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Abstract

In many situations, researchers are interested in identifying dynamic effects of an

irreversible treatment with a static binary instrumental variable (IV). For example, in

evaluations of dynamic effects of training programs, with a single lottery determining

eligibility. A common approach in these situations is to report per-period IV esti-

mates. Under a dynamic extension of standard IV assumptions, we show that such

IV estimators identify a weighted sum of treatment effects for different latent groups

and treatment exposures. However, there is possibility of negative weights. We con-

sider point and partial identification of dynamic treatment effects in this setting under

different sets of assumptions.
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1 Introduction

In many situations, researchers are interested in identifying dynamic effects of an irreversible

treatment with a static binary instrumental variable (IV). As an example, consider evalu-

ations of dynamic effects of training programs, exploiting a single lottery determining eli-

gibility for a given cohort (e.g., Schochet, Burghardt and McConnell 2008; Alzúa, Cruces

and Lopez 2016; Hirshleifer et al. 2016; Das 2021). Another example is the estimation of

the dynamic effects of fertility on labor market outcomes using exogenous variations such

as twins at first birth, sex composition of the first two children, and in-vitro fertilization

success (e.g., Bronars and Grogger 1994; Angelov and Karimi 2012; Silles 2015; Lundborg,

Plug and Rasmussen 2017). A common approach in these situations is to report per-period

reduced form (RF) or IV estimates. However, we show that if units can access treatment

at any period, these approaches may recover weighted sums of causal effects in which some

weights are negative. In particular, we show that if first stages are decreasing over time,

then there must be negative weights (and we may also have negative weights when the first

stage is nondecreasing).

To understand the intuition behind the existence of negative weights, consider the exam-

ple of a training program, where Zi is a binary variable indicating the result of the lottery

assignment for individual i. Consider individuals who, in the IV notation from Angrist,

Imbens and Rubin (1996), are compliers in the first period. That is, if Zi = 1, they attend

the program, while if Zi = 0, they do not attend the program. Now suppose some of those

with Zi = 0 end up attending the program in the second period. The RF estimator for the

second period would compare the second-period average outcome between those with Zi = 1

and Zi = 0, in order to estimate the effect of the program one year after the assignment.

However, the average outcome for those with Zi = 0 would include those compliers in the

first period that end up being treated in the second period. Therefore, the causal effect of

being treated in the current period for these individuals enters negatively in the RF esti-

mand. Since the counterpart of these individuals with Zi = 1 were already treated in the

previous period, those effects do not cancel out, unless treatment effects are independent of

the time since treatment. We show that there also are other latent groups that generate

problems in the per-period RF and IV comparisons.

We then consider the identification of the dynamic effects for first-period complies, which

we call dynamic local average treatment effects (LATEs). We consider assumptions under

which it is possible to solve for the dynamic LATEs recursively by correcting the reduced

form estimands. In particular, our assumptions allow for unrestricted heterogeneity of causal

effects with respect to treatment length, but instead assume homogeneity with respect to
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calendar time. As we discuss in more details in Section 2.2, such assumptions may be more

palatable in some applications than assuming treatment effect homogeneity with respect to

time since treatment. In such settings, our results indicate an alternative estimator relative

to the standard per-period RF and IV estimators. The alternative we propose does not

require additional sources of exogeneous variation (such as, for example, additional lotteries,

or existence of excluded covariates).

Finally, we also consider partial identification of the dynamic LATEs, without requiring

any assumption on the heterogeneous treatment effects. We do so by bounding the con-

tamination term using bounds on the treatment effects. Bounds will be tighter the smaller

the probability of late switching into treatment. This last result captures the intuition that

contamination is less of a concern if a smaller proportion of individuals get treated after the

first period. The idea of partially identifying treatment effects has been considered in other

contexts by many others, for example, Manski (1990), Lee (2009), Flores and Flores-Lagunes

(2013), and Bartalotti, Kédagni and Possebom (2023).

Our paper is related to a couple of papers that consider estimation of dynamic treatment

effects in IV settings. Most related, Lundborg, Plug and Rasmussen (2017) recognize the

shortcoming we study when considering per-period IV estimators in their estimation of

dynamic effects of fertility on women’s labor market outcomes. They present a simple model

to provide an intuition on the direction of the bias in their setting in their Online Appendix

C. Our Proposition 3.1 generalizes their arguments, with decomposition results for the RF

and IV estimands in a more general IV setting with heterogeneous treatment effects and

T periods. We also provide point and partial identification results in this setting. Miquel

(2002) considers the identification of dynamic treatment effects with a static instrument.

However, we consider sets of assumptions that are more reasonable for applications such as

the estimation of dynamic effects of training programs or of fertility.1 Han (2021) considers a

very flexible IV framework, but his identification approach requires the existence of exogenous

variables excluded from selection into treatment. In contrast, our identification results do not

require the existence of covariates satisfying such assumptions. Heckman, Humphries and

Veramendi (2016) consider a general discussion of the identification of dynamic treatment

effects in dynamic discrete choice models. However, their model does not directly encompass

the possibility of delayed treatment, which is the main source of contamination in our setting.

Our paper is also related to a literature on the estimation of dynamic treatment effects in

alternative settings. For example, see Ding and Lehrer (2010), van den Berg and Vikström

1Miquel (2002) assumes that potential outcomes are independent of the instrument conditional on a
history of treatment assignments. However, in the context of training programs or fertility, once we condition
on a history of realized treatment assignment, we would be considering different latent groups, depending
on whether Zi = 1 or Zi = 0.
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(2022), and Bojinov, Rambachan and Shephard (2021). Their solutions, however, differ from

ours in that they depend on controlling for fixed effects and lagged observables (Ding and

Lehrer 2010), rely on sequential unconfoundedness assumptions (van den Berg and Vikström

2022), or rely on a sequence of randomizations (Bojinov, Rambachan and Shephard 2021).

Most related to our solution for point identification, Cellini, Ferreira and Rothstein (2010)

consider identification of dynamic effects in regression discontinuity designs using a recursive

approach. However, they only consider the case of regression discontinuity designs that are

sharp, and they focus on a different set of target parameters.

Our paper is also related to the literature on multiple treatment variables with lower

dimensional instrumental variables (e.g., Torgovitsky 2015; D’Haultfœuille and Février 2015;

Masten and Torgovitsky 2016; Caetano and Escanciano 2021; Hull 2018), since we can re-

write our setting as one with multiple treatments. However, we are able to exploit the

particular dynamic structure of our setting to generate decomposition results for the per-

period RF and IV estimands, and to propose alternative solutions relative to the ones in this

literature.

Our work is also related to the literature on fuzzy difference-in-differences (de Chaise-

martin and D’Haultfœuille 2017; Hudson, Hull and Liebersohn 2017). A crucial distinction

from our setting is that we do not explore time variation under parallel trend assumptions,

and we study two commonly used estimators: per-period reduced form and IV estimators.

Moreover, we focus on the causal effect of exposure to treatment for multiple periods, while

de Chaisemartin and D’Haultfœuille (2017) focus on the effects for switchers. Additionally,

our identification results do not require the existence of a group for which the treatment

rate is stable. Finally, our paper is also related to the recent papers on negative weights

when considering two-way fixed effects estimators (de Chaisemartin and D’Haultfœuille 2020;

Callaway and Sant’Anna 2021; Sun and Abraham 2021; Goodman-Bacon 2021; Athey and

Imbens 2022; Borusyak, Jaravel and Spiess 2023), and when considering IV estimators with

covariates (Kolesár 2013; Blandhol et al. 2022; S loczyński 2022). However, the drivers of

negative weights in our setting, and the solutions we propose, are different.

The remainder of this paper is organized as follows. In Section 2 we derive all of our main

results for the simpler case in which we have only two periods. This includes decomposition

results for the RF and IV estimands (Section 2.1), point identification results (Section 2.2),

and partial identification results (Section 2.3). Then we consider the general multi-period

setting in Section 3.
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2 Two-periods setting

To simplify the exposition, consider first a setting with 2 periods of time, t ∈ {1, 2}. Units

are indexed by i and time is indexed by t. We are interested in identifying dynamic effects

of a binary treatment Di,t on some outcome Yi,t. No unit is treated before the first period.

There is selection into treatment, but we observe a static binary instrument Zi.

We focus on settings where treatment is irreversible in the sense that once a unit is treated,

it will be treated for all following periods. This is a common assumption in the difference-

in-differences literature, and is known as staggered treatment adoption (e.g., Callaway and

Sant’Anna 2021; Sun and Abraham 2021; Athey and Imbens 2022; Borusyak, Jaravel and

Spiess 2023).

Assumption 2.1 (Irreversible Treatment). Di,1 = 1 =⇒ Di,2 = 1.

One advantage of focusing on irreversible treatments is that any possible sequence of

treatment statuses at time t can be identified by zero if the unit has never been treated and

by (1, τ) if the unit’s first period of treatment was t−τ . In this initial case with two periods,

at t = 1 we may observe individuals with either treatment status 0 (not treated at t = 1) or

(1, 0) (treated at t = 1). In this case, τ = 0 indicates that treatment length is zero, because

the treatment started at t = 1, and we are considering the observation at t = 1. At t = 2,

in addition to treatment status 0, we may have (1, 1) (treated at t = 1, so τ = 1 means that

at t = 2 the length of the treatment is 1) or (1, 0) (treated at t = 2).

We denote potential outcomes for unit i at time t by Yi,t(0, z) were i not treated at t and

assigned by the instrument to z, and by Yi,t(1, τ, z) were i first treated at t− τ and assigned

by the instrument to z. Likewise, potential treatment statuses at period t are denoted by

Di,t(z). We let ATt denote always-takers at t (units such that Di,t(1) = Di,t(0) = 1), Ct

denote compliers at t (units such that Di,t(1) > Di,t(0)), Ft denote defiers at t (units such that

Di,t(1) < Di,t(0)) and NTt denote never-takers at t (units such that Di,t(1) = Di,t(0) = 0).

In this setting with 2 periods, we could have, in principle, 16 latent groups, which are

combinations of (ATt, Ct, Ft, NTt) for the two periods. Note, however, that Assumption 2.1

restricts these possibilities. In particular, the group AT1 must also be AT2. Moreover, the

group C1 must be either AT2 (in case those with Zi = 0 become treated in the second

period) or C2 (in case they remain untreated in the second period). In contrast, the group

NT1 can be any of the four possible latent groups in the second period even when treatment

is irreversible. We say compliance is dynamic when there exists individuals whose latent

groups change over time. Otherwise, we say that compliance is static. Compliance will be

static if, for example, treatment can be accessed only in the first period.
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For each t ∈ {1, 2}, define

RFt := E [Yi,t|Zi = 1] − E [Yi,t|Zi = 0] (1)

and

FSt := E [Di,t|Zi = 1] − E [Di,t|Zi = 0] , (2)

the per-period reduced form and first stage estimands at t, respectively. Thus, whenever

FSt 6= 0, the per-period IV estimand at t is RFt/FSt.

As a first requirement for Zi to be considered as an instrument, we propose a dynamic

extension of the standard IV assumptions of Imbens and Angrist (1994) and Angrist, Imbens

and Rubin (1996). The main difference from the assumptions in the static case is that we

add independence and exclusion conditions in all periods.

Assumption 2.2. Assume that the following hold:

1. Exclusion: For each z ∈ {0, 1}, Yi,t(0, z) = Yi,t(0) and Yi,t(1, 0, z) = Yi,t(1, 0) for

t ∈ {1, 2}, and Yi,2(1, 1, z) = Yi,2(1, 1).

2. Independence:
(
Yi,1(0), Yi,1(1, 0), Yi,2(0), Yi,2(1, 0), Yi,2(1, 1), Di,1(1), Di,1(0), Di,2(1), Di,2(0)

)

is independent of Zi.

3. Relevance at t = 1: FS1 6= 0.

4. Monotonicity at t = 1: P(F1) = 0.

Our focus will be on comparisons between treated and untreated potential outcomes.

Thus, our building blocks for decomposing the per-period reduced form estimands are causal

effects of the form2

∆τ
t (g) := E [Yit(1, τ) − Yit(0)|g] , (3)

where g specifies a history of IV latent types. For example, an individual that is only treated

in the first period if Zi = 1 but, in the second period, gets treated regardless of Zi belongs to

g = (C1, AT2). In this case, ∆0
2(C1, AT2) is the treatment effect for this group of individuals

at t = 2 when they received the treatment at t = 2. Note that there are two types of time

heterogeneity in these treatment effects. The first one is with respect to the calendar time t

and the second one is with respect to the treatment length τ .

We focus on target parameters of the type ∆t−1
t (C1), which we define as “dynamic

LATEs”. These are the local average treatment effects at time t, when treatment started

2Whenever written, expectations are assumed to exist.
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at t = 1, for first-period compliers (C1). For the comparison of effects across time to be

valid, it is important that the IV latent type for which the causal effect is identified does

not change. On the contrary, differences in effects across time cannot be solely attributed to

time heterogeneity.

Given the notation above, it follows directly from Imbens and Angrist (1994) that ∆0
1(C1)

is identified by the first period IV estimand under Assumption 2.2. Moreover, in case of

static compliance, Assumptions 2.1 and 2.2 imply that the IV estimand in the second period

identifies ∆1
2(C1), the effect at t = 2 of being treated at t = 1 for C1 individuals. The

argument for identification is analogous to the one for the first period estimand. For settings

with T periods, the same is true for identification of ∆t−1
t (C1).

2.1 Decomposition of RF and IV estimands

While, under Assumptions 2.1 and 2.2, the IV estimands recover the dynamic LATEs when

we have static compliance, we show that this would not generally be the case for ∆1
2(C1)

when we have dynamic compliance.

Figure 1 depicts the remaining latent groups at t = 2 once we exclude first-period de-

fiers (Assumption 2.2) and latent groups that are not consistent with irreversible treatment

(Assumption 2.1). When we consider RF2 = E[Yi,2|Zi = 1] − E[Yi,2|Zi = 0], it is clear that

the averages for g = (AT1, AT2) cancel out, because the observed outcomes for those in this

group are the same potential outcomes regardless of Zi. The same is true for g = (NT1, AT2)

and g = (NT1, NT2).

AT2

Yi,2(1, 1)
AT1

Zi = 1

AT2

Yi,2(1, 1)
C1

C2

Yi,2(1, 1)

AT2

Yi,2(1, 0)
NT1

C2

Yi,2(1, 0)
F2

Yi,2(0)
NT2

Yi,2(0)

AT2

Yi,2(1, 1)
AT1

Zi = 0

AT2

Yi,2(1, 0)
C2

Yi,2(0)
C1

AT2

Yi,2(1, 0)
C2

Yi,2(0)
F2

Yi,2(1, 0)
NT2

Yi,2(0)
NT1

Figure 1: Latent groups and potential outcomes when Zi = 1 and when Zi = 0.

Therefore, RF2 will capture the comparisons for the remaining latent groups. The main
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problem, however, is that for some of those groups the difference in observed outcomes

between those with Zi = 1 and Zi = 0 does not represent a difference between potential

outcomes Yi,2(1, 1) and Yi,2(0). For example, we have that

E[Yi,2|Zi = 1, C1] − E[Yi,2|Zi = 0, C1] = ∆1

2(C1) − P(AT2|C1)∆
0

2(C1, AT2).

This will also be the case for the groups (NT1, C2), and (NT1, F2). The following propo-

sition characterizes the RF2 and FS2 estimands in this setting with dynamic compliance.

Proposition 2.1. Under Assumptions 2.1 and 2.2,

RF2 = P(C1)∆
1

2(C1)

− P(C1, AT2)∆
0

2(C1, AT2) − P(NT1, F2)∆
0

2(NT1, F2)

+ P(NT1, C2)∆
0

2(NT1, C2)

(4)

and

FS2 = P(C1) − P(C1, AT2) − P(NT1, F2) + P(NT1, C2). (5)

Proof. Special case of Proposition 3.1.

Equation 4 shows that the RF2 depends on the dynamic LATE of interest at t = 2,

∆1
2(C1), but also on the effects for some groups that switch into treatment in the second

period. In particular, because the (C1, AT2) and (NT1, F2) get treated at t = 2 only when

Zi = 0, the causal effect for them is negatively weighted. A negative weight for the (C1, AT2)

is specially relevant because it implies that assuming no defiers in all periods is not sufficient

to avoid negative weights overall. In fact, the decomposition for the FS2 in Equation 5

shows that whenever FS2 < FS1 = P(C1), there must be negative weights in RF2 regardless

of assumptions made on the existence of specific latent groups. More generally, for settings

with T periods, we show in Corollary 3.1 that if there is a period in which the first stage is

strictly smaller than in the period before, then there must be negative weights in the reduced

form.

Equation 4 also indicates a typical case in which we may have sign reversal in the sense

that the causal effects have all the same sign but the sign of RF2 is opposite. Ignoring the

NT1’s in RF2 for the sake of the argument, if effects fade out sufficiently fast with respect to

the treatment length dimension, then the term related to (C1, AT2) in RF2 could be larger

than the term related to C1. For example, for the effects of children on parents’ labor supply

the treatment length dimension is the age of the child. Thus, if effects are always negative

but decrease (in absolute value) when children get older, the reduced form estimand could

be positive.
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Once we have a decomposition for the reduced form and for the first stage, the decom-

position for the IV estimand at t = 2 is immediate. Corollary 2.1 summarizes its main

characteristics. The two main takeaways are that negative weights in RF2 imply negative

weights in the IV estimand and that the weights sum to one.

Corollary 2.1. Under Assumptions 2.1 and 2.2, if FS2 6= 0, RF2/FS2 is a linear com-

bination of the causal effects in Equation 4 in which the weights sum to one but some of

them may be negative. There must be negative weights whenever FS2 < FS1. Moreover, the

causal effects that are negatively weighted in RF2/FS2 are the same as in RF2 if, and only

if, FS2 > 0.

Proof. Special case of Corollary 3.1.

Given the results above, we can consider the assumptions in which the second period IV

estimand recovers ∆1
2(C1). We have already mentioned the case of static compliance. When

compliance is static, individuals do not change treatment status from the first period to the

second, implying

P(C1, AT2) = P(NT1, C2) = P(NT1, F2) = 0,

and so RF2 reduces to P(C1)∆
1
2(C1) while FS2 = P(C1). However, this is not the only

case in which the IV estimand works. Assumption 2.3 formalizes types of treatment effects

homogeneities which guarantee that the IV estimand at t = 2 identifies a causal effect.

Assumption 2.3. For any latent group g ∈ {(C1, AT2), (NT1, C2), (NT1, F2)} such that

P(g) > 0, ∆1
2(C1) = ∆0

2(g).

Corollary 2.2. Suppose Assumptions 2.1 and 2.2 hold. Under Assumption 2.3, and if

FS2 6= 0,
RF2

FS2

= ∆1

2(C1).

Proof. This result is immediate given Proposition 2.1.

Assumption 2.3 is trivially satisfied if treatment effects are fully homogeneous (that is,

with respect to treatment length, calendar time, and latent group). More generally, it says

that, for those groups that contaminate the RF2 estimand, their treatment effects at t = 2

must be the same as the LATE at t = 2 for the first-period compliers (who were treated

at t = 1). This condition encompasses two sources of treatment effects homogeneity. First,

it requires that treatment effects do not depend on the time since those individuals have

been treated. This condition is arguably too strong in some of the settings we consider. For

example, as already discussed, we should expect stronger effects of fertility on labor supply
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when the treatment length is smaller. Likewise, we may expect that training programs have

negative effects in the beginning (while subjects are still taking classes), and then positive

effects afterward. Second, Assumption 2.3 requires that those treatment effects (that do not

depend on time since treatment) for the latent groups that contaminate the RF2 are the

same as for the first-period compliers, which is another kind of treatment effect homogeneity

restriction. On the contrary, note that Assumption 2.3 does not impose restrictions on the

possibility that treatment effects vary with calendar time.

Remark 1. We note that defining potential outcomes as Ỹi,t(1, z) when individual i is treated

in the initial period, and Ỹi,t(0, z) otherwise, would not be a valid solution without further

assumptions. In this case, we would have that Ỹi,t(0, z) would depend on z if we have dy-

namic compliance, so the usual IV exclusion restriction would not be valid for this definition

of potential outcomes. For example, the instrument directly affects the potential outcome

Ỹi,2(0, z) for the (NT1, C2) individuals because they are treated at t = 2 only when Zi = 1.

2.2 Point identification of dynamic LATEs

Since the per-period IV estimands do not generally recover the dynamic LATEs, we consider

alternative sets of assumptions in which these effects can be identified. In particular, we

consider identification with unrestricted heterogeneity in causal effects with respect to the

treatment length dimension. This comes at the cost of imposing homogeneity with respect

to calendar time. In this sense, our approach is opposite to the per-period IV estimands in

the type of time heterogeneity causal effects are allowed to have. Assumption 2.4 formalizes

the types of homogeneity assumptions we require.

Assumption 2.4. For any latent group g ∈ {(C1, AT2), (NT1, C2), (NT1, F2)} such that

P(g) > 0, ∆0
1(C1) = ∆0

2(g).

Assumption 2.4 says that, for those groups that contaminate RF2, their average treat-

ment effect at t = 2 must be the same as the first-period LATE. The main difference from

Assumption 2.3 is that we have changed the type of time heterogeneity on causal effects.

To understand the economic difference of these assumptions, it is useful to go back to the

training program case. If, for example, the outcome of interest is employment, then we would

expect the causal effect to vary whether the economy is in a recession or in a boom phase.

Thus, homogeneity with respect to calendar time would be a strong assumption in a period

of strong economic fluctuations. On the other hand, in periods of economic stability, it could

be reasonable to assume that the effects do not depend on calendar time. Therefore, at least

when we consider periods of economic stability, Assumption 2.4 should be more palatable

than Assumption 2.3 in this type of applications.
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We also note that the existence of latent groups (NT1, C2) and (NT1, F2) depends crucially

on the empirical setting we are considering. Once more, consider the training program

example. Suppose first that being lottery assigned to treatment implies that admission is

guaranteed not only in the current period, but also in the following ones. In this case, we

should expect that some of the NT1 individuals would eventually get treatment in the second

period if they have a guaranteed admission (in this case, if they have Zi = 1). Therefore,

we should expect P(NT1, C2) > 0. Alternatively, suppose the lottery in the initial period

does not guarantee admission in the following periods, and that never-takers from the first

period do not receive different information depending on their Zi. In this case, it would

be more reasonable to assume that second-period take-up for NT1 would not depend on

instrument assignment, so P(NT1, C2) = P(NT1, F2) = 0. Therefore, in these settings, we

would only require that ∆0
1(C1) = ∆0

2(C1, AT2). Other settings in which we only require this

last homogeneity condition are the ones in which there are no NT1 individuals. This would

be the case when all individuals assigned to Zi = 1 are treated in the first period.

Since ∆0
1(C1) = ∆0(C1) is identified, under Assumption 2.4, it is possible to identify the

contamination term of the reduced form estimand, and identify ∆1
2(C1) by correcting for the

bias in RF2.

Proposition 2.2. Suppose Assumptions 2.1 and 2.2 hold. Under Assumption 2.4,

∆1(C1) =
RF2

FS1

+

(
FS1 − FS2

)

FS1

RF1

FS1

. (6)

Proof. Special case of Proposition 3.2.

Therefore, Proposition 2.2 provides an alternative way to estimate dynamic LATEs that

(relative to the per-period IV estimator) relies on arguably more reasonable assumptions in

some settings. Moreover, note that, in contrast to the per-period IV estimand for t = 2, the

identification result from Proposition 2.2 requires relevance of the instrument only in the

first period (that is, we may have FS2 = 0).

Remark 2. Given the decomposition results from Proposition 2.1, it is possible to adapt

the solution we propose in this section to other settings in which we have more information.

For example, suppose we have another lottery at t = 2, that is independent from the first-

period lottery, and let C̃2 be the compliers of this second lottery.3 In this case, ∆0
2(C̃2)

is identified. Therefore, we may correct the contamination term using ∆0
2(C̃2) (instead of

3Individuals who participated in the first-period lottery may self select into participating in the second-
period lottery. Moreover, lottery participants in this second-period lottery may also include individuals who
did not participate in the first-period lottery.
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∆0
1(C1)), assuming that, for any latent group g ∈ {(C1, AT2), (NT1, C2), (NT1, F2)} such

that P(g) > 0, ∆0
2(C̃2) = ∆0

2(g) (instead of Assumption 2.4). In this case, we can allow

for unrestricted heterogeneity with respect to t and τ , but we still impose an homogeneity

assumption on the treatment effects across some different latent groups.

Remark 3. We can also consider extensions of our framework to analyze the causal effects

of charter schools (Abdulkadiroğlu et al. 2011; Dobbie and Fryer 2011; Gleason et al. 2011;

Angrist et al. 2016; Abdulkadiroğlu et al. 2016). For example, we can define potential out-

comes Yi,t(s, t̃) for a student i at time t, were he/she enrolled in a charter school for the

first time at time t̃ in grade s. Then we can define causal effects based on comparisons be-

tween Yi,t(s, t̃) and Yi,t(0), which is the potential outcome had the student never enrolled in

a charter school until period t.4 If we are considering a lottery at t = 1, we should take into

account the possibility that students enroll in a charter school in subsequent periods, and our

results can be adapted to this setting.

2.3 Partial identification of dynamic LATEs

For settings in which the assumptions considered in Section 2.2 (or the assumptions that

guarantee that per-period IV recovers the dynamic LATEs) would not be reasonable, we

also consider partial identification results. In this case, we are able to construct bounds

for the dynamic LATEs without imposing any assumption regarding the heterogeneity of

the treatment effects. We derive bounds on the dynamic LATEs by considering bounds on

the treatment effects. A particular case in which bounds for treatment effects are natural

is settings with bounded outcomes (if there exist Y , Y ∈ R such that Y ≤ Yi,2 ≤ Y with

probability one, then the treatment effects are bounded, in absolute value, by Y − Y ). We

provide bounds that are valid without any assumption other than irreversible treatment

(Assumption 2.1) and the basic conditions for IV validity (Assumption 2.2). We also show

that it is possible to improve upon these general bounds by assuming that the treatment

effects for the groups that contaminate RF2 are homogeneous (given period and treatment

length). For the sake of simplicity, Proposition 2.3 considers the case in which the lower

4Note that the way Yi,t(s, t̃) is defined does not impose restrictions on the exposure to charter schools
after this initial enrollment. In this case, we see the number of years enrolled in a charter school as one of
the mechanisms in which the treatment (in this case, being enrolled in a charter school for the first time at
time t̃ in grade s) may affect the outcomes. In the same way as college enrollment would be a mechanism in
which charter school enrollment may affect earnings. An alternative in this case would be to define potential
outcomes as a function of the number of years (or the specific years) in a charter school. Abdulkadiroğlu
et al. (2016) present in their Appendix A the interpretation of the IV estimand when the treatment variable
is given by the number of years enrolled in a charter school (d̃), and potential outcomes are defined as a
function of d̃.
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bound for the causal effects is nonpositive and the upper bound is nonnegative. In Appendix

C we provide bounds without these restrictions.

Proposition 2.3. Suppose Assumptions 2.1 and 2.2 hold. If there exist ∆,∆ ∈ R, with

∆ ≤ 0 ≤ ∆, such that for all g ∈ {(C1, AT2), (NT1, C2), (NT1, F2)} with P(g) > 0, ∆ ≤

∆0
2(g) ≤ ∆, then a lower bound for ∆1

2(C1) is given by

RF2

FS1

+ P (Di,2 > Di,1|Zi = 0)
∆

FS1

− P (Di,2 > Di,1|Zi = 1)
∆

FS1

(7)

and an upper bound is given by

RF2

FS1

+ P (Di,2 > Di,1|Zi = 0)
∆

FS1

− P (Di,2 > Di,1|Zi = 1)
∆

FS1

. (8)

If, in addition to the conditions above, for all g, g′ ∈ {(C1, AT2), (NT1, C2), (NT1, F2)} with

P(g) > 0 and P(g′) > 0, ∆0
2(g) = ∆2

0(g
′), then

RF2

FS1

+

[
1(FS2 ≤ FS1)∆ + 1(FS2 > FS1)∆

]
FS1 − FS2

FS1

, (9)

where 1(.) is the indicator function, is a lower bound for ∆1
2(C1) and

RF2

FS1

+

[
1(FS2 ≤ FS1)∆ + 1(FS2 > FS1)∆

]
FS1 − FS2

FS1

(10)

is an upper bound. These bounds are (weakly) tighter than the previous ones.

Proof. Special case of Proposition 3.3.

Remark 4. Assuming P(NT1, C2) = P(NT1, F2) = 0 implies that the conditions in Proposi-

tion 2.3 for tighter bounds (Equations 9 and 10) hold. In Section 2.2, we discuss the settings

in which assuming P(NT1, C2) = P(NT1, F2) = 0 should be reasonable. In this case, we

would not need any assumption on the treatment effects heterogeneity to derive those tighter

bounds. Moreover, P(NT1, C2) = P(NT1, F2) = 0 also implies FS2 ≤ FS1, so that:

RF2

FS1

+
FS1 − FS2

FS1

∆ ≤ ∆1

2(C1) ≤
RF2

FS1

+
FS1 − FS2

FS1

∆.

Remark 5. An interesting case is when we consider the bounds in Equations 9 and 10 under

a sign restriction for the treatment effects ∆0
2(g). For example, if we assume causal effects

are nonnegative (∆ = 0), then RF2/FS1 would directly be the lower bound or upper bound
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(depending on whether FS2 is lower than FS1). In particular, if FS2 ≤ FS1, RF2/FS1 is

the lower bound.

Importantly, the condition we consider to derive tighter bounds does not require any

homogeneity assumption for the causal effects on the calendar period and treatment length

dimensions. Note that for the more general bounds (Equations 7 and 8), the smaller the

probability of late switching into treatment, the tighter the bounds. While for the bounds

obtained in Equations 9 and 10, the smaller the changes in the first stage, the tighter the

bounds.

3 T -periods setting

All of our results from Section 2 generalize for settings with an arbitrary number of periods.

Consider a setting with T periods of time and let T := {1, ..., T}. The definitions of RFt,

FSt, Di,t, and latent groups extend naturally for this setting with T periods. We continue

to assume that treatment is irreversible, so Assumption 2.1 becomes:

Assumption 3.1 (Irreversible Treatment). For all t ∈ T \ {T}, Di,t = 1 =⇒ Di,t+1 = 1.

Given irreversible treatment, we can again define the potential outcomes Yi,t(0, z), and

Yi,t(1, τ, z) depending only whether the unit has never been treated, or on whether it has

been treated starting at period t− τ . We also consider an extension of Assumption 2.2 for

settings with T periods:

Assumption 3.2. Assume that the following hold:

1. Exclusion: For each t ∈ T and z ∈ {0, 1}, Yi,t(0, z) = Yi,t(0) and Yi,t(1, τ, z) = Yi,t(1, τ)

for all τ ∈ {0, ..., t− 1}.

2. Independence:
(
Yi,t(0), Yi,t(1, 0), ..., Yi,t(1, t − 1), Di,1(1), Di,1(0), ..., Di,t(1), Di,t(0)

)
is

independent of Zi for all t ∈ T .

3. Relevance at t = 1: FS1 6= 0.

4. Monotonicity at t = 1: P(F1) = 0.

In this case, we are particularly interested in estimating the treatment effects ∆t−1
t (C1),

which represent the local average treatment effects at time t of being treated t − 1 periods

before (that is, when treatment started at t = 1), for the first period compliers. As be-

fore, the per-period IV estimand identifies ∆t−1
t (C1) under Assumption 3.2 if we have static

compliance. However, this would not be the case when we have dynamic compliance.
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3.1 Decomposition of RF and IV estimands with T periods

In order to generalize Proposition 2.1 for settings with T periods, we write Ct:t′ for units

that are compliers from t to t′, with analogous notation for defiers and never-takers. We

only keep track of the first period in which units are always-takers because always-takers in

a given period are always-takers in all following periods. Moreover, we define the following

sets:

G+

2
:=
{

(NT1, C2)
}
,

G−
2

:=
{

(C1, AT2), (NT1, F2)
}
,

and, for each t ∈ T \ {1, 2},

G+

t :=
{

(NT1:t−1, Ct), (NT1:ℓ−1, Fℓ:t−1, ATt) : ℓ = 2, ..., t− 1
}
,

G−
t :=

{
(C1:t−1, ATt), (NT1:t−1, Ft), (NT1:ℓ−1, Cℓ:t−1, ATt) : ℓ = 2, ..., t− 1

}
.

Assumption 3.1 implies that, for each t ∈ T \ {1}, the latent groups in G+
t are the ones

that switch into treatment at t when Zi = 1 and the latent groups in G−
t are the ones

that switch into treatment at t when Zi = 0. Under this notation, we have the following

decomposition results for the reduced forms and first stages.

Proposition 3.1. Under Assumptions 3.1 and 3.2, for each t ∈ T \ {1},

RFt = P (C1) ∆t−1

t (C1) −

t∑

k=2

∑

g∈G−

k

P (g) ∆t−k
t (g) +

t∑

k=2

∑

g∈G+

k

P (g) ∆t−k
t (g) (11)

and

FSt = P (C1) −
t∑

k=2

∑

g∈G−

k

P (g) +
t∑

k=2

∑

g∈G+

k

P (g) . (12)

Proof. See Appendix A.1.

Corollary 3.1. Under Assumptions 3.1 and 3.2, for any t ∈ T \ {1} such that FSt 6= 0,

RFt/FSt is a linear combination of the causal effects in Equation 11 in which the weights

sum to one but some of them may be negative. A sufficient condition for the existence of

negative weights at t is the existence of k ∈ {2, ..., t} such that FSk < FSk−1. Moreover, the

causal effects that are negatively weighted in RFt/FSt are the same as in RFt if, and only

if, FSt > 0.

Proof. See Appendix A.2.

15



In Appendix B, we consider an alternative decomposition for the reduced form estimands.

In particular, we show that they can be written as linear combinations of effects comparing

treated and untreated potential outcomes, and effects comparing treated potential outcomes

of different treatment lengths. The alternative decomposition helps to clarify in which situa-

tions we can simultaneously have the treatment making every unit better off and the reduced

form being negative. This may be the case when treatment effects fade out with time since

treatment.

3.2 Point identification with T periods

For the identification of dynamic LATEs, we consider again a recursive solution. For each

t ∈ T \ {1}, define

Gt := G+

t ∪ G−
t ,

the set of latent groups that switch into treatment at t and may contaminate the reduced

form. The following assumption generalizes Assumption 2.4.

Assumption 3.3. For all t ∈ T and τ ∈ {0, ..., t − 1}, ∆τ
t (C1) = ∆τ (C1). Moreover, for

each t ∈ T \ {1} and τ ∈ {0, ..., t − 2}, for any latent group g ∈ Gt−τ such that P(g) > 0,

∆τ (C1) = ∆τ
t (g).

Proposition 3.2 below formalizes our identification result. To state it we consider matrix

notation. Let RF := (RF1, ..., RFT )′. For each t ∈ T \{1}, define ρt := P (Di,t > Di,t−1|Zi = 0)−

P (Di,t > Di,t−1|Zi = 1), the difference between the probability of switching into treatment

for Zi = 0 and Zi = 1 units, which equals FSt−1−FSt due to the irreversibility of treatment

(Assumption 3.1). Moreover, let

P :=




FS1 0 . . . 0

−ρ2 FS1 . . . 0
...

...
. . .

...

−ρT −ρT−1 . . . FS1



,

which is a lower triangular T × T matrix. Note that P is invertible provided that the

instrument is relevant in the first period.

Proposition 3.2. Suppose Assumptions 3.1 and 3.2 hold. Under Assumption 3.3

∆ = P−1RF, (13)

where ∆ :=
(
∆0(C1), ...,∆

T−1(C1)
)′
.
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Proof. See Appendix A.3.

3.3 Partial identification with T periods

In this general T -periods setting, we show that the dynamic LATEs are partially identified

in every period for which the treatment effects are bounded (which, again, nests settings

with bounded outcomes). As before, we provide bounds that do not require any homogene-

ity assumption on causal effects. We also show that with some homogeneities across latent

groups, but with unrestricted heterogeneity on the treatment length and calendar time di-

mensions, we can obtain tighter bounds. Proposition 3.3 below generalizes Proposition 2.3.

In Appendix C, we provide general bounds without requiring the lower bound (upper bound)

for the treatment effects to be nonpositive (nonnegative).

Proposition 3.3. Suppose Assumptions 3.1 and 3.2 hold. If, for t ∈ T \ {1}, there exist

∆t,∆t ∈ R, with ∆t ≤ 0 ≤ ∆t, such that, for all τ ∈ {0, ..., t− 2}, if g ∈ Gt−τ and P(g) > 0,

∆t ≤ ∆τ
t (g) ≤ ∆t, then a lower bound for ∆t−1

t (C1) is given by

RFt

FS1

+ P (Di,t > Di,1|Zi = 0)
∆t

FS1

− P (Di,t > Di,1|Zi = 1)
∆t

FS1

(14)

and an upper bound is given by

RFt

FS1

+ P (Di,t > Di,1|Zi = 0)
∆t

FS1

− P (Di,t > Di,1|Zi = 1)
∆t

FS1

. (15)

If, in addition to the conditions above, for each τ ∈ {0, ..., t − 2}, for all g, g′ ∈ Gt−τ with

P(g) > 0 and P(g′) > 0, ∆τ
t (g) = ∆τ

t (g′), then

RFt

FS1

+ ∆t

(FS1 − FSt)

FS1

+
(
∆t − ∆t

) t∑

k=2

1 (FSk−1 < FSk)
FSk−1 − FSk

FS1

(16)

is a lower bound for ∆t−1
t (C1) and

RFt

FS1

+ ∆t

(FS1 − FSt)

FS1

+
(
∆t − ∆t

) t∑

k=2

1 (FSk−1 < FSk)
FSk−1 − FSk

FS1

(17)

is an upper bound for ∆t−1
t (C1). These bounds are (weakly) tighter than the previous ones.

Proof. See Appendix A.4.

Remark 6. The points in Remarks 4 and 5 generalize. Assuming that P(NT1:k−1, Ck) =

P(NT1:k−1, Fk) = 0 for all k ∈ {2, ..., t} implies that the conditions in Proposition 3.3 for
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tighter bounds hold at t and that first stages are nonincreasing (up to t). Under a sign

restriction for treatment effects, if first stages are monotonic and the condition for tighter

bounds holds, then RFt/FS1 is one of the bounds (whether it is the lower or upper bound

depends on first stages being decreasing or increasing).
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A Proofs

A.1 Proof of Proposition 3.1

Fix t ∈ T \ {1}. Under Assumption 3.2, the only latent groups that do not have equal

potential outcomes (in expectation) when assigned to different instrument values are the

ones that would behave differently if assigned to Zi = 1 or Zi = 0. Thus, units that are

always-takers in all periods, units that are never-takers in all periods up to t, and units such

that (NT1:k−1, ATk) for some k ∈ {2, ..., t} do not show up in our decomposition. The terms

related to them cancel out.

Assumptions 3.1 and 3.2 imply that C1, (NT1:k−1, Ck) or (NT1:k−1, Fk) with k ∈ {2, ..., t}

are the only groups that can have different potential treatment status depending on Zi at

t. Moreover, at each k ∈ {2, ..., t}, NTk−1 units’ behavior parallels the behavior of all units

in the first period, except that we allow for defiance. In particular, because of Assumption

3.1, treatment access for (NT1:k−1, Ck) and (NT1:k−1, Fk) groups, with k ∈ {2, ..., t}, has a

dynamic that is analogous to the one for the C1 group. Therefore, it suffices to consider the

decomposition of E[Yi,t|Zi = 1, C1] − E[Yi,t|Zi = 0, C1]. Decomposition of the other terms

follows from similar calculations, noting that defiers enter RFt with opposite signs.

From Assumption 3.1, C1 units with Zi = 1 are treated in all periods and so

E[Yi,t|Zi = 1, C1] = E[Yi,t(1, t− 1)|C1] (18)

follows from Assumption 3.2. To relate E[Yi,t|Zi = 0, C1] to potential outcomes, we need to

consider all possible latent group histories C1 units can take up to t. Under Assumption 3.1,

these histories have the form (C1:k−1, ATk) with k ∈ {2, ..., t} or C1:t. Working forwardly and

applying Assumption 3.2, we get:

E [Yi,t|Zi = 0, C1] = P (AT2|C1)E [Yi,t(1, t− 2)|C1, AT2]

+ P (C2|C1)E [Yi,t|Zi = 0, C1:2]

= P (AT2|C1)E [Yi,t(1, t− 2)|C1, AT2]

+ P (C2|C1)
{
P (AT3|C1:2)E [Yi,t(1, t− 3)|C1:2, AT3]

+ P (C3|C1:2)
[
P (AT4|C1:3)E [Yi,t(1, t− 4)|C1:3, AT4]

+...P (Ct−1|C1:t−2)
(
P (ATt|C1:t−1)E [Yi,t(1, 0)|C1:t−1, ATt]

+ P (Ct|C1:t−1)E [Yi,t(0)|C1:t]
)
...
]}

.

(19)
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Noting that E [Yi,t(1, 0)|C1:t−1, ATt] = E [Yi,t(0)|C1:t−1, ATt] + ∆0
t (C1:t−1, ATt), it follows

from the Law of Iterated Expectations that the last term in parenthesis in the expression

for E[Yi,t|Zi = 0, C1] equals P (ATt|C1:t−1) ∆0
t (C1:t−1, ATt) + E [Yi,t(0)|C1:t−1].

Repeating this process backwards, we obtain:

E [Yi,t|Zi = 0, C1] = E [Yi,t(0)|C1]+

t∑

k=2

(
k−1∏

ℓ=2

P (Cℓ|C1:ℓ−1)

)
P (ATk|C1:k−1) ∆t−k

t (C1:k−1, ATk) ,

under the convention that
∏

1

ℓ=2
... = 1. Lastly, write the product of probabilities as a joint

probability to get:

E [Yi,t|Zi = 0, C1] = E [Yi,t(0)|C1] +
t∑

k=2

P (C1:k−1, ATk|C1) ∆t−k
t (C1:k−1, ATk) ,

which implies:

E [Yi,t|Zi = 1, C1]−E [Yi,t|Zi = 0, C1] = ∆t−1

t (C1)−

t∑

k=2

P (C1:k−1, ATk|C1) ∆t−k
t (C1:k−1, ATk) .

Computing the equivalent decomposition for each of the other histories and accounting

for the probability of each of them, we get:

RFt = P (C1) ∆t−1

t (C1)

−

t∑

k=2

P (C1:k−1, ATk) ∆t−k
t (C1:k−1, ATk)

+

t∑

k=2

[
P (NT1:k−1, Ck)∆

t−k
t (NT1:k−1, Ck)

−
t∑

ℓ=k+1

P (NT1:k−1, Ck:ℓ−1, ATℓ) ∆t−ℓ
t (NT1:k−1, Ck:ℓ−1, ATℓ)

]

−

t∑

k=2

[
P (NT1:k−1, Fk)∆

t−k
t (NT1:k−1, Fk)

−
t∑

ℓ=k+1

P (NT1:k−1, Fk:ℓ−1, ATℓ) ∆t−ℓ
t (NT1:k−1, Fk:ℓ−1, ATℓ)

]
,

(20)

under the convention that
∑t

ℓ=t+1
... = 0. Note that

∑t

k=2

∑t

ℓ=k+1
... under the convention

∑t

ℓ=t+1
...0 can be written as

∑t

ℓ=2

∑ℓ−1

k=2
... under the convention

∑
1

k=2
... = 0. Thus, rear-
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ranging Equation 20 and changing the index in the double sums (so that the outer summation

is indexed by k and the inner one by ℓ with appropriate adjustment in the subscripts), we

obtain:

RFt = P (C1) ∆t−1

t (C1) −

t∑

k=2

P (C1:k−1, ATk) ∆t−k
t (C1:k−1, ATk)

+

t∑

k=2

[
P (NT1:k−1, Ck) ∆t−k

t (NT1:k−1, Ck) − P (NT1:k−1, Fk) ∆t−k
t (NT1:k−1, Fk)

]

−
t∑

k=2

k−1∑

ℓ=2

[
P (NT1:ℓ−1, Cℓ:k−1, ATk)∆t−k

t (NT1:ℓ−1, Cℓ:k−1, ATk)

−P (NT1:ℓ−1, Fℓ:k−1, ATk) ∆t−k
t (NT1:ℓ−1, Fℓ:k−1, ATk)

]
.

(21)

The result as stated in Equation 11 follows from noting that for each k ∈ {2, ..., t}, any

group g for which the causal effect ∆t−k
t (g) appears in Equation 21 multiplied by a negative

(respectively, positive) probability is such that g ∈ G−

k (respectively, g ∈ G+

k ).

For FSt, we get from an analogous argument:

FSt = P (C1) −

t∑

k=2

P (C1:k−1, ATk) +

t∑

k=2

[
P (NT1:k−1, Ck) − P (NT1:k−1, Fk)

]

−
t∑

k=2

k−1∑

ℓ=2

[
P (NT1:ℓ−1, Cℓ:k−1, ATk) − P (NT1:ℓ−1, Fℓ:k−1, ATk)

]
,

(22)

under the convention that
∑

1

ℓ=2
... = 0. Again, the result as stated in Equation 12 follows

from the definition of the sets G−

k ’s and G+

k ’s.

A.2 Proof of Corollary 3.1

That RFt/FSt is a linear combination of the causal effects in RFt is straightforward. That the

weights in the IV estimand sum to one follows from noting that the sum of the probabilities

in RFt equals FSt. For any given k ∈ {2, ..., t}, we have that

FSk − FSk−1 = −
∑

g∈G−

k

P(g) +
∑

g∈G+

k

P(g) < 0
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only when there exists g ∈ G−

k such that P(g) > 0, which implies that there is at least

one causal effect that enters RFt multiplied by a negative probability, which in turn implies

a negative weight in the IV estimand at t. Lastly, FSt > 0 is a necessary and sufficient

condition for the negatively weighted causal effects in RFt and RFt/FSt to be the same

because the sign of the weights in the IV estimand equals the sign of the weights in RFt

times the sign of FSt.

A.3 Proof of Proposition 3.2

For any t ∈ T \ {1},

ρt = FSt−1 − FSt =
∑

g∈G−

t

P(g) −
∑

g∈G+

t

P(g).

Under Assumption 3.3, for any given t ∈ T \ {1}, RFt becomes

RFt = P (C1) ∆t−1(C1) −




t∑

k=2




∑

g∈G−

k

P (g) −
∑

g∈G+

k

P (g)



∆t−k (C1)





= P (C1) ∆t−1(C1) −

t∑

k=2

ρk∆t−k (C1) ,

which implies the linear system RF = P∆ if we recall that FS1 = P(C1) and that RF1 =

P(C1)∆
0(C1) under Assumption 3.3. The desired result follows from P being invertible under

Assumption 3.2.

A.4 Proof of Proposition 3.3

For the bounds that are valid only assuming 3.1 and 3.2, we prove the more general version

(as stated in Appendix C). Fix t ∈ T \ {1}. Rearranging the reduced form (Equation 11):

P (C1) ∆t−1

t (C1) = RFt +

t∑

k=2

∑

g∈G−

k

P (g) ∆t−k
t (g) −

t∑

k=2

∑

g∈G+

k

P (g) ∆t−k
t (g)

≥ RFt + ∆t

t∑

k=2

∑

g∈G−

k

P (g) − ∆t

t∑

k=2

∑

g∈G+

k

P (g)

(23)

Notice that
∑t

k=2

∑
g∈G−

k

P (g) ≤ P (Di,t > Di,1|Zi = 0) because there are latent groups

that switch into treatment after the first period when Zi = 0 that are not included in the
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sets G−

k for any k ∈ {2, ..., t} (namely, the (NT1:k−1, ATk) with k ∈ {2, ..., t}). Moreover,
∑t

k=2

∑
g∈G−

k

P (g) ≥ max {FS1 − FSt, 0}. Also, max {FSt − FS1, 0} ≤
∑t

k=2

∑
g∈G+

k

P (g) ≤

P (Di,t > Di,1|Zi = 1). Thus, we can get a lower bound for the expression in the second row

of Equation 23 by bounding the sum of probabilities, which implies the the following lower

bound for P (C1) ∆t−1
t (C1):

RFt + 1 (∆t < 0)P (Di,t > Di,1|Zi = 0) ∆t + 1 (∆t ≥ 0) max {FS1 − FSt, 0}∆t

− 1
(
∆t ≥ 0

)
P (Di,t > Di,1|Zi = 1) ∆t − 1

(
∆t < 0

)
max {FSt − FS1, 0}∆t,

from which the lower bound in Equation 14 follows directly since P(C1) = FS1 > 0 under

Assumption 3.2. The argument for the upper bound is analogous.

To obtain the bounds under the condition that for each τ ∈ {0, ..., t−2}, for all g, g′ ∈ Gt−τ

with P(g) > 0 and P(g′) > 0, ∆τ
t (g) = ∆τ

t (g′), note that under such condition RFt Equation

(11) becomes

P (C1) ∆t−1

t (C1) = RFt +

t∑

k=2

ρk∆
t−k
t (∗),

where, for a given k ∈ {2, ..., t}, ∆t−k
t (∗) ∈

[
∆t,∆t

]
equals ∆t−k

t (g) for all g ∈ Gk. Then,

because for any k ∈ {2, ..., t}, ρk = FSk−1 − FSk,

P (C1) ∆t−1

t (C1) ≥ RFt +

t∑

k=2

1 (FSk−1 ≥ FSk) ρk∆t +

t∑

k=2

1 (FSk−1 < FSk) ρk∆t

= RFt + ∆t

t∑

k=2

ρk +
(
∆t − ∆t

) t∑

k=2

1 (FSk−1 < FSk) ρk

(24)

and the upper bound follows from an analogous argument. The bounds as stated in the

proposition follow from
∑t

k=2
ρk = FS1−FSt. To prove that these later bounds are tighter,

we note, from comparing Equations 23 and 24, that a sufficient condition for the lower bound

to be tighter is




t∑

k=2

1 (FSk−1 ≥ FSk) ρk −
t∑

k=2

∑

g∈G−

k

P (g)


∆t

+




t∑

k=2

1 (FSk−1 < FSk) ρk +
t∑

k=2

∑

g∈G+

k

P (g)


∆t ≥ 0,
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which is equivalent to




t∑

k=2

ρk −
t∑

k=2

∑

g∈G−

k

P (g) +
t∑

k=2

∑

g∈G+

k

P (g)


∆t

+




t∑

k=2

1 (FSk−1 < FSk) ρk +
t∑

k=2

∑

g∈G+

k

P (g)


(∆t − ∆t

)
≥ 0

⇐⇒




t∑

k=2

1 (FSk−1 < FSk) ρk +
t∑

k=2

∑

g∈G+

k

P (g)


(∆t − ∆t

)
≥ 0

since
∑t

k=2
ρk −

∑t

k=2

∑
g∈G−

k

P (g) +
∑t

k=2

∑
g∈G+

k

P (g) = 0. Because ∆t − ∆t ≥ 0 and

−
t∑

k=2

1 (FSk−1 < FSk) ρk =
t∑

k=2

1 (FSk−1 < FSk)



∑

g∈G+

k

P(g) −
∑

g∈G−

k

P(g)




≤
t∑

k=2

1 (FSk−1 < FSk)
∑

g∈G+

k

P(g)

≤

t∑

k=2

∑

g∈G+

k

P(g),

(25)

the condition is verified. Once more, the argument for the upper bound is analogous.
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B Alternative Decomposition

Here we consider a decomposition for the per-period reduced form estimands using causal

effects that compare treated potential outcomes of different treatment lengths. To do so, we

extend our notation and define

∆τ,τ ′

t (g) := E [Yit(1, τ) − Yit(1, τ
′)|g] ,

where once more g specifies a history of IV latent types. For effects comparing the treated

potential outcome of treatment length τ to the untreated potential outcome, we use the

original notation with τ as the only superscript. Proposition 3.1′ below formalizes an al-

ternative decomposition for the reduced forms based on this generalization of causal effects.

This result is an adaptation of Proposition 3.1.

Proposition 3.1′. Under Assumptions 3.1 and 3.2, for each t ∈ T \ {1},

RFt = P (C1:t) ∆t−1

t (C1:t)

+

t∑

k=2

P (C1:k−1, ATk) ∆t−1,t−k
t (C1:k−1, ATk)

+

t∑

k=2

[
P (NT1:k−1, Ck:t)∆

t−k
t (NT1:k−1, Ck:t)

+

t∑

ℓ=k+1

P (NT1:k−1, Ck:ℓ−1, ATℓ) ∆t−k,t−ℓ
t (NT1:k−1, Ck:ℓ−1, ATℓ)

]

−

t∑

k=2

[
P (NT1:k−1, Fk:t)∆

t−k
t (NT1:k−1, Fk:t)

+

t∑

ℓ=k+1

P (NT1:k−1, Fk:ℓ−1, ATℓ) ∆t−k,t−ℓ
t (NT1:k−1, Fk:ℓ−1, ATℓ)

]

(26)

under the convention that
∑t

ℓ=t+1
... = 0.

Proof. Working the products in Equation 19 we get:

E [Yi,t|Zi = 0, C1] = P (C1:t|C1)E [Yi,t(0)|C1:t]

+

t∑

k=2

P (C1:k−1, ATk|C1)E [Yi,t(1, t− k)|C1:k−1, ATk] .

The analogous expression for E [Yi,t|Zi = 1, C1] follows from decomposing E [Yi,t(1, t− 1)|C1]

29



(Equation 18) in all the IV latent histories a C1 can take:

E [Yi,t|Zi = 1, C1] = P (C1:t|C1)E [Yi,t(1, t− 1)|C1:t]

+
t∑

k=2

P (C1:k−1, ATk|C1)E [Yi,t(1, t− 1)|C1:k−1, ATk] .

Thus,

E [Yi,t|Zi = 1, C1] − E [Yi,t|Zi = 0, C1] = P (C1:t|C1) ∆t−1

t (C1:t)

+
t∑

k=2

P (C1:k−1, ATk|C1) ∆t−1,t−k
t (C1:k−1, ATk) .

As in the proof of Proposition 3.1 (see Appendix A.1), the desired result follows from

noting that for all other relevant latent groups, the dynamic of treatment access is the same

as for C1 units. Also, it is necessary to account for the probability of each history.

With this decomposition, if we assume no defiance in all periods, it is possible to interpret

the reduced form and IV estimands as a positively weighted average of causal effects. The

difference is on the interpretation of the causal effects considered. This decomposition shows,

for example, that it is possible to have a negative reduced form estimand even when all

individuals are better off (compared to the untreated scenario) when treatment effects fade

out with time since treatment. To see this, consider RF2 assuming P(NT1, F2) = 0:

RF2 = P(C1, C2)∆
1

2(C1, C2) + P(C1, AT2)∆
1,0
2 (C1, AT2) + P(NT1, C2)∆

0

2(NT1, C2),

which may be negative only because ∆1,0
2 (C1, AT2) < 0, even when the causal effects com-

paring treated and untreated potential outcomes are positive for all latent groups. For this

reason, we believe that an interpretation based on Equation 26 is challenging even though

the decomposition suggests that all causal effects are positively weighted.

Additionally, if we consider the leading effect in Equation 26 as the effect for C1:t units,

an interpretation based on this decomposition is further challenged. After all, the latent

group of the leading effect changes with time and is for a smaller population as time passes.

On the other hand, in the decomposition of Proposition 3.1, we have that the leading effect

is for the same latent group in all periods, the C1 units.
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C Partial identification with general bounds on treat-

ment effects

In this section, we state a version of Proposition 3.3 in which we do not require the lower

bound for the treatment effects to be nonpositive and the upper bound to be nonnegative.

Proposition 3.3′ only considers the more general version of the bounds (Equations 14 and 15)

because the bounds in Equations 16 and 17 are generally valid (and continue to be weakly

tighter). The proof of this proposition is provided in Appendix A.4.

Proposition 3.3′. Suppose Assumptions 3.1 and 3.2 hold. If, for t ∈ T \ {1}, there exist

∆t,∆t ∈ R such that, for all τ ∈ {0, ..., t− 2}, if g ∈ Gt−τ and P(g) > 0, ∆t ≤ ∆τ
t (g) ≤ ∆t,

then a lower bound for ∆t−1
t (C1) is given by

RFt

FS1

+ 1 (∆t < 0)P (Di,t > Di,1|Zi = 0)
∆t

FS1

+ 1 (∆t ≥ 0) max {FS1 − FSt, 0}
∆t

FS1

− 1
(
∆t ≥ 0

)
P (Di,t > Di,1|Zi = 1)

∆t

FS1

− 1
(
∆t < 0

)
max {FSt − FS1, 0}

∆t

FS1

and an upper bound is given by

RFt

FS1

+ 1
(
∆t ≥ 0

)
P (Di,t > Di,1|Zi = 0)

∆t

FS1

+ 1
(
∆t < 0

)
max {FS1 − FSt, 0}

∆t

FS1

− 1 (∆t < 0)P (Di,t > Di,1|Zi = 1)
∆t

FS1

− 1 (∆t ≥ 0) max {FSt − FS1, 0}
∆t

FS1

.
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