errors (RMSE) and mean absolute errors (MAE) in parenthesis for the forecasts, relative to the Random Walk (RW). The values in
bold indicate the method with lowest values of RMSE and MAE for each horizon. Cells in gray/blue indicate that the method is included in the 50% MCS constructed based on the
Tmax statistic using the squared/absolute errors.

We also apply the Superior Predictive Analysis (SPA) tests of i) Hansen (2005) to
compare the forecasting methods for each forecasting horizon (plus the cumulative ones)
and ii) Quaedvlieg (2019)) for the Uniform and Average Multi-Horizon SPA versions.
Table 7 reports on its left-hand-side the p-values of Hansen (2005) SPA test using each
method as benchmark for each forecasting horizon. Quaedvlieg (2019) SPA test p-values,
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for both Uniform and Average Multi-Horizon versions are reported on the right-hand-side
of this table, having only RW and AR as benchmarks. Panel (a) presents the p-values for
the test using RMSE and Panel (b) using MAE. The null hypothesis for both single and
multi-horizon is that the benchmark method is not inferior. The gray cells indicate that the
null hypothesis is rejected at the 0.05 significance level. For the single-horizon SPA test
the methods LASSO, ENet, adaLASSO, adaENet, WLadaLASSO, WLadaENet, L2Boost,
RF and B.Trees are statistically not inferior to the others for all forecasting horizons. The
multi-horizon tests show that RW is not uniformly inferior to the Ridge, while AR is also
not uniformly inferior to Ridge and Factors model and is not on average inferior to Ridge.

Table 7: Superior Predictive Ability Test (U.S. Inflation, 2013-2018)
Panel (a): Squared errors

Hansen‘s test – Forecasting horizon Quaedvlieg‘s test

Benchmark 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m Unif.(RW) Avg.(RW) Unif.(AR) Avg.(AR)

RW 0.012 0.017 0.008 0.059 0.062 0.005 0.003 0.003 0.001 0.013 0.004 0.004 0.046 0.020 0.723 - - 0.930 0.992
AR 0.042 0.105 0.089 0.222 0.224 0.072 0.199 0.286 0.296 0.046 0.087 0.232 0.080 0.020 0.055 0.000 0.008 - -

Ridge 0.005 0.049 0.044 0.069 0.027 0.004 0.020 0.024 0.017 0.002 0.004 0.068 0.253 0.320 0.245 0.292 0.045 0.879 0.969
LASSO 0.290 0.414 0.509 0.379 0.425 0.160 0.167 0.271 0.528 0.240 0.642 0.376 0.496 0.261 0.298 0.000 0.003 0.000 0.005
ENet 0.185 0.325 0.341 0.429 0.336 0.313 0.235 0.394 0.376 0.193 0.311 0.373 0.370 0.272 0.271 0.000 0.003 0.000 0.007
adaLASSO 0.226 0.971 0.466 0.499 0.450 0.055 0.151 0.122 0.212 0.480 0.757 0.536 0.542 0.334 0.646 0.000 0.001 0.000 0.011
adaENet 0.221 0.889 0.437 0.492 0.433 0.043 0.163 0.138 0.837 0.640 0.910 0.712 0.450 0.278 0.418 0.000 0.004 0.000 0.010
WLadaLASSO 0.928 0.745 0.876 0.395 0.388 0.078 0.518 0.115 0.779 0.493 0.888 0.674 0.735 0.551 0.760 0.000 0.000 0.000 0.009
WLadaENet 0.806 0.649 0.457 0.931 0.529 0.053 0.523 0.179 0.988 0.786 0.945 0.890 0.556 0.512 0.759 0.000 0.003 0.000 0.005
CSR 0.134 0.918 0.486 0.558 0.608 0.451 0.272 0.474 0.907 0.990 0.610 0.746 0.466 0.446 0.722 0.000 0.003 0.000 0.009
L2Boost 0.341 0.861 0.844 0.328 0.943 0.820 0.948 0.938 0.751 0.550 0.453 0.471 0.964 0.985 0.972 0.000 0.000 0.000 0.012
RF 0.322 0.801 0.756 0.503 0.511 0.439 0.640 0.329 0.640 0.461 0.343 0.555 0.437 0.371 0.392 0.000 0.002 0.000 0.008
B.Trees 0.143 0.429 0.345 0.538 0.442 0.634 0.404 0.171 0.376 0.201 0.144 0.456 0.317 0.316 0.256 0.000 0.001 0.000 0.005
Factors 0.083 0.119 0.110 0.122 0.428 0.081 0.045 0.081 0.187 0.414 0.378 0.439 0.181 0.051 0.099 0.000 0.002 0.136 0.009
B.Factors 0.122 0.370 0.342 0.102 0.157 0.023 0.053 0.079 0.188 0.245 0.143 0.420 0.184 0.100 0.153 0.000 0.002 0.000 0.004

Mean 0.331 0.903 0.834 0.539 0.651 0.192 0.230 0.414 0.882 0.820 0.595 0.999 0.582 0.414 0.613 0.000 0.002 0.000 0.004
Median 0.372 0.963 0.587 0.388 0.355 0.163 0.299 0.268 0.828 0.721 0.872 0.831 0.491 0.308 0.442 0.000 0.004 0.000 0.005

Panel (b): Absolute errors
Hansen’s test – Forecasting horizon Quaedvlieg‘s test

Benchmark 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m Unif.(RW) Avg.(RW) Unif.(AR) Avg.(AR)

RW 0.002 0.007 0.002 0.011 0.024 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.024 0.004 0.534 - - 0.941 0.994
AR 0.022 0.142 0.035 0.134 0.080 0.064 0.154 0.300 0.038 0.077 0.110 0.354 0.025 0.013 0.045 0.000 0.005 - -

Ridge 0.006 0.060 0.029 0.013 0.004 0.006 0.006 0.024 0.004 0.002 0.002 0.040 0.161 0.119 0.112 0.395 0.037 0.848 0.966
LASSO 0.181 0.434 0.516 0.087 0.146 0.203 0.340 0.846 0.390 0.782 0.722 0.474 0.295 0.225 0.346 0.000 0.001 0.000 0.007
ENet 0.079 0.493 0.449 0.262 0.316 0.455 0.328 0.864 0.316 0.590 0.362 0.594 0.270 0.188 0.320 0.000 0.000 0.000 0.002
adaLASSO 0.170 0.863 0.505 0.429 0.180 0.107 0.100 0.538 0.160 0.585 0.634 0.294 0.674 0.542 0.798 0.000 0.001 0.004 0.014
adaENet 0.207 0.819 0.418 0.442 0.132 0.065 0.135 0.671 0.516 0.736 0.823 0.384 0.572 0.331 0.677 0.000 0.004 0.002 0.008
WLadaLASSO 0.920 0.742 0.712 0.781 0.452 0.150 0.249 0.522 0.496 0.586 0.679 0.355 0.765 0.696 0.894 0.000 0.002 0.004 0.007
WLadaENet 0.700 0.540 0.328 0.945 0.406 0.146 0.718 0.846 0.655 0.849 0.991 0.722 0.481 0.654 0.874 0.000 0.001 0.000 0.012
CSR 0.025 0.877 0.621 0.345 0.192 0.276 0.061 0.398 0.485 0.882 0.375 0.846 0.399 0.462 0.731 0.000 0.002 0.000 0.010
L2Boost 0.422 0.918 0.893 0.531 0.982 0.692 0.744 0.687 0.351 0.474 0.331 0.437 0.957 0.937 0.811 0.000 0.002 0.008 0.018
RF 0.145 0.812 0.807 0.641 0.515 0.705 0.860 0.920 0.747 0.903 0.389 0.944 0.512 0.494 0.637 0.000 0.005 0.000 0.007
B.Trees 0.119 0.755 0.349 0.529 0.500 0.819 0.497 0.833 0.927 0.705 0.275 0.812 0.221 0.225 0.316 0.000 0.006 0.000 0.002
Factors 0.083 0.179 0.091 0.048 0.277 0.130 0.127 0.178 0.181 0.726 0.352 0.614 0.082 0.034 0.088 0.000 0.003 0.102 0.012
B.Factors 0.038 0.386 0.192 0.036 0.017 0.033 0.076 0.309 0.161 0.588 0.319 0.683 0.186 0.082 0.141 0.000 0.000 0.000 0.006

Mean 0.167 0.962 0.674 0.851 0.522 0.298 0.224 0.797 0.281 0.891 0.601 0.998 0.576 0.547 0.974 0.000 0.003 0.000 0.009
Median 0.129 0.944 0.653 0.450 0.297 0.251 0.299 0.939 0.521 0.996 0.911 0.995 0.527 0.387 0.747 0.000 0.000 0.000 0.009

Note: The table reports the p-values of Hansen (2005) SPA test on the left using each method as benchmark for each forecasting horizon. The p-values of the uniform and average
multi-horizon Quaedvlieg (2019) SPA tests are also reported (right) using RW and AR as benchmarks. Panel (a) uses RMSE whereas Panel (b) uses MAE. The null hypothesis is
that the benchmark method is not inferior. The gray cells indicate that the null hypothesis is rejected at the 0.05 significance level.

Figure 2, inspired by Medeiros et al. (2019), shows the plots of the variables relative
importance (aggregated by variable groups) for all twelve forecasting horizons and for all
methods, except the univariate and factors based methods.

Similarly to Medeiros et al. (2019), for methods based on the linear model (shrinkage
methods, CSR and L2Boost) the relative importance is computed as the average coefficient
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Figure 2: Variable importance for U.S. CPI
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size. All variables are standardized as zero mean and unity variance. For RF the Out-of-
Bag (OOB) samples are used to compute the variable importance, while for B.Trees all
samples are employed. The OOB samples are the observations which are not selected in
the bootstrap sample process, for each b = 1, ..., B. The samples are passed down the bth

tree when it is grown and the accuracy is recorded, then the values for the variable j are
permuted at random, and the accuracy is computed once more. Hence, the decrease in
accuracy is averaged over all trees and is used as a measure of the importance of variable
j in the forest Hastie et al. (2009). AR terms (autorregressive, or past inflation) are very
relevant for CSR. Prices (Group 7) are, in general, quite relevant for all methods. Interest
and exchange rates (Group 6) also play an important role, especially for RF and B.Trees.

Finally, Figure 3 illustrates the forecasts for horizons 1 and 12 of the methods that had
good performances in our analysis.

4. Concluding Remarks

Our two-fold study aims i) studying a variety of machine learning methods capable
of performing time series forecasting and ii) proposing a new method, which we name
WLadaENet, tailored for time series analysis. In order to evaluate the forecasting perfor-
mances of these methods we carry out several numerical exercises, including Monte Carlo
simulations and an empirical data analysis of the U.S.inflation.

Through our Monte Carlo implementation, we simulate three different data-generating
process, trying to explore different levels of sparsity and different degrees of nonlinearities
in the model. WLadaLASSO and WLadaENet (our new proposal) have the best perfor-
mance in terms of variable selection and forecast in most cases, even when nonlinearities
are present.

For the U.S. inflation forecasts, the more modern ML methods have statistically su-
perior relative performances against the simpler RW and AR benchmarks. Overall, con-
sidering all forecast horizons L2Boost has the best performance followed closely by our
proposal, the WLadaENet.

18



Time

2013 2014 2015 2016 2017 2018 2019

−
0.

00
6

0.
00

0
0.

00
4

L2Boost  − h =  1

Time

2013 2014 2015 2016 2017 2018 2019

−
0.

00
6

0.
00

0
0.

00
4

L2Boost  − h =  12

Time

2013 2014 2015 2016 2017 2018 2019

−
0.

00
6

0.
00

0
0.

00
4

WLadaLASSO  − h =  1

Time

2013 2014 2015 2016 2017 2018 2019

−
0.

00
6

0.
00

0
0.

00
4

WLadaLASSO  − h =  12

Time

2013 2014 2015 2016 2017 2018 2019

−
0.

00
6

0.
00

0
0.

00
4

WLadaENet  − h =  1

Time

2013 2014 2015 2016 2017 2018 2019

−
0.

00
6

0.
00

0
0.

00
4

WLadaENet  − h =  12

Time

2013 2014 2015 2016 2017 2018 2019

−
0.

00
6

0.
00

0
0.

00
4

CSR  − h =  1

Time

2013 2014 2015 2016 2017 2018 2019

−
0.

00
6

0.
00

0
0.

00
4

CSR  − h =  12

Time

2013 2014 2015 2016 2017 2018 2019

−
0.

00
6

0.
00

0
0.

00
4

RF  − h =  1

Time

2013 2014 2015 2016 2017 2018 2019

−
0.

00
6

0.
00

0
0.

00
4

RF  − h =  12

Time

2013 2014 2015 2016 2017 2018 2019

−
0.

00
6

0.
00

0
0.

00
4

B.Trees  − h =  1

Time

2013 2014 2015 2016 2017 2018 2019

−
0.

00
6

0.
00

0
0.

00
4

B.Trees  − h =  12

0

0

U.S. CPI Forecast

Figure 3: U.S. CPI time series forecasts
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