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Abstract

This paper presents new econometric tools to unpack the treatment e�ect hetero-

geneity of punishing misdemeanor o�enses on time-to-recidivism or, more generally, of

a given treatment intervention on a duration outcome. More speci�cally, we show how

one can (point and set) identify, estimate and make inferences on the distributional,

quantile, and average marginal treatment e�ects in setups where the treatment selection

is endogenous and the outcome of interest is right-censored. We explore our proposed

econometric methodology to evaluate the e�ect of �nes and community service sen-

tences as a form of punishment on time-to-recidivism in the State of São Paulo, Brazil,

between 2010 and 2019, leveraging the as-if random assignment of judges to cases. Our

results highlight substantial treatment e�ect heterogeneity that other tools are not able

to capture. For instance, we �nd that people who would be punished by most judges

take longer to recidivate as a consequence of the punishment, while people who would

be punished only by strict judges recidivate at an earlier date than if they were not pun-

ished. This result suggests that designing sentencing guidelines that encourage strict

judges to become more lenient could reduce recidivism.
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To owe his life to a malefactor, to accept that debt and to repay it; to be, in spite of

himself, on a level with a fugitive from justice, and to repay his service with another

service; to allow it to be said to him, �Go,� and to say to the latter in his turn: �Be

free�; to sacri�ce to personal motives duty, that general obligation, and to be conscious,

in those personal motives, of something that was also general, and, perchance, superior,

to betray society in order to remain true to his conscience; that all these absurdities

should be realized and should accumulate upon him,�this was what overwhelmed him.

Les Misérables by Victor Hugo

1 Introduction

Understanding how di�erent types of sanctions impact the behavior of defendants is a

critical area of research in the �eld of Economics of Crime. For misdemeanors, which are

relatively minor o�enses, we know relatively little about the causal e�ects of prosecution on

defendants' subsequent criminal justice involvement (Agan, Doleac and Harvey, 2023), and

arguably even less about the e�ect of alternative sentences on defendants' recidivism.1 This

is a particularly important topic as a misdemeanor charge is often the point of entry for

individuals to the criminal justice system. If they are convicted, they will then acquire a

criminal record. This could �lower the cost� of committing other crimes or work as intended

and prevent future criminal behavior. In practice, it is unclear which direction dominates,

and it is likely that this varies from individual to individual. Being able to understand the

types of defendants which are on either side is therefore desirable and policy-relevant.

In this article, we propose econometric tools that are tailored to highlight treatment e�ect

heterogeneity with respect to the unobserved punishment resistance on time-to-recidivism.

These tools can then be used to shed light on to whom punishments are working as intended

in terms of avoiding (or postponing) recidivism. Importantly, our tools account for the fact

that (i) time-to-recidivism is a duration outcome that is subject to right-censoring, i.e., not

all defendants recidivate by the end of the sampling period (but may do it later on); (ii)

treatment selection is endogenous, and judges are likely to have more information about

the case than econometricians; (iii) individuals may be inherently heterogeneous (essential

heterogeneity); (iv) one may be interested in causal e�ects beyond local average treatment

e�ect parameters; (iv) distributional features of time-to-recidivism may also be relevant.

We achieve these goals by extending the marginal treatment e�ects (MTE) framework

developed by Heckman and Vytlacil (1999, 2005) and the distributional and quantile MTE

1See Huttunen, Kaila and Nix (2020), Giles (2021), Klaassen (2021), Possebom (2022), and Lieberman,
Luh and Mueller-Smith (2023) for some advances in this area.
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extensions developed by Carneiro and Lee (2009) to setups in which the outcome variable is

right-censored. The main requirement to use our tools is access to a continuous instrument

such that the propensity score has full support.2 In the context of crime economics, this

instrument is usually given by the trial judge's leniency rate.

In our view, the MTE framework is particularly attractive to studying the e�ect of pun-

ishments on time-to-recidivism. For example, it allows one to assess the treatment e�ect of

punishment on recidivism for defendants on a margin of indi�erence between being punished

or not. By considering di�erent degrees of unobserved punishment resistance, the MTE

provides a detailed picture of how punishments heterogeneously a�ect recidivism and can

be used to design better sentencing criteria and/or train judges to follow a speci�c protocol.

For example, suppose that one �nds a negatively sloped MTE function with some positive

and negative e�ects. This would suggest that defendants who would be punished even by

very lenient judges, i.e., defendants with low unobserved punishment resistance, would take

more time to recidivate as a result of the punishment (punishment is working as intended).

On the other hand, defendants who would be �ned only by very strict judges, i.e., defen-

dants with high unobserved punishment resistance, would recidivate sooner than if they were

not punished (punishment is not e�ective, perhaps because of scaring e�ects of a criminal

record). Such degree of heterogeneity is usually washed-out when using single summaries of

treatment e�ects such as local average treatment e�ect (LATE) (Imbens and Angrist, 1994).

However, even when one is interested in summary measures of causal e�ects, one can use the

MTE function to construct them; see, e.g., Heckman and Vytlacil (2005), Heckman, Urzua

and Vytlacil (2006). It is also interesting to mention that exploring a continuous instrument

makes the de�nition of �complier� less clear than in the binary instrument case, which could

potentially make the LATE results harder to interpret formally. The MTE does not focus

on �compliers�, so it is immune to this potential limitation.

Dealing with time-to-recidivism, or more generally, a duration variable that is subject to

right-censoring, introduces some interesting challenges depending on the censoring mech-

anism. For instance, if censoring is independent of potential outcomes, we are able to

point-identify the distributional marginal treatment e�ect (DMTE) and quantile marginal

treatment e�ect (QMTE) functions for some but not necessarily all distribution support

points or quantiles. Nonparametrically identifying the entire DMTE and QMTE functions,

which are required to identify the average MTE (henceforth MTE for simplicity), is only

possible if the support of the censoring variable is at least as large as the support of the

duration outcome, a restriction that is sometimes strong. When this support restriction is

2See Brinch, Mogstad and Wiswall (2017) and Mogstad, Santos and Torgovitsky (2018) for extensions of
the MTE framework that does not require this support condition.
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not satis�ed, one can only nonparametrically point-identify truncated MTE functions. We

propose semiparametric estimators and inference procedures for the DMTE, QMTE, and

(truncated) MTE functions and establish their large sample properties.

Now, if censoring is potentially dependent on the potential outcomes, point-identi�cation

of DMTE and QMTE functions is not feasible without additional assumptions and data

requirements. In such cases, we still show how one can partially identify these marginal

treatment e�ect functions and propose semiparametric estimators for these bounds. We

also show how one can explore some economically-motivated restrictions on the dependence

between censoring and potential outcomes to sharpen the bounds. In particular, we consider

the restriction that defendants are committing fewer crimes over time, which is implied

by a negative regression dependence between potential outcomes and censoring variables

(Lehmann, 1966). Other types of restrictions are also possible.

In some setups, in order to bypass the challenges associated with right censored time-to-

recidivism, researchers may choose to focus on recidivism within a given time frame, say two

years. Although this is convenient and generically valid, the choice of cuto� is arbitrary, and

it may be the case that punishment has no e�ect on recidivism within two years but then has

an e�ect within two years and a half or within one year.3 One can interpret our DMTE results

as an extension of this �binarization� approach that aims to avoid choosing arbitrary cuto�s

and, instead, consider recidivism within y periods for a continuum of y P R�. Our QMTE

and MTE results �transform� our DMTE results so the underlying treatment e�ects are

expressed in the same units as the time-to-recidivism outcome, which can lead to additional

insights. Furthermore, when a policymaker is interested in minimizing the cost of recidivism

inter-temporally, they discount the cost of recidivism more strongly if the time-to-recidivism

is longer. Therefore, to make more informed treatment allocations (or recommendations),

the policymaker needs information on time-to-recidivism beyond whether or not a defendant

recidivates within two years; see Appendix E.1 for additional details. In such cases, however,

one needs to tackle the censoring problem directly. Failing to do so may lead to misleading

conclusions.

We show how our causal inference tools can be used in practice by evaluating the e�ect of

�nes and community service sentences as a form of punishment on time-to-recidivism in the

State of São Paulo, Brazil, between 2010 and 2019.4 Our treated group (punished group) is

3In Appendix E.2, a simple example illustrates that focusing on quantile and average treatment e�ects
for duration outcomes may provide di�erent conclusions than focusing on short-run recidivism indicators.

4São Paulo is the largest state in Brazil, with a population above 41 million people according to the
Brazilian Census in 2010. Moreover, analyzing the impact of judicial policies on criminal behavior in this
state is relevant due to its relatively high criminality. For example, according to São Paulo Public Safety
Secretary, there were 6.48 murders, 878.83 thefts, and 490.23 robberies per 100,000 inhabitants in 2020.
Importantly, theft is one of the most common crimes in our sample.
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the defendants who were �ned or sentenced to community services, and our untreated group

(unpunished group) contains defendants who were acquitted or whose cases were dismissed.

To measure recidivism, we check whether the defendant's name appears in any criminal case

within the sample period after the �nal sentence's date. More precisely, our outcome variable

is the time between the �nal sentence and a subsequent criminal case. Since the sampling

period is �nite, the outcome variable is right-censored.

To deploy our proposed methodology, we need a continuous instrumental variable since

we do face endogenous selection into punishment. We use the trial judge's leave-one-out rate

of punishment (or �leniency rate�) as an instrument for the trial judge's decision (Bhuller,

Dahl, Loken and Mogstad, 2019; Agan et al., 2023). Importantly, this instrumental vari-

able is continuous with large support, and is independent of the defendant's counterfactual

criminal behavior because judges are randomly assigned to cases conditional on court dis-

tricts according to state law in São Paulo. Our outcome data � time-to-recidivism � is

right-censored by construction, requiring a methodology that accounts for this identi�cation

challenge.

We �nd that QMTE functions for 0.10, 0.25 and 0.50 quantiles and the MTE function

averaged across all court districts are heterogeneous with respect to unobserved punishment

resistance, the treatment e�ects being sometimes positive and sometimes negative. More

precisely, we �nd that people who would be punished by most judges (those with low pun-

ishment resistance) take longer to recidivate as a consequence of the punishment, while

people who would be punished only by strict judges (high punishment resistance) recidi-

vate at an earlier date than if they were not punished. This result suggests that designing

sentencing guidelines that encourage strict judges to become more lenient could increase

time-to-recidivism.

We also compare our results with methods that ignore the time-to-recidivism being right-

censored. In particular, we �nd that using a linear MTE estimator overestimates the treat-

ment e�ects across all unobserved punishment resistance variable while ignoring the censoring

problem and estimating the MTE model semiparametrically lead to attenuated e�ects. If

one were to use two-stage least squares (ignoring censoring), one would �nd that treatment

e�ects are slightly negative but would not be able to highlight heterogeneity as in the MTE

function.

Related literature: This article contributes to di�erent branches of literature. Con-

cerning its theoretical contribution, our work contributes to the literature on MTE by ex-

tending the MTE framework of Heckman and Vytlacil (1999, 2005), Heckman et al. (2006),

and Carneiro and Lee (2009) to a setting with right-censored data.5 We also contribute to

5The MTE framework has also been extended to settings with sample selection (Bartalotti, Kedagni and
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the literature on duration outcomes; see, e.g., Khan and Tamer (2009), Frandsen (2015),

Tchetgen, Walter, Vansteelandt, Martinussen and Glymour (2015), Sant'Anna (2016, 2021),

Beyhum, Florens and Keilegom (2022), Delgado, Garcia-Suaza and Sant'Anna (2022). None

of these papers consider MTE-type parameters as we do. Among these, the closest work to

ours is Frandsen (2015), which considers the case where the censoring variable is observed

and shows how one can identify distributional and quantile local treatment e�ects, assuming

that censoring is exogenous. Our results can be interpreted as an extension of Frandsen

(2015) to the MTE framework, possibly allowing for endogenous censoring.

Concerning its empirical contribution, our work is inserted in the literature about the

e�ect of �nes and community service sentences on future criminal behavior; see, e.g., Hut-

tunen et al. (2020), Giles (2021), Klaassen (2021), Possebom (2022), and Lieberman et al.

(2023). They all focus on binary variables indicating recidivism within a pre-speci�ed period.

Within these, as we build on his dataset, Possebom (2022) is the closest to ours. However,

his focus is very di�erent from ours, and he does not handle duration outcomes as we do.

This paper is organized as follows. Section 2 describes the data and explains why fo-

cusing on long-term recidivism is useful in our empirical application. Section 3 presents our

structural model and discusses our identifying assumptions. Section 4 provides our identi-

�cation results for the DMTE function with a right-censored outcome variable under two

sets of assumptions. Moreover, Section 5 brie�y explains how to semi-parametrically esti-

mate the objects that are necessary to implement the identi�cation strategy described in

the previous section. Furthermore, Section 6 discusses the �nite sample performance of our

semi-parametric estimator using a Monte Carlo exercise. Finally, Section 7 discusses the

empirical results, while Section 8 concludes.

This paper also contains an online supporting appendix. All proofs are detailed in Ap-

pendix A. Appendix B derives the asymptotic distribution of our semi-parametric estimators.

Additional Monte Carlo exercises and empirical results can be found in Appendices C and

D. Moreover, Appendix E provides two arguments that justify focusing on the MTE func-

tion of duration outcomes. Furthermore, Appendix F identify a conditional version of our

target parameters under weaker assumptions than the ones used in the main text. Finally,

Appendix G proposes an extra partial identi�cation result that relies on a median indepen-

dence assumption.

Possebom, 2022), misclassi�ed treatment variables (Acerenza, Ban and Kédagni, 2021; Possebom, 2022),
discrete instrumental variables (Brinch et al., 2017; Mogstad et al., 2018; Acerenza, 2022), and possibly
invalid instruments (Mouri�e and Wan, 2020).
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2 Empirical Context and Data

In our empirical application, we answer the question: �Do alternative sentences (�nes

and community service) impact time-to-recidivism?�. To answer this question, we collect

data from all criminal cases brought to the Justice Court System in the State of São Paulo,

Brazil, between January 4th, 2010, and December 3rd, 2019. In this section, we brie�y explain

our dataset and discuss why focusing on time-to-recidivism instead of recidivism within a

pre-speci�ed time horizon is helpful.6

We restricted our sample to cases that started between 2010 and 2017 to ensure that

every defendant is observed for at least two years. Moreover, we focus on the criminal cases

whose maximum prison sentence is less than 4 years because, according to Brazilian Law,

these cases must be punished with a �ne or a community service sentence. Due to this sample

restriction, the most common crime types in our sample are theft and domestic violence.

In our dataset, we observe the defendant's full name, the defendant's court district, the

case's starting date, the assigned trial judge's full name, the case's �nal ruling, the case's

�nal ruling's date. Based on those variables, we de�ne our outcome variable (Y ��time to
recidivism�), our censoring variable (C ��number of days between the case's �nal ruling's

date and the end of the sampling period�), our treatment variable (D ���nal ruling in the

case�), our instrument (Z � �trial judge's leniency rate�) and our covariates (X = �full set of

court district dummies�).

Our treatment variable D divides the case-defendant pairs into two groups. The �rst

group (treated) receives a punishment, i.e., its defendants were �ned or sentenced to com-

munity services because they were either convicted or signed a non-prosecution agreement

according to the �nal ruling in their case. The second group (control) did not receive a

punishment, i.e., its defendants were acquitted or its cases were dismissed according to the

�nal ruling in their case.

Our instrument Z is the trial judge's leniency rate. This variable is equal to the leave-one-

out rate of punishment for each trial judge, where the defendant's own decision is excluded

from this average. To do so, we only use the 525 judges who analyzed more than 20 cases

during our sample period and worked in court districts with at least two judges during the

sample period.

We, now, describe our de�nition of the observed outcome variable (Y ��number of days
between the case's �nal ruling's date and the �rst recidivism event�). A defendant i in a

case j recidivated if and only if defendant i's full name appears in a case j̄ whose starting

date is after case j's �nal sentence's date.7 Then, we measure our outcome variable as the

6This dataset was originally used by Possebom (2022), who provides a detailed description of it.
7To match defendants' names across cases, we follow Possebom (2022) and de�ne a fuzzy match if the
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number of days between case j's �nal ruling's date and case j̄'s starting date.8 If defendant

i did not recidivate, then Y � C.

Our covariates contain a full set of court district dummies. Since our identi�cation

strategy leverages the random allocation of judges to criminal cases, we only use districts

with two or more judges during our sample period.

At the end, we impose one �nal restriction in our dataset: common support between the

treatment and control groups. To do so, we impose that the minimum and maximum values

of the instrument Z are the same across both treatment arms. Our �nal sample has 43,468

case-defendant pairs.

Now, we analyze the relationship between the censoring variable and the realized outcome

to argue that focusing on long-term recidivism is relevant in our empirical context.

Figure 1 shows the right tail of the probability mass function (PDF) of the uncensored

potential outcome (Y �) given cohorts based on the censoring variable. We �nd that a non-

negligible share of defendants has their �rst recidivism event in their �fth, sixth or seventh

year after their sentence's date, implying that analyzing long-term recidivism is relevant. For

this reason, we use time-to-recidivism as an outcome variable and focus on quantile marginal

treatment e�ect parameters instead of focusing on short-term binary variables as commonly

done in the empirical literature.

3 Econometric Framework

In this section, we explain our theoretical framework. We analyze a threshold-crossing

model (Heckman and Vytlacil, 2005) with a duration outcome (Frandsen, 2015; Sant'Anna,

2016; Delgado et al., 2022):

D � 1 tP pZ,Cq ¥ V u , (1)

Y � � Y � p1q �D � Y � p0q � p1 �Dq , (2)

Y � min tY �, Cu . (3)

Variable Z is an observable instrumental variable with support given by an open set

Z � R. In our empirical example, it measures the trial judge's leniency rate.

Variable C is the censoring variable. In our empirical application, it captures the length

of time between the defendant's sentence date and the end of our sampling period. Since we

similarity between full names in two di�erent cases is greater than or equal to 0.95 using the Jaro�Winkler
similarity metric.

8Case j̄ can be about any type of crime, including more severe crimes whose maximum sentence is greater
than four years, while case j has to about a crime whose maximum sentence is at most 4 years.
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Figure 1: PDF of the Uncensored Outcome given the Defendant's Cohort:
P ry1 ¤ Y � ¤ y2|Cs
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denotes defendants who are observed for at least four years and at most �ve years during our sampling period,
purple denotes defendants who are observed for at least �ve years and at most six years, light blue denotes
defendants who are observed for at least six years and at most seven years, dark blue denotes defendants
who are observed for at least seven years and at most eight years, and gray denotes defendants who are
observed for at least eight years and at most nine years. These conditional PDFs are evaluated at six bins
of the uncensored potential outcome (e.g., �third year = between 730 days and 1095 days� or �fourth year
= between 1095 days and 1460�), and these evaluation points are denoted in the x-axis. The y-axis denotes
the value of the PDF.
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stop observing all defendants on the same date, the censoring variable C varies only because

of the sentence's date. Let C denote the support of C.

Function P : Z�C Ñ R is unknown and captures the willingness to take the treatment for

each value of Z and C. In our empirical application, it captures the trial judge's punishment

criteria and it allows trial judges to update their punishment criteria over time (Bhuller and

Sigstad, 2022) by including C as an argument.9 Let P denote the support of P pZ,Cq.
Variable V is a latent heterogeneity term and captures the unobserved treatment re-

sistance. In our empirical application, it captures the amount of criminal evidence in the

defendant's favor.

Variable D is the treatment status. In our empirical application, it captures whether

the defendant received some type of punishment � a �ne or community service sentence

imposed by a non-prosecution agreement or a conviction � in her case's �nal ruling. Note

that Equation (1) models how the agent self-selects into treatment and imposes monotonicity

(Imbens and Angrist, 1994; Vytlacil, 2002).

Note that Equation (1) allows the treatment status to depend on the value of C. In other

words, our �complier group� depends on the value of C. Di�erently from us, Frandsen (2015)

does not condition the group of compliers on the value of the censoring variable, implicitly

imposing that D pz, cq � D pzq. In this sense, we generalize Frandsen's (2015) framework.

Variable Y � is the uncensored outcome variable. Y � p0q and Y � p1q are the potential

uncensored outcomes that depend on the treatment status. In our empirical application,

it captures the length of time between the defendant's sentence date and her next criminal

case's starting date.

Finally, variable Y is the censored outcome variable. In our empirical application, it

captures the length of time between the defendant's sentence's date and the earliest of two

dates: her next criminal case's starting date or the end of our sampling period.

The researcher observes only the vector pY,C,D,Zq, while Y � p0q, Y � p1q, Y � and V are

latent variables. For simplicity, we drop exogenous covariates from the model and focus on

the case with a single instrument. All results derived in the paper hold conditionally on

covariates and can be extended to the case with multiple instruments.

Following Heckman and Vytlacil (2005) and Frandsen (2015), we impose �ve assumptions.

These assumptions are su�cient to identify the distributional marginal treatment e�ect and

some quantile marginal treatment e�ects when the outcome variable is right-censored. After

presenting these �ve assumptions, we also propose a weaker restriction (Assumption 6) that

is su�cient to partially identify the same treatment e�ect parameters. Moreover, to identify

9In other empirical applications, the censoring variable C may be a post-treatment variable. In these
cases, it is better to eliminate C from the propensity score function.
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the marginal treatment e�ect, we impose two extra restrictions (Assumptions 7 and 8) that

restrict the support of the uncensored potential outcomes.

Assumption 1 (Random Assignment). Conditional on C, the latent variables Y � p0q, Y � p1q
and V are independent of the instrument Z, i.e.,

Z KK pY � p0q , Y � p1q , V q|C.

Assumption 1 is an exogeneity assumption and is common in the literature about instru-

mental variables with censored outcomes (Frandsen, 2015; Sant'Anna, 2016; Delgado et al.,

2022). In our empirical application, this assumption holds conditional on the court district

because, in the State of São Paulo, Brazil, trial judges are randomly assigned to cases within

each court district.

Note also that Assumption 1 allows the instrument to depend on the censoring variable.

In our empirical application, this �exibility is useful because the trial judge's punishment rate

may depend on the case's sentence date if judges who entered the Judiciary more recently

are more lenient than judges who retired at the beginning of our sampling period.

Assumption 2 (Propensity Score is Continuous). Conditional on C, P pz, cq is a nontrivial

function of z and the random variable P pZ, cq|C � c is absolutely continuous with support

given by an interval P :� �
p, p

� � r0, 1s for any c P C.10

Assumption 2 is a rank condition, intuitively imposing that the instrument is locally

relevant. In addition, we implicitly assume that the support of the propensity score does not

vary with the value of C. In our application, this implicit assumption is plausible because

the judges are mostly the same over time.

Assumption 3 (V is continuous). The distribution of the latent heterogeneity variable V

conditional on C is absolutely continuous with respect to the Lebesgue measure.

Assumption 3 is a regularity condition that allows us to normalize the marginal distribu-

tion of V |C to be the standard uniform. Consequently, the propensity score P rD � 1|Z � z, C � cs
satis�es P pz, cq � P rD � 1|Z � z, C � cs for any z P Z and c P C. Moreover, this normal-

ization implies that V is independent of C.

Assumption 4 (Positive Mass). Conditional on C, all treatment groups exist, i.e., P rD � d|C � cs P
p0, 1q for any d P t0, 1u and any c P C.

10The assumption that P is an interval is made for notational simplicity. All the proofs can be easily
extended to the case where P is a set with a non-empty interior.
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Assumption 4 is a regularity condition. It extends the standard positive mass assumption

in the policy evaluation literature to the setting with a duration outcome.

Assumption 5 (Random Censoring). The censoring variables are independent of the un-

censored potential outcomes given the latent heterogeneity V , i.e.,

C KK pY � p0q , Y � p1qq|V.

Assumption 5 is an exogeneity assumption and is common in the literature about duration

outcomes (Frandsen, 2015; Sant'Anna, 2016; Delgado et al., 2022). When combined with

Assumption 3, Assumption 5 implies that C is unconditionally independent of the uncensored

potential outcomes, i.e., C KK pY � p0q , Y � p1qq. In our empirical application, this restriction

imposes that the case's sentence date is independent of the defendant's decision to commit

another crime in the future.

Importantly, Assumption 5 imposes that controlling for V accounts for all sources of

endogeneity coming through the censoring variable. This assumption can be restrictive

since endogeneity might still be present once controlling for the latent heterogeneity. If the

researcher believes that this assumption is too strong in a particular application, she can use

an alternative assumption that is su�cient to partially identify the distributional marginal

treatment e�ect and some quantile marginal treatment e�ects when the outcome variable is

right-censored.

This alternative assumption restricts the relationship between the latent heterogeneity,

the censoring variable and the potential outcomes.

Assumption 6 (Censoring Independence and Regression Dependence). Conditional on V ,

the potential outcomes are negatively regression dependent on the censoring variable, i.e.,

P rY �pdq ¤ y|C � c̃, V � vs ¥ P rY �pdq ¤ y|C � c, V � vs for any d P t0, 1u, any v P p0, 1q
and any pc, c̃q P C2 such that c ¤ c̃.

In our empirical application, Assumption 6 imposes that the potential outcomes of more

recent cases �rst-order stochastically dominate the potential outcomes of older cases.11 In-

tuitively, this restriction imposes that defendants are committing fewer crimes over time and

is plausible given that the state of São Paulo became safer during our sampling period.

Assumptions 1-5 and Assumptions 1-4 and 6 are su�cient to identify the distributional

marginal treatment e�ect and some quantile marginal treatment e�ects when the outcome

variable is right-censored. However, to identify the marginal treatment e�ect, we need to

impose two support restrictions: Assumptions 7 and 8.

11For more information on the de�nition of regression dependence and other concepts of statistical depen-
dence, see Lehmann (1966).

12



Assumption 7 (Finite Moments). Conditional on C, the potential outcome variables have

�nite �rst moments, i.e., E r |Y pdq||V � v, C � cs   8 for any d P t0, 1u, any v P r0, 1s and
any c P C.

Assumption 7 is a regularity condition that allows us to apply standard integration the-

orems and ensures that average treatment e�ects are well-de�ned.

Assumption 8 (Support Restriction). The support of the uncensored potential outcomes

is smaller than the support of the censoring variable, i.e., γC � �8 or γd   γC for any

d P t0, 1u, where γC :� inf
 
c P R : P rC ¤ cs � 1

(
and γd :� inf

 
y P R : P rY � pdq ¤ ys � 1

(
for any d P t0, 1u.

Assumption 8 restricts the support of the uncensored potential outcomes to be smaller

than the support of the censoring variable. In our empirical application, this assumption

imposes that all defendants recidivate within 10 years, which is the longest observation

period in our sample. Formally, this restriction imposes that γd   γC � 10 years for any

d P t0, 1u. If a researcher believes that this assumption is implausible, she cannot identify

the marginal treatment e�ect function and must focus on some quantile marginal treatment

e�ect function.

4 Identi�cation

In this section, we, �rst, de�ne our parameters of interest. Second, in Subsection 4.1, we

impose Assumptions 1-5, 7 and 8 to point-identify our target parameters by imposing that

the censoring variable is independent of the potential outcomes. Then, in Subsection 4.2,

we replace Assumption 5 with Assumption 6 and partially identify the target parameters by

imposing that the potential outcomes are negatively regression dependent on the censoring

variable.

Our target parameters are the Distributional Marginal Treatment Response functions:

DMTRd py, vq :� P rY �pdq ¤ y|V � vs . (4)

for any d P t0, 1u, y   γC and v P r0, 1s.
If we can identify these functions, we can also identify the Quantile Marginal Treatment

Response functions,

QMTRd pτ, vq :� infty : P rY �pdq ¤ y|V � vs ¥ τu (5)

for any d P t0, 1u and τ P r0, τ d pvqq, where τ d pvq :� DMTRd pγC , vq for any d P t0, 1u.
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Using these objects, we can also identify the Distributional Marginal Treatment E�ect

function,

DMTE py, vq :� DMTR1 py, vq �DMTR0 py, vq , (6)

the Quantile Marginal Treatment E�ect function,

QMTE pτ, vq :� QMTR1 pτ, vq �QMTR0 pτ, vq , (7)

and the Marginal Treatment E�ect function,

MTE pvq :� E rY � p1q � Y � p0q|V � vs �
» 1

0

QMTE pτ, vq dτ. (8)

Note that, when analyzing the impact of judicial decisions on recidivism, many author

(Agan et al., 2023; Bhuller et al., 2019; Giles, 2021; Huttunen et al., 2020; Klaassen, 2021;

Possebom, 2022) focus on distributional impacts (Equation (6)) for small values of y (short

term analysis). In this paper, we advocate for moving beyond this short term horizon and

focusing on quantile or average treatment e�ects of duration outcomes (Equations (7) and

(8)). In Appendix E.2, we numerically exemplify why focusing on duration outcomes may

provide more information than the standard approach in crime economics.

4.1 Point-Identi�cation of the DMTR Function

Before point-identifying the DMTR, we state a lemma that will be used to derive our

main identi�cation results.

Lemma 4.1. If Assumptions 1-4 hold, then

P rY ¤ y,D � 1|P pZ,Cq � p, C � y � δs �
» p

0

P rY �p1q ¤ y|C � y � δ, V � vs dv (9)

and

P rY ¤ y,D � 0|P pZ,Cq � p, C � y � δs �
» 1

p

P rY �p0q ¤ y|C � y � δ, V � vs dv (10)

for any y   γC, p P P and δ P R�� such that y � δ P C.
If Assumption 5 holds too, then

P rY ¤ y,D � 1|P pZ,Cq � p, C � y � δs �
» p

0

P rY �p1q ¤ y|V � vs dv (11)
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and

P rY ¤ y,D � 0|P pZ,Cq � p, C � y � δs �
» 1

p

P rY �p0q ¤ y|V � vs dv (12)

for any y   γC, p P P and δ P R�� such that y � δ P C.

Proof. See Appendix A.1.

Now, we state our main result: point-identi�cation of the DMTR functions.

Proposition 4.1. If Assumptions 1-5 hold, then

DMTRd py, pq � p2 � d� 1q �
»
D

BP rY ¤ y,D � d|P pZ,Cq � p, C � y � δs
Bp dδ

for any d P t0, 1u, y   γC and p P P, where D :� tδ P R�� : y � δ P Cu.
Proof. See Appendix A.2.

Moreover, the identi�cation of some quantile marginal treatment e�ect functions is an

immediate consequence of Proposition 4.1. We state this result as a corollary for convenience.

Corollary 4.1. If Assumptions 1-5 hold, then QMTE pτ, pq is identi�ed for any p P P
and τ P r0, τ ppqq, where τ ppq :� min tτ 0 ppq , τ 1 ppqu and τ d ppq :� DMTRd pγC , pq for any

d P t0, 1u.
When we impose Assumptions 7 and 8, the identi�cation of the marginal treatment

e�ect function is also an immediate consequence of Proposition 4.1. We state this result as

a corollary for convenience.

Corollary 4.2. If Assumptions 1-5, 7 and 8 hold, then MTE ppq is identi�ed for any p P P.

4.2 Partial Identi�cation under Regression Dependence

In some empirical applications, Assumption 5 may be implausible. Alternatively, the

researcher can restrict the dependence between the censoring variable and the latent hetero-

geneity. Imposing Assumption 6, we can partially identify the DMTR functions.

Proposition 4.2. If Assumptions 1-4 and 6 hold, then

DMTRd py, pq

P
�

max
δPD

"
Ppy � δ ¤ Cq � p2 � d� 1q � BP rY ¤ y,D � d|P pZ,Cq � p, C � y � δs

Bp
*
,

min
δPD

$&% PpC ¤ yq � Ppy � δ ¤ Cq � Ppy ¤ C ¤ y � δq
� p2 � d� 1q � BP rY ¤ y,D � d|P pZ,Cq � p, C � y � δs

Bp

,.-
��
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for any d P t0, 1u, y   γC and p P P, where D :� tδ P R�� : y � δ P Cu.

Proof. See Appendix A.3.

Moreover, partial identi�cation of some quantile marginal treatment e�ect functions is an

immediate consequence of Proposition 4.2. We state this result as a corollary for convenience.

Corollary 4.3. If Assumptions 1-4 and 6 hold, then QMTE pτ, pq is partially identi�ed for

any p P P and τ P r0, τ ppqq, where τ ppq :� min tτ 0 ppq , τ 1 ppqu and τ d ppq :� DMTRd pγC , pq
for any d P t0, 1u.

When we impose Assumptions 7 and 8, partial identi�cation of the marginal treatment

e�ect function is also an immediate consequence of Proposition 4.2. We state this result as

a corollary for convenience.

Corollary 4.4. If Assumptions Assumptions 1-4 and 6-8 hold, then MTE ppq is partially

identi�ed for any p P P.

If the researcher believes that even Assumption 6 is too strong in a particular application,

she can use only Assumptions 1-4 to identify a conditional version of our target parameters.

We discuss this possibility in Appendix F.

5 Estimation and Inference

In this section, we explain how to semi-parametrically estimate the DMTE, QMTE and

MTE functions based on the identi�cation results described in Propositions 4.1 and 4.2. In

Subsection 5.1, we propose semi-parametric point-estimation and inference procedures for

the DMTE, QTE and MTE functions under Assumptions 1-5, 7 and 8 Finally, in Subsection

5.2, we brie�y discuss set-estimation and inference procedures under Assumptions 1-4 and

6-8.

5.1 Semi-parametric Point-Estimation and Inference

In this section, we propose semi-parametric estimation and inference procedures for the

DMTE, QTE and MTE functions under Assumptions 1-5, 7 and 8. In Subsection 5.1.1,

we describe our semi-parametric estimator, while, in Subsection 5.1.2, we construct point-

wise con�dence intervals using the Bayesian bootstrap. We prove the consistency of our

semi-parametric estimator and derive its asymptotic distribution in Appendix B.

16



5.1.1 Semi-parametric Estimation

We assume that we observe a sample tYi, Ci, Di, Zi, XiuNi�1, where Xi is a scalar covari-

ate.12

Our semi-parametric estimators can be described in 9 steps.

1. Estimate the propensity score P : Z � C Ñ r0, 1s using a semi-parametric series esti-

mator,13 pPi � pE rDi|Zi, Ci, Xis � pα0 � pαX �Xi � pαC � Ci � Ļ

l�1

pαlZ � Z l
i , (13)

where L P N.

2. De�ne a grid of values for the duration outcome Y and the censoring variable C, tykuKk�0

such that yk ¡ yk�1 for any k P t1, . . . , Ku and K P N.

3. For each k P t0, . . . , Ku and each d P t0, 1u, estimate the conditional distribution

function of Y � 1 tD � du given P pZ,Cq and C using a logit speci�cation,

pΓd,k pPi, Ciq :� pE r1 tYi ¤ yk, Di � du |Pi, Cis

�
exp

!pβ0,d,k � pβX,d,k �Xi � pβC,d,k � Ci � pβP,d,k � pPi)
1 � exp

!pβ0,d,k � pβX,d,k �Xi � pβC,d,k � Ci � pβP,d,k � pPi) . (14)

4. For each k P t0, . . . , Ku and each d P t0, 1u, estimate the derivative of the conditional
distribution function of Y � 1 tD � du given P pZ,Cq and C, and multiply it by �1 if

d � 0:

pγd,k pp, cq :� p2 � d� 1q �
exp

!pβ0,d,k � pβX,d,k �Xi � pβC,d,k � Ci � pβP,d,k � pPi)�
1 � exp

!pβ0,d,k � pβX,d,k �Xi � pβC,d,k � Ci � pβP,d,k � pPi)	2 � pβP,d,k,
where p P P and c P C.

12We use a scalar covariate for ease of notation. Our semi-parametric can be extended to include a vector
of covariates in a straightforward way.

13We could instead propose a semiparametric logit approach:

pE rDi|Zi, Ci, Xis �
exptpα0 � pαX �Xi � pαC � Ci �

°L
l�1 pαlZ � Zliu

1 � exptpα0 � pαX �Xi � pαC � Ci �
°L
l�1 pαlZ � Zliu

,

where we approximate the non-parametric component (the relationship between Z and D) of the propensity
score with a polynomial series. Our regularity conditions would still hold in this case since the �rst-stage
estimator still enters linearly in the second stage. Similarly, a non-parametric �rst stage using a series
estimator, pE rDi|Zi, Ci, Xis �

°J
j�0

°K
k�0

°L
l�0 pαl,k,j � ZliXk

i C
j
i , would be valid.

17



5. For each k P t0, . . . , Ku and each d P t0, 1u, estimate DMTRd pyk, pq by averagingpγd,k pp, cq over values of c such that c ¡ yk,

{DMTRd pyk, pq :�

$'''&'''%
0 if k � 0°K

r�k�1 pγd,k pp, yrq
K � k

if 0   k   K

1 if k � K

.

6. For each k P t0, . . . , Ku, estimate DMTE pyk, pq using

{DMTE pyk, pq :� {DMTR1 pyk, pq � {DMTR0 pyk, pq .

7. For each d P t0, 1u and any τ P r0, 1s, estimateQMTRd pτ, pq by invertingDMTRd p�, pq,

{QMTRd pτ, pq :� min
kPt0,...,Ku

!
yk : {DMTRd pyk, pq ¥ τ

)
.

8. For each τ P r0, 1s, estimate QMTE pτ, pq using

{QMTE pτ, pq :� {QMTR1 pτ, pq � {QMTR0 pτ, pq .

9. Given S P N and a grid tτ1, . . . , τSu � r0, 1s, estimate MTE ppq using

{MTE ppq :�
°S
s�1

{QMTE pτs, pq
S

.

The estimators described above are consistent and asymptotically normal according to Ap-

pendix B.

5.1.2 Inference: Bayesian Bootstrap

To construct point-wise con�dence intervals around the DMTE, QTE and MTE func-

tions, we can use the Bayesian bootstrap according to the following procedure:

1. Compute the estimators for DMTE, QTE and MTE according to the steps described

in Subsection 5.1.1.

2. Generate B P N vectors of size N with weights ωib for individual i in vector b, where

Epωibq � 1 and V arpωibq � 1.14

14For example, you can use ωib � Exp p1q.
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3. Repeat Step 1 for the B vectors each one weighting di�erently each individual.

4. Store the estimated DMTEb, QTEb and MTEb.

5. Use the empirical distribution of DMTEb, QTEb and MTEb for constructing con�-

dence intervals.

5.2 Estimation and Inference for a Partially Identi�ed DMTE and

MTE functions

The bounds in Proposition 4.2 can be implemented using methods similar to the methods

described in Subsection 5.1.1. The main di�erence between the estimators of the bounds

and the point-estimators (Subsection 5.1.1) is that, when estimating the bounds, we take

either the maximum or the minimum over values of c in Step 5 instead of taking the mean.

Consequently, these estimators will converge in probability to the bounds in Proposition

4.2. Furthermore, an asymptotically valid bootstrap procedure can be used to build con�-

dence intervals for the entire identi�ed set, such as those constructed by Manski and Nagin

(1998).

6 Monte Carlo Simulation: Assumptions 1-5, 7 and 8

In this section, we study the �nite sample performance of the point-estimator proposed in

Subsection 5.1 when Assumptions 1-5, 7 and 8 are valid. In Appendix C, we study the �nite

sample performance of the estimators of the bounds (Proposition 4.2) when Assumptions

1-4 and 6-8 are valid.

To ensure that Assumptions 1-5, 7 and 8 are valid in this simulation, we use the following
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data-generating process (DGP):

V � Unif r0, 1s
C � Exp p1q
Z � Unif r0, 1s

D � 1

"
exp p�3 � 6 � Z � α � Cq

1 � exp p�3 � 6 � Z � α � Cq ¥ V

*
(15)

Y � p0q � Exp p1q
Y � p1q � Y � p0q � 0.5 � V

Y � � D � Y � p1q � p1 �Dq � Y � p0q
Y � min tY �, Cu ,

where V , C, Z and Y � p0q are mutually independent and α P t�1, 0u.
Moreover, for every simulated data set, we use the same sample size, N � 40, 000 and

the same grid for Y and C, t0, 0.25, 0.5, . . . , 7u. Furthermore, we simulate B � 1, 000 data

sets.

Note that, in this DGP, the marginal treatment e�ect function, MTE : r0, 1s Ñ R, is
given by

MTE pvq � 0.5 � v for any v P r0, 1s .

We also need to de�ne the target parameters of our Monte Carlo simulation. Our �rst set

of target parameters are the values of this function evaluated at v P V :� t0, 0.1, . . . 0.9, 1u.
Moreover, we target the average treatment e�ect,

ATE :�
» 1

0

MTE pvq dv � 1,

because it is common to use the MTE to compute other treatment e�ect parameters.

Furthermore, we estimate the marginal treatment e�ect function using our semi-parametric

estimator ({MTE, Subsection 5.1) with tτ1, . . . , τSu � t0, 0.01, . . . , 0.99, 1u in Step 9 and

L � 3 in Equation (13).

Using this estimator, we also estimate a discrete approximation for the average treatment

e�ect, zATE :�
°
vPV

{MTE pvq
|V | .

We want to analyze the �nite sample properties of our estimator. To do so, we report its
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average relative bias,

E

�{MTE pvq �MTE pvq
MTE pvq

�
and E

� zATE � ATE

ATE

�
, (16)

and mean squared error,

E
��{MTE pvq �MTE pvq

	2
�
and E

��zATE � ATE
	2
�
, (17)

for v P V .
For comparison, we also estimate the MTE function using two naive estimators that

ignore censoring.

The �rst estimator (Naive Parametric) estimates the propensity score using a cubic poly-

nomial of the instrument only. It also imposes that the true MTE function is linear, es-

timating the reduced-form outcome equation using the level of the censored outcome and

a quadratic polynomial of the propensity score (Cornelissen, Dustmann, Raute and Schon-

berg, 2016, Appendix B.2). Although this estimator ignores censoring, it has the advantage

of correctly imposing a linear functional form for the true MTE function. This parametric

assumption may improve its performance if the censoring problem is not severe.

The second estimator (Naive Nonparametric) uses the level of the censored outcome and

a nonparametric LIV estimator (Cornelissen et al., 2016, Appendix B.1). To do so, it uses

a locally quadratic estimator of the derivative of the reduced-form outcome equation with

an Epanechnikov kernel (Calonico, Cattaneo and Farrell, 2019). Since this �exible estimator

requires a su�ciently large number of observations around each value of the propensity score

and our DGP does not produce many observations with extreme propensity scores, the Naive

Nonparametric Estimator cannot estimate MTE p0q, MTE p0.1q, MTE p0.9q and MTE p1q
reliably. Consequently, the ATE estimator associated with the Naive Nonparametric Esti-

mator averages only over {MTE p0.2q ,{MTE p0.3q , . . . ,{MTE p0.8q.
Table 1 reports the average relative bias of all three estimators. The �rst row of the table

de�nes the value of α (Equation (15)) that is used to generate the data in each one of the

B � 1, 000 Monte Carlo repetitions. The second row of the table de�nes which estimator

is used to estimate the MTE function. Each cell reports the estimated average relative bias

(Equation (16)) when targeting the parameter described in the �rst column.

Our �rst result is that our estimator's average relative bias is larger for small and large

values of v regardless of the values of α. In comparison, the naive parametric estimator's

average relative bias has a similar magnitude regardless of the values of v. Consequently,

our estimator has a smaller bias than the naive estimator for values of v that are close to
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Table 1: Average Relative Bias

α � �1 α � 0

Ours
Naive Naive

Ours
Naive Naive

Parametric Nonparametric Parametric Nonparametric
MTE p0q 0.99 -0.88 � 2.73 -0.56 �
MTE p0.1q 0.54 -0.83 � 1.94 -0.60 �
MTE p0.2q 0.19 -0.80 -0.61 1.32 -0.63 -0.78
MTE p0.3q -0.10 -0.77 -0.52 0.77 -0.66 -0.57
MTE p0.4q -0.35 -0.76 -0.51 0.24 -0.67 -0.65
MTE p0.5q -0.59 -0.74 -0.57 -0.34 -0.69 -0.79
MTE p0.6q -0.83 -0.73 -0.64 -0.81 -0.70 -0.96
MTE p0.7q -1.10 -0.72 -0.65 -1.07 -0.71 -1.03
MTE p0.8q -1.40 -0.71 0.02 -1.21 -0.72 -0.76
MTE p0.9q -1.61 -0.70 � -1.29 -0.73 �
MTE p1q -1.89 -0.69 � -1.33 -0.73 �
ATE -0.83 -0.74 -0.48 -0.33 -0.69 -0.81

Note: The �rst row of the table de�nes the value of α (Equation (15)) that is used to generate the data in
each one of the B � 1, 000 Monte Carlo repetitions. The second row of the table de�nes which estimator
is used to estimate the MTE function. Each cell reports the estimated average relative bias (Equation
(16)) when targeting the parameter described in the �rst column. Some cells are empty because the Naive
Nonparametric Estimator cannot estimate MTE p0q, MTE p0.1q, MTE p0.9q and MTE p1q reliably due to
the fact that there exist few observations with extreme propensity score values.

0.5. This phenomenon is not surprising because, given the functional form of Equation (15),

most observations in each Monte Carlo sample have propensity scores between 0.3 and 0.6,

allowing our estimator to estimate MTE pvq more precisely for values of v that are close to

0.5.

The second result is that our estimator's average relative bias for the ATE is smaller

than its bias for the MTE function. This �nding is due to the fact that the positive bias

of {MTE pvq for small values of v is compensated by the negative bias of {MTE pvq for large
values of v. This phenomenon explains why our estimator performs better than the naive

estimators when α � 0 and our target parameter is the ATE.

The third result is that the average relative bias is larger when α � �1 for most of our

estimators. This �nding is not surprising because, when α � �1, most observations in each

Monte Carlo sample have smaller propensity scores, substantially increasing the bias when

targeting the MTE function for large values of v.

Finally, the performance of the naive nonparametric estimator is erratic. When α � �1,

it performs better than the naive parametric estimator when targeting the MTE function and

it has the best performance when targeting the ATE. However, when α � 0, it frequently

presents the worst performance of all estimators when targeting the MTE function and it
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has the worst performance when targeting the ATE.

Table 2 reports the mean squared error of our estimator and of the two naive estimators.

The �rst row of the table de�nes the value of α (Equation (15)) that is used to generate

the data in each one of the B � 1, 000 Monte Carlo repetitions. The second row of the

table de�nes which estimator is used to estimate the MTE function. Each cell reports the

estimated mean squared error (Equation (17)) when targeting the parameter described in

the �rst column.

Table 2: Mean Squared Error (MSE)

α � �1 α � 0

Ours
Naive Naive

Ours
Naive Naive

Parametric Nonparametric Parametric Nonparametric
MTE p0q 0.25 0.19 � 1.86 0.08 �
MTE p0.1q 0.11 0.25 � 1.36 0.13 �
MTE p0.2q 0.02 0.31 0.69 0.85 0.20 1.32
MTE p0.3q 0.01 0.38 0.36 0.38 0.28 0.44
MTE p0.4q 0.10 0.46 0.37 0.05 0.37 0.45
MTE p0.5q 0.35 0.55 0.46 0.12 0.47 0.77
MTE p0.6q 0.83 0.64 0.85 0.80 0.59 1.23
MTE p0.7q 1.73 0.74 1.84 1.65 0.73 1.88
MTE p0.8q 3.33 0.85 422.22 2.49 0.87 2.50
MTE p0.9q 5.10 0.97 � 3.27 1.03 �
MTE p1q 8.08 1.09 � 3.98 1.21 �
ATE 0.70 0.55 8.87 0.11 0.47 0.69

Note: The �rst row of the table de�nes the value of α (Equation (15)) that is used to generate the data in
each one of the B � 1, 000 Monte Carlo repetitions. The second row of the table de�nes which estimator
is used to estimate the MTE function. Each cell reports the estimated mean squared error (Equation
(17)) when targeting the parameter described in the �rst column. Some cells are empty because the Naive
Nonparametric Estimator cannot estimate MTE p0q, MTE p0.1q, MTE p0.9q and MTE p1q reliably due to
the fact that there exist few observations with extreme propensity score values.

Its results are similar to the ones in Table 1. Nevertheless, there are two new �ndings in

Table 2. First, our estimators' Mean Squared Error is small when targeting the ATE and

α � 0. Second, the naive nonparametric estimator performs much worse than the other two

estimators, particularly when targeting the ATE.

Analyzing all results jointly, we conclude that our semi-parametric estimator performs

better than or similarly to competing estimators that ignore the censored nature of the

outcome variable.
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7 Empirical Application

In our empirical application, we answer the question: �Do alternative sentences (�nes

and community service) impact time-to-recidivism?�. In Subsection 7.1, we provide key

descriptive statistics while, in Subsection 7.2, we describe the results of our empirical analysis.

7.1 Descriptive Statistics

In this subsection, our descriptive analysis has two goals. First, we show that ignoring

endogenous self-selection into treatment may lead to conclusions that con�ict with an anal-

ysis that addresses endogeneity. Second, we discuss the validity of two of our identifying

assumptions: Random Censoring (Assumption 5) and the support restriction (Assumption

8).

Table 3 shows the outcome's mean, 1st decile, 1st quartile and median for all defendants,

for the defendants who were punished (treated group), and for the defendants who were

not punished (control group). It also shows the sample size of each one of these three

groups. The comparison between the treated and control groups suggests that being punished

slightly harms defendants. However, this naive comparison ignores endogenous selection-into-

treatment, right-censoring and heterogeneous treatment e�ects and is not fully supported by

our empirical results in Subsection 7.2.

Table 3: Descriptive Statistics � Outcome Variable

Unconditional Treated Group Control Group
Mean 1,081 1,047 1,116

1st Decile 77 69 86
1st Quartile 364 321 430
Median 1082 1047 1127

Number of Observations 43,468 22,060 21,408
Note: The treated group receives a punishment, i.e., its defendants were �ned or sentenced
to community services because they were either convicted or signed a non-prosecution agree-
ment. The control group did not receive a punishment, i.e., its defendants were acquitted
or its cases were dismissed. The outcome variable measures the number of days between
the case's �nal ruling's date and the �rst recidivism event if the defendant recidivates or the
number of days between the case's �nal ruling's date and the end of the sampling period if
the defendant did not recidivate. An observation is a case-defendant pair.

Figure 2 provides two ways to assess the validity of our identifying assumptions.

Sub�gure 2a shows the cumulative distribution function (CDF) of the uncensored poten-

tial outcome (Y �) given cohorts based on the censoring variable. Taking into account the

sampling uncertainty, this result suggests that the censoring variable may be independent

of the potential outcomes as implied by Assumption 5. More clearly, this �gure suggests
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that the potential outcomes are negatively regression dependent on the censoring variable

as imposed by Assumption 6.

Figure 2: Descriptive Statistics for the Uncensored Outcome (Y �) and the Censoring variable
(C)
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Notes: Sub�gure 2a shows the cumulative distribution function (CDF) of the uncensored potential outcome
(Y �) given cohorts based on the censoring variable. Each color denotes a di�erent cohort: orange denotes
defendants who are observed for at least four years and at most �ve years during our sampling period,
purple denotes defendants who are observed for at least �ve years and at most six years, light blue denotes
defendants who are observed for at least six years and at most seven years, dark blue denotes defendants
who are observed for at least seven years and at most eight years, and gray denotes defendants who are
observed for at least eight years and at most nine years. These conditional CDFs are evaluated at four values
of the uncensored potential outcome (one, two, three or four years), and these evaluation points are denoted
in the x-axis. The y-axis denotes the value of the CDF, while black lines denote point-wise 99%-con�dence
intervals around the values of the CDF.

Sub�gure 2b shows the probability that a defendant does not recidivate during our sampling period
given the value of her censoring variable. This nonparametric function was estimated using a local linear
regression with an Epanechnikov kernel based on Calonico et al. (2019). The bandwidth was optimally
selected according to the IMSE criterion. The dotted lines are robust bias-corrected 95%-con�dence intervals.

Sub�gure 2b shows the probability that a defendant does not recidivate during our sam-

pling period given the value of her censoring variable. Conditioning on the defendants who

stay the longest in our sample (large values of C), we still �nd a 30% probability that they

do not recidivate during the observation period. This result suggests that our support re-

striction (Assumption 8) may not be valid in this context. Although this result does not

invalidate the analysis of the quantile marginal treatment e�ect, it implies that the marginal

treatment e�ect estimates should be interpreted carefully.

Another way to assess the validity of the random censoring assumption is to analyze the

relationship between the censoring variable and an excluded covariate � having a typically
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male name according to the Brazilian 2010 Census (R package genderBR). Figure 3 shows

the probability of having a typically male name given the defendant's censoring variable

(dark blue line). We �nd that, regardless of the censoring variable, this probability is close

to the unconditional share of male names (orange line). Consequently, there is indirect and

suggestive evidence that our random censoring restriction (Assumption 5) is valid.

Figure 3: Probability of having a typically male name given the defendant's censoring vari-
able: P rMale Name|Cs
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Notes: The solid dark blue line shows the probability that a defendant has a typically male name given the
value of her censoring variable. This nonparametric function was estimated using a local linear regression with
an Epanechnikov kernel based on Calonico et al. (2019). The bandwidth was optimally selected according
to the IMSE criterion. The dotted dark blue lines are robust bias-corrected 99%-con�dence intervals. The
dashed orange line is the unconditional probability of having a typically male name.
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7.2 Empirical Results

We start by presenting the results of the �rst stage regression in our empirical analysis. In

our model, the treatment variable D (��nal ruling�) is a function of the instrument Z (�trial

judge's punishment rate�), the censoring variable C, and court district �xed e�ects. Following

Subsection 5.1.1, we use a polynomial series to approximate the propensity score and report

the estimated coe�cients of a quadratic model in Table 4. Note that our instrument is strong

according to the F-statistic of the �rst stage regression. This result implies that Assumption

2 is valid.

Table 4: First Stage Results

Z Z2 C
Coe�cient 0.66*** 0.10 0.00***

Clusterized S.E. (0.23) (0.21) (0.00)
F-statistic 817

Note: The left-hand side variable is our treatment vari-
able, i.e., D ��punished according to the �nal ruling
in the case�. The standard errors are clusterized at
the court district level. The third line reports the F-
Statistic of a hypothesis test whose null is that the co-
e�cients associated with Z and Z2 are equal to zero.
The �rst stage regression control for court district �xed
e�ects.

We also report the distribution of the estimated propensity score in Figure 4. The blue

histogram shows the distribution of the estimated propensity score given that defendant was

punished (treated group) while the white histogram shows the distribution of the estimated

propensity score given that defendant was not punished (control group). We �nd that most

defendants have a probability of being punished around 50%. However, some defendants

are very unlikely to be punished (estimated propensity score around 30%) and others are

very likely to be punished (estimated propensity score around 70%). These widely spread

propensity score distributions are positive for identi�cation and estimation because they

allow us to discuss QMTE and MTE functions evaluated at many di�erent points of the

latent heterogeneity variable.

The vertical lines denote the unconditional 5th and 95th percentiles of the estimated

propensity score. When discussing our results about the QMTE and MTE functions, we

only report the estimates for latent heterogeneity values between these two percentiles. We

do so to avoid extrapolation bias and to ensure the validity of Assumption 2.

To estimate the DMTE, QMTE and MTE functions in our empirical application, we

need to control for court district �xed e�ects. Consequently, we estimate 193 district-speci�c

functions for each one of our treatment e�ect parameters (Subsection 5.1.1). To summarize
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Figure 4: Distribution of the estimated propensity score given treatment status
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Notes: The blue histogram shows the distribution of the estimated propensity score given that defendant
was punished (treated group). The white histogram shows the distribution of the estimated propensity score
given that defendant was not punished (control group). The vertical lines denote the unconditional 5th and
95th percentiles of the estimated propensity score.

our results, we average these functions over court districts using the proportion of cases per

court district as weights.

First, in Figure 5, we report the semi-parametrically estimated average QMTE functions

for the �rst decile, the �rst quartile and the median, and the semi-parametrically estimated

average MTE function. These results are based on Proposition 4.1 and its corollaries, impos-

ing Assumptions 1-5 when we focus on the QMTE functions, and Assumptions 1-5, 7 and 8

when we focus on the MTE function. As a caveat, we recall that the support restriction may

be implausible according to the results in Sub�gure 2b. For this reason, the results related

to the MTE function should be interpreted cautiously.

We �nd that all target functions are positive for small values of V and negative for large
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Figure 5: Estimated QMTE and MTE functions
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Notes: Solid lines are the point-estimates for the target functions indicated in the legend of each sub�gure.
These results are based on Proposition 4.1 and its corollaries. To compute these average functions, we
estimate one function for each court district using our semi-parametric estimator (Subsection 5.1.1) and,
then, we average across court districts using the proportion of cases per court district as weights. Moreover,
the dotted lines are point-wise 90%-con�dence intervals. These con�dence intervals were computed using
the Bayesian bootstrap clusterized at the court district level (Subsection 5.1.2).

values of V . More precisely, people who would be punished by most judges recidivate later

because they had to pay a �ne or do community service (treatment is working as intended),

while people who would be punished only by strict judges recidivate at an earlier date because

of the treatment. These results suggest that designing sentencing guidelines that encourage

strict judges to become more lenient could increase time-to-recidivism.

Second, our methodology also accounts for sample uncertainty (Subsection 5.1.2). In

Figure 6, the dotted blue lines represent point-wise 90%-con�dence intervals around our es-

timator for the average MTE function (Subsection 5.1.1). We �nd that the average MTE

function is statistically signi�cant for small and large values of V . Consequently, even ac-

counting for sample uncertainty, we conclude that more lenient sentencing guidelines could

increase time-to-recidivism.

Third, in Figure 6, we focus on the semi-parametrically estimated average MTE function

(solid dark blue line) and compare it against naive estimates of the average MTE function and

the estimated 2SLS estimand. Di�erently from our approach, these estimates ignore that the

outcome variable is right-censored and provide di�erent conclusions when compared against

our proposed estimator.

The light blue line is the estimated average MTE function when we use the semi-
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Figure 6: Estimated Treatment E�ect Parameters
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Notes: The solid dark blue line is the estimated average MTE function based on Corollary 4.2 and our
semi-parametric estimator (Subsection 5.1.1). To compute it, we estimate one MTE function for each court
district using our semi-parametric estimator (Subsection 5.1.1) and, then, we average across court districts
using the proportion of cases per court district as weights. Moreover, the dotted dark blue lines are point-wise
90%-con�dence intervals. These con�dence intervals were computed using the Bayesian bootstrap clusterized
at the court district level (Subsection 5.1.2). The orange line is the two-stage least square (2SLS) estimate
based on a regression of the censored outcome variable on treatment and court district �xed e�ects using the
judge's punishment rate as the instrument. The purple line is the estimated average MTE function based
on a parametric estimator (Cornelissen et al., 2016, Appendix B.2) that imposes a linear MTE curve and
directly uses the level of the censored outcome variable. The light blue line is the estimated average MTE
function when we use the semi-parametric estimator proposed in Subsection 5.1.1, but we do not control for
the censoring variable.

parametric estimator proposed in Subsection 5.1.1, but we do not control for the censoring

variable. We �nd that this estimator attenuates the e�ect of the correctly estimated average

MTE function (dark blue line).

The purple line is the estimated average MTE function based on a parametric estimator

(Cornelissen et al., 2016, Appendix B.2) that imposes a linear MTE curve and directly uses
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the level of the censored outcome variable. We �nd that this estimator is upward biased,

exacerbating the bene�ts of being punished with a �ne or community service.

The orange line is the two-stage least square (2SLS) estimate based on a regression of the

censored outcome variable on treatment and court district �xed e�ects using the trial judge's

punishment rate as the instrument. We �nd that this estimator does not capture the rich

heterogeneity behind the treatment e�ects of �nes and community service. In particular, the

2SLS estimate suggests a small and negative e�ect, ignoring that the treatment increases

time-to-recidivism for some defendant types.

Finally, if the researcher does not �nd Assumption 5 credible, she can set identify the

MTE function under Assumptions 1-4 and 6-8 using Corollary 4.4. We report the estimated

bounds in Appendix D and highlight that they are too wide to draw any conclusions.

8 Conclusion

In this paper, we identify the distributional marginal treatment e�ect (DMTE), the quan-

tile marginal treatment e�ect (QMTE) and the marginal treatment e�ect (MTE) functions

when the outcome variable is right-censored. To do so, we extend the MTE framework

(Heckman et al., 2006; Carneiro and Lee, 2009) to scenarios with duration outcomes. In this

section, we discuss in which contexts our proposed methodology can be used and deepen our

empirical discussion.

Our methodology can be applied to many empirical problems that face two simultaneous

identi�cation challenges: endogenous selection into treatment and right-censored data. In

our empirical application, we focus on the e�ect of a �ne on defendants' time-to-recidivism.

In this case, judges observe more information than the econometrician when making their

decisions and time-to-recidivism is a right-censored variable. In labor economics, the same

identi�cation challenges appear when analyzing the e�ect of receiving unemployment bene�ts

on unemployment spells. Moreover, in the health sciences, when studying the e�ect of a drug

on survival time, a researcher has to address both identi�cation problems too.15

Concerning its empirical contribution, our work is inserted in the literature about the

e�ect of �nes and community service sentences on future criminal behavior. Five recent

papers in this �eld were written by Huttunen et al. (2020), Giles (2021), Klaassen (2021),

Possebom (2022), Lieberman et al. (2023). All of them focus on binary variables indicating

recidivism within a pre-speci�ed time period. Huttunen et al. (2020) and Giles (2021)

15The e�ect of unemployment bene�ts is discussed by Krueger and Meyer (2002), Chetty (2008) and
Delgado et al. (2022). Medical treatments are analyzed by Sullivan, Zwaag, El-Zeky, Ramanathan and
Mirvis (1993), Spiegel (2002) and Trinquart, Jacot, Conner and Porcher (2016).
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�nd that this type of punishment increases the probability of recidivism in Finland and

Milwaukee (a city in the State of Wisconsin in the U.S.), respectively. Klaassen (2021)

�nds that alternative sentences decrease the probability of recidivism in North Carolina (a

state in the U.S.). Possebom (2022) �nds that this type of punishment has a small and

statistically insigni�cant e�ect on the probability of recidivism in São Paulo, Brazil. Finally,

Lieberman et al. (2023) analyze �ve American states and �nd that court fees have no impact

on recidivism.

Di�erently from these �ve papers, our outcome variable is time-to-recidivism. Using a

continuous outcome instead of binary indicators allows for a �ner analysis of the hetero-

geneous e�ects of �nes and community service sentences on future criminal behavior and

may conciliate the con�icting results in the previous literature. For example, we �nd that

this type of punishment increases time-to-recidivism for some individuals while decreasing

it for other individuals. If the �rst type of individual is more common in North Carolina

than in Milwaukee and Finland, our focus on essential heterogeneity may shed light on these

con�icting results.

Moreover, Possebom (2022), who uses the same dataset as ours, �nds that �nes and com-

munity service sentences have a small and statistically insigni�cant e�ect on the probability

of recidivism in São Paulo, while we �nd a signi�cant and richly heterogeneous e�ect of this

type of punishment on time-to-recidivism. This di�erence suggests that the time dimension

captured by our time-to-recidivism variable is relevant in the decision process of defendants

and should be taken into account when discussing recidivism. Furthermore, this result sug-

gests caution in the application of the standard MTE framework when analyzing a duration

variable or a relevant terminal time problem.
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Supporting Information

(Online Appendix)

A Proofs of the main results

A.1 Proof of Lemma 4.1

Fix y   γC , p P P and δ P R�� such that y � δ P C. To prove Equation (9), note that

P rY ¤ y,D � 1|P pZ,Cq � p, C � y � δs
� E r1 tY ¤ yu1 tP pZ,Cq ¥ V u|P pZ,Cq � p, C � y � δs

by Equation (1)

� E r1 tY �p1q ¤ yu1 tp ¥ V u|P pZ, y � δq � p, C � y � δs
because Y �

1 is not censored when C ¡ y

�
» 1

0

E r1 tY �p1q ¤ yu1 tp ¥ vu|P pZ, y � δq � p, C � y � δ, V � vs dv

by the Law of Iterated Expectations and Assumption 3

�
» 1

0

1 tp ¥ vuE r1 tY �p1q ¤ yu|P pZ, y � δq � p, C � y � δ, V � vs dv

�
» p

0

E r1 tY �p1q ¤ yu|P pZ, y � δq � p, C � y � δ, V � vs dv

�
» p

0

P rY �p1q ¤ y|C � y � δ, V � vs dv

by Assumption 1.

We can prove Equation (10) analogously.

To prove Equation (11), observe that

P rY ¤ y,D � 1|P pZ,Cq � p, C � y � δs

�
» p

0

P rY �p1q ¤ y|C � y � δ, V � vs dv

�
» p

0

P rY �p1q ¤ y|V � vs dv

by Assumption 5.
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A.2 Proof of Proposition 4.1

Fix y   γC , p P P and δ P R�� such that y � δ P C.
First, note that Equations (11) and (12) imply that

BP rY ¤ y,D � 1|P pZ,Cq � p, C � y � δs
Bp � P rY �p1q ¤ y|V � ps (A.1)

and BP rY ¤ y,D � 0|P pZ,Cq � p, C � y � δs
Bz � �P rY �p0q ¤ y|V � ps (A.2)

according to the Leibniz Integral Rule.

Combining Equations (4) and (A.1)-(A.2), we prove that

DMTRd py, pq � p2 � d� 1q � BP rY ¤ y,D � d|P pZ,Cq � p, C � y � δs
Bp

for any d P t0, 1u.
Since the last equation holds for any δ P R�� such that y � δ P C, we have that

DMTRd py, pq � p2 � d� 1q �
»
D

BP rY ¤ y,D � d|P pZ,Cq � p, C � y � δs
Bp dδ

for any d P t0, 1u, where D :� tδ P R�� : y � δ P Cu.

A.3 Proof of Proposition 4.2

Fix d P t0, 1u, y   γC , p P P and δ P R�� such that y � δ P C.
Note that Equations (9) and (10) imply that

BP rY ¤ y,D � 1|P pZ,Cq � p, C � y � δs
Bp � P rY �p1q ¤ y|C � y � δ, V � ps (A.3)

and

BP rY ¤ y,D � 0|P pZ,Cq � p, C � y � δs
Bp � �P rY �p0q ¤ y|C � y � δ, V � ps (A.4)

according to the Leibniz Integral Rule.

Combining the last two equations, we have that

P rY �pdq ¤ y|C � y � δ, V � ps � p2 � d� 1q � BP rY ¤ y,D � d|P pZ,Cq � p, C � y � δs
Bp .

(A.5)
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Moreover, observe that:

P rY �pdq ¤ y|V � ps
�
»
P rY �pdq ¤ y|C � c̃, V � ps fC|V pc̃|pq dc̃

by the Law of Iterated Expectations

�
»
P rY �pdq ¤ y|C � c̃, V � ps fC pc̃q dc̃

because V KK C by Assumption 3

�
» y

0

P rY �pdq ¤ y|C � c̃, V � ps fC pc̃q dc̃

�
» y�δ

y

P rY �pdq ¤ y|C � c̃, V � ps fC pc̃q dc̃

�
» �8

y�δ

P rY �pdq ¤ y|C � c̃, V � ps fC pc̃q dc̃,

implying, by Assumption 6, that

P rY �pdq ¤ y|V � ps ¤ PpC ¤ yq � Ppy � δ ¤ Cq
� Ppy ¤ C ¤ y � δqP rY �pdq ¤ y|C � y � δ, V � ps (A.6)

and

P rY �pdq ¤ y|V � ps ¥ Ppy � δ ¤ CqP rY �pdq ¤ y|C � y � δ, V � ps (A.7)

Thus, combining Equations (A.6) and (A.7) with Equation (A.5), we have that

DMTRd py, pq

P
�
Ppy � δ ¤ Cq � p2 � d� 1q � BP rY ¤ y,D � d|P pZ,Cq � p, C � y � δs

Bp ,

PpC ¤ yq � Ppy � δ ¤ Cq
�Ppy ¤ C ¤ y � δq � p2 � d� 1q � BP rY ¤ y,D � d|P pZ,Cq � p, C � y � δs

Bp

�� .
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Since the bounds above hold for any δ P R�� such that y � δ P C, we have that

DMTRd py, pq

P
�

max
δPD

"
Ppy � δ ¤ Cq � p2 � d� 1q � BP rY ¤ y,D � d|P pZ,Cq � p, C � y � δs

Bp
*
,

min
δPD

$&% PpC ¤ yq � Ppy � δ ¤ Cq � Ppy ¤ C ¤ y � δq
� p2 � d� 1q � BP rY ¤ y,D � d|P pZ,Cq � p, C � y � δs

Bp

,.-
�� ,

where D :� tδ P R�� : y � δ P Cu.
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B Semi-parametric Estimation: Consistency and Asymp-

totic Normality

Although identi�cation does not rely on any parametric assumption, some of them aid

the estimation procedure. Covariates are easily incorporated when semi-parametric assump-

tions are made and the curse of dimensionality is avoided. Additionally, semi-parametric

assumptions demand less data. In this section, we follow Rothe (2009) closely but adapt his

setting for the case where the link function is known instead of unknown. For the rest of the

section, we assume an i.i.d sample. In this context, we introduce the following assumption:

Assumption B.1 (Semiparametric CDF). Let P rY ¤ y,D � d|P,C,Xs � Gpβ0,d,y�β1,d,yC�
β2,d,yP �β3,d,yXq, where Gpq is a known link function up to a �nite dimensional vector (such

as the logistic link), which is continuously di�erentiable in the index. Let G1p.q be the deriva-
tive of Gp.q, which is continuous.

For the sake of exposition, let Wy,d � 1tY ¤ y,D � du, H � t1, C, P,Xu, Ĥ �
t1, C, P̂,Xu, Hp � t1, C, p,Xu, βd,y :� pβ0,d,y, β1,d,y, β2,d,y, β3,d,yq for any y and d P t0, 1u. Tak-
ing the derivative with respect to P for Gp�q for bothWy,1 andWy,0, we get the DMTEpy, pq
as

DMTR1py, pq �DMTR0py, pq � G1pβ1,yHqβ2,1,y �G1pβ0,yHqβ2,1,y
If P was known, it would be easy to estimate the DMTE as in the parametric part.

Since P is not known, we can estimate P in a semi-parametric �rst stage, and obtain

estimates for βd,y from the following maximum-likelihood procedure.16 We focus on d � 1

for the sake of exposition and denote the semi-parametric �rst-stage estimates by P̂ . De�ne

Lnpβ1,y, P̂ q � max
β1,y

1

N

¸
i

Wy,1,ilogrGpβ1,yĤiqs � p1 �Wy,1,iqlogr1 �Gpβ1,yĤiqs (B.1)

with solution β̂1,ypP̂ q. If P was known, we could use the following unfeasible standard

maximum likelihood procedure:

Lnpβ1,y, P q � max
β1,y

1

N

¸
i

Wy,1,ilogrGpβ1,yHiqs � p1 �Wy,1,iqlogr1 �Gpβ1,yHiqs (B.2)

with solution β̂1,ypP q.
To analyze our semi-parametric estimator (Equation (B.1)), we need to ensure that the

unfeasible estimator in Equation (B.2) is well-behaved. To do so, we impose the following

16In the semi-parametric �rst stage, we can estimate P using a standard series estimator.
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assumption:

Assumption B.2 (Unfeasible Likelihood). The maximum likelihood estimator of Equation

(B.2), follows standard regularity conditions from Newey and McFadden (1994) for consis-

tency and asymptotic normality.

Assumption B.2 ensures that standard parametric inference could be performed if P was

observed, implying that β̂1,ypP q pÝÑ β1,y. Since G is the logistic link, the result is standard.

To ensure that our semi-parametric estimator is consistent and derive its asymptotic

distribution, we need to impose that our propensity score estimator converges su�ciently

fast and satisfy some regularity conditions. To do so, we follow Rothe (2009) and impose

the following assumption.

Assumption B.3 (First stage assumptions). Let P̂ satisfy:

1. P̂i � Pi � 1
N

°
j wnpZi, Ci, Xi, Zj, Cj, Xjqφj � rin with maxi ||rin|| � oppN� 1

2 q and

maxi |P̂i � Pi| � oppN� 1
4 q where φj � φpDj, Zj, Cj, Xjq is an in�uence function with

E rφj|Zj, Cj, Xjs � 0 and E
�
φ2
j |Zj, Cj, Xj

� ¤ 8 and weights wnpZi, Ci, Xi, Zj, Cj, Xjq �
opNq.

2. There exists a space P such that PpP̂ P Pq Ñ 1 and the integral between 0 and in�nity

with respect to the radius of the log of the covering number with respect to the l8 norm

of the class of functions P is �nite.

Assumption B.3 is a high-level condition on the estimator. The �rst part states that

the estimator admits a certain asymptotic expansion, whereas the second part requires the

estimator to take values in some well-behaved function space with probability approaching

1.17

To ensure consistency of the feasible estimator, we need to prove asymptotic equivalence

between the solution of Equations (B.1) and (B.2). Then, by Assumption B.2, we get

consistency of the feasible semi-parametric estimator.
Note that

sup
β1,y

|Lnpβ1,y, P̂ q � Lnpβ1,y, P q|

¤
�

inf
β1,y

min
i
tGpβ1,yĤiq, Gpβ1,yHiq, 1 �Gpβ1,yĤiq, 1 �Gpβ1,yHiqu

�
sup
β1,y

max
i

|Gpβ1,yĤiq �Gpβ1,yHiq|
��

¤
�
Op1q

�
sup
β1,y

max
i

|Gpβ1,yĤiq �Gpβ1,yHiq|
��

� opp1q,

17A standard series estimator satis�es Assumption B.3.
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where the �rst inequality can be derived using standard algebraic manipulations. Moreover,

the second inequality holds because Gp�q P p0, 1q. Furthermore, note that Gp�q is continu-
ous and maxi |Ĥi �Hi| due to Assumption B.3 converges, implying that maxi |Gpβ1,yĤiq �
Gpβ1,yHiq| converges due to the continuous mapping theorem. Finally, since the supremum

over β1,y in the third line is also continuous, we can apply the continuous mapping theorem

again to prove the last equality.

Furthermore, Lnpβ1,y, P q is a standard parametric likelihood, implying that it converges

uniformly in β1,y to its expectation (Newey and McFadden, 1994, Lemma 2.4). Formally, we

have that

sup
β1,y

|Lnpβ1,y, P q � Lpβ1,yq| � opp1q

where Lpβ1,yq � EpLnpβ1,yqq � EpWy,1,ilogpGpβ1,yHqq� p1�Wy,1,iqlogp1�Gpβ1,yHqqsqq is a
non-random function that is continuous in β1,y. Taken together, it follows from the triangle

inequality that

sup
β1,y

|Lnpβ1,y, P̂ q � Lpβ1,yq| � opp1q

implying that β̂1,ypP q is consistent whenever Lpβ1,yq attains a unique maximum at the true

value of the parameter, which is the case by our identi�cation results and Assumption B.1.

As a consequence, consistency of our feasible semi-parametric estimator follows from

Theorem 2.1 by Newey and McFadden (1994) via Assumption B.2.

Now, we derive the asymptotic distribution of our semi-parametric estimator in Equation

B.1. Let Lnpβ1,y, P̂iqβ, Lnpβ1,y, Piqβ, Lpβ1,y, Piqβ be the derivative with respect to β of the in-

dividuals feasible log-likelihood, unfeasible log-likelihood and true log-likelihood respectively

(the score). De�ne similarly the second order derivative.

From a standard second order Taylor expansion of the semi-parametric log likelihood

around β1,y, we have that

?
Npβ̂1,ypP̂ q � β1,yq �

�
1

N

¸
i

Lnpβ̄1,y, P̂iqβ,β
��1?

N
1

N

¸
i

Lnpβ1,y, P̂iqβ, (B.3)

where β̄1,y is between the estimated and true values. By the �rst part of Assumption B.3
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and the consistency of β̂1,ypP̂ q, we know that,�
1

N

¸
i

Lnpβ̄1,y, P̂iqβ,β
��1

pÝÑ EpLpβ1,y, Piqβ,βq�1 �: Σ.

Now, we focus on the last term in Equation (B.3):

¸
i

Lnpβ1,y, P̂iqβ �
¸
i

Wy,1,i
BlogrGpβ1,yĤiqs

Bβ � p1 �Wy,1,iqBlogr1 �Gpβ1,yĤiqs
Bβ

�
¸
i

Wy,1,i

��������

G1pβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq

Gpβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq
G1pβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq

Gpβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq
Ci

G1pβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq

Gpβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq
P̂i

G1pβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq

Gpβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq
Xi

��������

� p1 �Wy,1,iq

��������

�G1pβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq

1�Gpβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq
�G1pβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq

1�Gpβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq
Ci

�G1pβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq

1�Gpβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq
P̂i

�G1pβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq

1�Gpβ0,1,y�β1,1,yCi�β2,1,yP̂i�β3,1,yXiq
Xi

��������
Considering the path Pe � p1 � eqP � erP̂ � P s, we take the path-wise derivative of°

i Lnpβ1,y, Piqβ at direction P̂ � P (the derivative of the submodel Pe evaluated at e � 0).
This object is denoted by

°
i Lnpβ1,y, Piqβ,Pi and is equal to

¸
i

Lnpβ1,y, Piqβ,Pi �
¸
i

Wy,1,i

�
������

G2pβ1,yHiqGpβ1,yHiq�G
1pβ1,yHiq

2

Gpβ1,yHiq2
β2,1,yrP̂i � Pis

G2pβ1,yHiqGpβ1,yHiq�G
1pβ1,yHiq

2

Gpβ1,yHiq2
Ciβ2,1,yrP̂i � Pis

r
G2pβ1,yHiqGpβ1,yHiq�G

1pβ1,yHiq
2

Gpβ1,yHiq2
Piβ2,1,y �

G1pβ1,yHiq
Gpβ1,yHiq

srP̂i � Pis
G2pβ1,yHiqGpβ1,yHiq�G

1pβ1,yHiq
2

Gpβ1,yHiq2
Xiβ2,1,yrP̂i � Pis

�
������

(B.4)

�
¸
i

p1 �Wy,1,iq

�
������

�G2pβ1,yHiqr1�Gpβ1,yHiqs�G
1pβ1,yHiq

2

r1�Gpβ1,yHiqs2
β2,1,yrP̂i � Pis

�G2pβ1,yHiqr1�Gpβ1,yHiqs�G
1pβ1,yHiq

2

r1�Gpβ1,yHiqs2
Ciβ2,1,yrP̂i � Pis

r
�G2pβ1,yHiqr1�Gpβ1,yHiqs�G

1pβ1,yHiq
2

r1�Gpβ1,yHiqs2
Piβ2,1,y �

�G1pβ1,yHiq
1�Gpβ1,yHiq

srP̂i � Pis
�G2pβ1,yHiqr1�Gpβ1,yHiqs�G

1pβ1,yHiq
2

r1�Gpβ1,yHiqs2
Xiβ2,1,yrP̂i � Pis

�
������

We also de�ne E rLnpβ1,y, Piqβ,Pis analogously.
With these results in hand, we go back to Equation (B.3) and expanding around the

deviations of the true �rst stage:

?
Np ˆβ1,ypP̂ q � β1,yq � Σ

?
N

�
1

N

¸
i

Lnpβ1,y, Piqβ � 1

N

¸
i

Lnpβ1,y, Piqβ,Pi
�
� opp1q (B.5)
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where
°
i

1
N
Lnpβ1,y, Piqβ is the usual estimate of the score, which has mean 0. Thus, if we can

show that the second term also has mean 0, the asymptotic normality of our semi-parametric

estimator follows by a standard multivariate CLT for the vector
�
1
N

°
i Lnpβ1,y, Piqβ, 1

N

°
i Lnpβ1,y, Piqβ,Pi

�
.

Since all the components of Equation (B.4) have a similar structure, we can focus on one of

them and the results are symmetric for the rest. Consider, 1
N

°
iWy,1,i

G2pβ1,yHiqGpβ1,yHiq�G
1pβ1,yHiq

2

Gpβ1,yHiq2
β2,1,yrP̂i�

Pis. For notation simplicity, let G2pβ1,yHiqGpβ1,yHiq�G
1pβ1,yHiq

2

Gpβ1,yHiq2
β2,1,y �: Apβ1,yHiq. Note that

1

N

¸
i

Wy,1,iApβ1,yHiqrP̂i � Pis � 1

N2

¸
i

¸
j

wnpZi, Ci, Zj, CjqWy,1,iApβ1,yHiqφj � oppN� 1
2 q

� 1

N

¸
i

EpwnpZi, Ci, Z, CqEpWy,1,iApβ1,yHiq|H,Z,Cq|Zi, Ciqφi � oppN� 1
2 q

where the �rst equality is due to Assumption B.3 and the second equality is due to the

U -statistics Hajek projection.

Now, by a standard law of large numbers, we have that

1

N

¸
i

EpwnpZi, Ci, Z, CqEpWy,1,iApβ1,yHiq|H,Z,Cq|Zi, Ciqφi � oppN� 1
2 q

pÝÑ ErEpwnpZi, Ci, Z, CqEpWy,1,iApβ1,yHiq|H,Z,Cq|Zi, Ciqφis
� ErErEpwnpZi, Ci, Z, CqEpWy,1,iApβ1,yHiq|H,Z,Cq|Zi, Ciqφi|Zi, Ciss
� ErEpwnpZi, Ci, Z, CqEpWy,1,iApβ1,yHiq|H,Z,Cq|Zi, CiqErφi|Zi, Ciss
� 0

where the last equality is due to Assumption B.3. Thus, a standard CLT assures asymptotic

normality of the estimator for the parametric part.

The previous display thus implies that for βy � rβ1,y, β0,ys: pβ̂ypP̂ q� βyq � OppN� 1
2 q and?

Npβ̂yP̂ � βyq � Np0, Vβq. Then, by the continuous mapping theorem and our asymptotic

equivalence result, we have that

?
N

� {DMTR1py, pq �DMTR1py, pqq{DMTR0py, pq �DMTR0py, pqq

�

:�
?
N

�
G1pβ̂1,yĤqβ̂2,1,y �G1pβ1,yHqβ2,1,y
G1pβ̂0,yĤqβ̂2,0,y �G1pβ0,yHqβ2,0,y

�

� Np0,
�

VDMTR1py,pq CovDMTR1py,pq,DMTR0py,pq

CovDMTR1py,pq,DMTR0py,pq VDMTR0py,pq

�
q. (B.6)
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Then,

?
Np {DMTEpy, pq �DMTEpy, pqq

:�
?
N

�
G1pβ̂1,yĤqβ̂2,1,y �G1pβ̂0,yĤq ˆβ2,1,y �G1pβ1,yHqβ2,1,y �G1pβ0,yHqβ2,1,y

�
� Np0, VDMTEp,yq. (B.7)

where VDMTEp,y �
�
1 �1

� � VDMTR1py,pq CovDMTR1py,pq,DMTR0py,pq

CovDMTR1py,pq,DMTR0py,pq VDMTR0py,pq

��
1

�1

�
Following Frandsen (2015), we can recover the asymptotic distribution of theQMTEpτ, pq

via the QMTRdpτ, pq. The QMTRd are Hadamard di�erentiable functions of the DMTRd

functions with Jacobian J �
�
�fY �p1q|V pQMTR1pτ, pq|pq�1 0

0 �fY �p0q|V pQMTR0pτ, pq|pq�1

�
.

Consequently, by a functional delta method (van der Vaart, van der Vaart and Wellner, 1996,

van der Vaart, 1998), we have that

?
N

� {QMTR1pτ, pq �QMTR1pτ, pqq{QMTR0pτ, pq �QMTR0pτ, pqq

�

:�� N

�
0,

�
VQMTR1pτ,pq CovQMTR1pτ,pq,QMTR0pτ,pq

CovQMTR1pτ,pq,QMTR0pτ,pq VQMTR0pτ,pq

��
. (B.8)

where �
VQMTR1pτ,pq CovQMTR1pτ,pq,QMTR0pτ,pq

CovQMTR1pτ,pq,QMTR0pτ,pq VQMTR0pτ,pq

�
�

JT

�
VDMTR1py1,pq CovDMTR1py1,pq,DMTR0py2,pq

CovDMTR1py1,pq,DMTR0py2,pq VDMTR0py2,pq

�
J,

where y1 is the value of y in the distribution of Y
�
1 |V such that QMTR1pτ, pq|pq is the corre-

sponding τ quantile and y2 is the value in the distribution of Y
�
1 |V such thatQMTR0pτ, pq|pq

is the corresponding τ quantile. Then, similarly to the DMTE, we can get:

?
Np {QMTEpτ, pq �QMTEpτ, pqq � Np0, VQMTEp,τ q. (B.9)

where the de�nition of VQMTEp,τ is analogous to the one of VDMTEp,y .

By recalling thatMTEppq � ³1
0
QMTEpτ, pqdτ and the fact that we just provided asymp-
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totic normality for QMTEpτ, pq we can recover the distribution of the MTEppq following
Masten, Poirier and Zhang (2020).

At this point, it is worth to be speci�c about the de�nition of Hadamard di�erentiability

and how it connects to the QTE and the MTE.

De�nition 1. Let φ : D Ñ E where D, E are Banach spaces. Say φ is Hadamard di�eren-

tiable at θ P D if Dφ1θ : D Ñ E, @h P D, if tÑ 0, ||ht � h|| Ñ 0, then:�����
�����φpθ � thtq � φpθq

t
� φ1θphq

�����
�����
E

Ñ 0

In our context, we set D � Cpr0, 1s, r0, 1sq and E � R,i.e., D is the space of continuous

functions where the �rst component refers to τ and the second one to v. Then, we know that
QMTEpθ1�th1t,θ2�th2tq�QMTEpθ1,θ2q

t
ÝÑ||||R QMTE 1

θ1,θ2
ph1, h2q and QMTEpτ,θ2�th2tq�QMTEpτ,θ2q

t
ÝÑ||||R

QMTE 1
θ2
ph2q, where ||||R denotes the norm of convergence. Furthermore, we have that

MTEpθ2 � th2tq �MTEpθ2q
t

�

»
1

0

QMTEpτ, θ2 � th2tq �QMTEpτ, θ2q
t

dτ,

which, under the conditions for the dominated convergence theorem, implies that

MTEpθ2 � th2tq �MTEpθ2q
t

�

»
1

0

QMTEpτ, θ2 � th2tq �QMTEpτ, θ2q
t

dτ

Ñ

»
1

0

QMTE 1
θ2
ph2qdτ �MTE 1

θ2
ph2q.

Consequently, the MTE is Hadamard di�erentiable and we can apply the functional delta

method again to get the asymptotic Gaussian distribution of the MTE.
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C Monte Carlo Simulation: Assumptions 1-4 and 6-8

In this appendix, we study the �nite sample performance of the estimator of the bounds

(Proposition 4.2) when Assumptions Assumptions 1-4 and 6-8 are valid. In Section 6, we

study the �nite sample performance of the semi-parametric point-estimator proposed in

Subsection 5.1 when Assumptions 1-5, 7 and 8 are valid.

To ensure that Assumptions Assumptions 1-4 and 6-8 are valid in this simulation, we use

the following data generating process (DGP):

V � Unif r0, 1s
C � Unif r0, 7s
Z � Unif r0, 1s

D � 1

"
exp p�3 � 6 � Z � α � Cq

1 � exp p�3 � 6 � Z � α � Cq ¥ V

*
(C.1)

Y � p0q � Unif r0, 5s
Y � p1q � Y � p0q � 1 � V � C

7

Y � � D � Y � p1q � p1 �Dq � Y � p0q
Y � min tY �, Cu ,

where V , C, Z and Y � p0q are mutually independent and α P t�1, 0u.
Moreover, for every simulated data set, we use the same sample size, N � 10, 000,

the same grid for Y , t0, 0.25, 0.5, . . . , 7u, and the same grid for C, t2.5, 2.75, . . . , 4.25, 4.5u.
Furthermore, we simulate B � 10, 000 data sets.

Note that, in this DGP, the marginal treatment e�ect function � MTE : r0, 1s Ñ R �

is given by

MTE pvq � 0.5 � v for any v P r0, 1s .

We also need to de�ne the target parameters of our Monte Carlo simulation. Our �rst set

of target parameters are the values of this function evaluated at v P V :� t0, 0.1, . . . 0.9, 1u.
Moreover, we target the average treatment e�ect,

ATE :�
» 1

0

MTE pvq dv � 1,

because it is common to use the MTE to compute other treatment e�ect parameters.

Furthermore, we estimate the bounds around the marginal treatment e�ect function using

tτ1, . . . , τSu � t0, 0.01, . . . , 0.99, 1u in Step 9 of Subsection 5.1.1 and L � 3 in Equation (13).
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To estimate the bounds around the ATE, we take the mean of the bounds around MTE pvq
for v P V .

We want to analyze the �nite sample properties of our semi-parametric estimator. To do

so, we compute the probability that our bounds contain the true treatment e�ect parameters

and their average length.

Panel A in Table C.1 reports the probability that our bounds contain the true treatment

e�ect parameters. The second row of the table de�nes the value of α (Equation (C.1)) that

is used to generate the data in each one of the B � 10, 000 Monte Carlo repetitions. Each

cell in Panel A reports the probability that the bounds contain the true parameter described

in the rows.

Table C.1: Probability that the Bounds Contain the True Parameter and their Average
Length

Panel A: P rcontains Panel B: Average Length
α � �1 α � 0 α � �1 α � 0

MTE p0q 1 1 7.27 6.82
MTE p0.1q 1 1 6.74 6.54
MTE p0.2q 1 1 5.55 6.17
MTE p0.3q 1 1 3.07 5.80
MTE p0.4q 0 1 2.03 5.49
MTE p0.5q 0 1 2.23 5.34
MTE p0.6q 0 1 2.46 5.30
MTE p0.7q 0 1 2.69 5.38
MTE p0.8q 0 1 2.90 5.56
MTE p0.9q 0 1 3.08 5.86
MTE p1q 0 1 3.15 6.15
ATE 1 1 3.74 5.86

Note: The second row of the table de�nes the value of α (Equation (C.1))
that is used to generate the data in each one of the B � 10, 000 Monte Carlo
repetitions. Each cell in Panel A reports the probability that the bounds
contain the true parameter described in the rows. Each cell in Panel B reports
the estimated average length of the estimated bounds around the parameters
described in the rows.

We highlight that a large share of the bounds contain the true treatment e�ect parameter

with probability one. In particular, the bounds with α � 0 always contain the true treatment

e�ect parameter.

The bounds with α � �1 do not perform so well. In particular,these bounds never

contain the MTE pvq for any v P t0.4, 0.5, . . . , 1u. Despite this phenomenon, the bounds for
the ATE are still able to contain the ATE with probability one.

Panel B in Table C.1 reports the bounds' average length. The second row of the table
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de�nes the value of α (Equation (C.1)) that is used to generate the data in each one of the

B � 10, 000 Monte Carlo repetitions. Each cell in Panel B reports the estimated average

length of the estimated bounds around the parameters described in the rows.

Our �rst result is that the MTE pvq bounds are very wide for small values of v. This

phenomenon suggests that our bounds may be uninformative in some empirical applications.

It also explains why these bounds always contain the true treatment e�ect parameter in Panel

A.

Our second result is that MTE pvq bounds are very short for some values of v when

α � �1. These bounds' short width explain why they never contain the true treatment

e�ect parameter in Panel A.

Our �nal result is that the ATE bounds are usually shorter than the MTE bounds, but

still wide. For this reason, these bounds contain the true ATE with probability one in all

scenarios as shown in Table C.1.
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D Additional Empirical Results

We report, in Figure D.1, the semi-parametrically estimated bounds around the average

MTE function. To compute them, we estimate bounds around the MTE function for each

court district and, then, average across court districts using the proportion of cases per court

district as weights. The orange line is the estimated upper bound while the purple line is

the estimated lower bound. These results are based on Corollary 4.4 and Assumptions 1-4

and 6-8. We note that they are too wide to be informative.

Figure D.1: Bounds around the Average MTE of Punishment on Time-to-Recidivism �
Corollary 4.4
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Notes: The orange line is the estimated upper bound while the purple line is the estimated lower bound.
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E Relevance of MTE for Duration Outcomes

In this appendix, we justify focusing on the marginal treatment e�ect (MTE) for duration

outcomes using two arguments.

In Appendix E.1, we develop a theoretical model with a policymaker who selects a treat-

ment assignment rule that minimizes the cost of recidivism for the target population of

defendants.

In Appendix E.2, we provide a simple example where the treatment bene�ts most agents

in our population. In this example, our proposed focus on quantile treatment e�ects for

duration outcomes correctly highlights that this treatment is bene�cial to society. However,

focusing on short-time horizons as usually done in the crime economics literature leads to

the opposite conclusion.

E.1 Theoretical Justi�cation of Relevance of MTE for Duration

Outcomes

Following Kitagawa and Tetenov (2018), the policymaker has to choose a treatment rule

that determines whether individuals with variables W � tZ, V, Cu in our target population

will be assigned to the treatment group or the control group. The policymaker chooses

non-randomized treatment rules that are described by decision sets G � W , where W is

the support of W . These decision sets determine the group of individuals tW P Gu to

whom treatment is assigned. We denote the collection of candidate treatment rules by

G � tG �Wu.
The goal of the policymaker in our context is to select a treatment assignment rule that

minimizes the cost of recidivism for the target population of defendants. Assuming that the

policymaker discounts cost inter-temporally, she chooses the treatment rule that maximizes

Y � for each individual in the target population.

Speci�cally, we impose that the policymaker chooses the decision setG P G that minimizes

K pGq :� E
�
ln
!
brY

�p1q�1tWPGu�Y �p0q�1tWRGus � k
)�

where k P R�� is the �xed cost of recidivism and b P p0, 1q is the policymaker's discount

rate. Rearranging the last equation, we �nd that

K pGq � ln tbu � E rY � p1q � 1 tW P Gu � Y � p0q � 1 tW R Gus � ln tku
� ln tbu � E rpY � p1q � Y � p0qq � 1 tW P Gus � ln tbu � E rY � p0qs � ln tku
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Consequently, the policymaker's problem is equivalent to

max
GPG

E rpY � p1q � Y � p0qq � 1 tW P Gus .

Moreover, note that

E rpY � p1q � Y � p0qq � 1 tW P Gus
� E rE rpY � p1q � Y � p0qq � 1 tW P Gu|V, Z, Css

by the Law of Iterated Expectations

� E rE rpY � p1q � Y � p0qq|V, Z, Cs � 1 tW P Gus
� E rE rpY � p1q � Y � p0qq|V,Cs � 1 tW P Gus

by Assumption 1

� E rE rpY � p1q � Y � p0qq|V s � 1 tW P Gus
by Assumption 5

� E rMTE pV q � 1 tW P Gus .

Therefore, the policymaker's problem is equivalent to

max
GPG

E rMTE pV q � 1 tW P Gus ,

implying that focusing on the MTE of duration outcomes is relevant when the policymaker

wishes to minimize the cost of recidivism over time.

E.2 Illustrating the Relevance of Duration Outcomes

When analyzing the impact of judicial decisions on recidivism, many authors (Agan et

al., 2023; Bhuller et al., 2019; Giles, 2021; Huttunen et al., 2020; Klaassen, 2021; Possebom,

2022) focus on a short time horizon, using a small set of outcome variables that indicate

whether the defendant recidivated within a pre-speci�ed number of years. In this paper,

we advocate for moving beyond this short time horizon and focusing on quantile or average

treatment e�ects of duration outcomes.

In this appendix, we illustrate why focusing on duration outcomes may provide more

information than the standard approach in the empirical literature in crime economics. To

do so, we abstract from the MTE heterogeneity (variable V ) and focus exclusively on the

heterogeneity arising from the distribution of the potential outcomes pY � p0q , Y � p1qq.
We illustrate the relevance of quantile and average treatment e�ects of duration outcomes

52



by analyzing a simple example with discrete random variables. In this example, focusing

on short-term outcomes or long-term quantile treatment e�ects lead to di�erent conclusions

about our policy of interest.

We denote potential time-to-recidivism by Y � p0q and Y � p1q and measure it in years.

Table E.1 shows the joint probability mass function of pY � p0q , Y � p1qq and their marginal

distributions.

Table E.1: Joint Probability of pY � p0q , Y � p1qq and their Marginal Distributions

Y � p0q �
P rY � p0q � �, Y � p1q � �s 1 2 3 10 20 P rY � p1q � �s

Y � p1q �

1 .10 0 .10 0 0 .20
2 0 .10 .10 0 0 .20
3 0 0 0 0 0 0
10 0 0 0 .10 0 .10
20 .05 .05 0 .40 0 .50

P rY � p0q � �s .15 .15 .20 .50 0 1
Note: The last column reports the marginal distribution of Y � p1q. The last row reports
the marginal distribution of Y � p0q. The cells in the center of the table report the joint
distribution of pY � p0q , Y � p1qq.

Note that, in this example, our judicial decision bene�ts most defendants. For instance,

this treatment strictly increases time-to-recidivism for 50% of the defendants pY � p0q   Y � p1qq.
Moreover, only 20% of the defendants are harmed by this treatment pY � p0q ¡ Y � p1qq.

However, a short-time horizon analysis would conclude that this treatment is harmful. For

example, this treatment increases the probability of recidivism within one year by 5 p.p. and

the probability of recidivism within two years by 10 p.p, i.e., P rY � p1q ¤ 1s�P rY � p0q ¤ 1s �
0.05 and P rY � p1q ¤ 2s � P rY � p0q ¤ 2s � 0.1.

Di�erently from the standard empirical analysis, we advocate for focusing on quantile

and average treatment e�ects of duration outcomes. For example, the Quantile Treatment

E�ect on the Median is equal to seven years because the median of Y � p1q equal ten years

and the median of Y � p0q equals three years. Moreover, the average treatment e�ect equals

5.55 years in this example.

Therefore, our proposed analysis would correctly highlight that this treatment bene�ts

at least some agents in our society.
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F Identi�cation without Restrictions on Censoring

In this appendix, we focus on which parameters can be point-identi�ed when we do not

impose any restriction on the relationship between the censoring variable and the potential

outcomes. To compensate for not imposing Assumption 5 nor Assumption 6, we need to

allow the DMTR function to depend on the censoring variable.

Speci�cally, our target parameter is given by:

DMTRd py, v, cq :� P rY �pdq ¤ y|V � v, C � cs

for any d P t0, 1u, y   γC , v P r0, 1s and c P C. Note that our target parameter is interpretable
as a conditional distributional marginal treatment response. In particular, the censoring

variable C acts similarly to a covariate in the standard MTE analysis (Carneiro, Heckman

and Vytlacil, 2011).

In our empirical application, conditioning on the censoring variable is equivalent to con-

ditioning on the defendant cohort or time �xed e�ects. Considering that most studies about

judicial decisions (Agan et al., 2023; Bhuller et al., 2019; Huttunen et al., 2020; Klaassen,

2021) condition on district-by-time �xed e�ects, they identify the conditional DMTR func-

tion for a pre-speci�ed value of y. In this appendix, we discuss how to extend their analysis

to consider conditional quantile marginal treatment e�ects and marginal treatment e�ects

(Remark 1).

To point-identify the conditional DMTR function, we eliminate Assumptions 5 and 6

and impose Assumptions 1-4 only.

Proposition F.1. If Assumptions 1-4 hold, then

DMTRd py, p, y � δq � p2 � d� 1q � BP rY ¤ y,D � d|P pZ,Cq � p, C � y � δs
Bp

for any d P t0, 1u, y   γC, p P P and δ P R�� such that y � δ P C.

Remark 1. A direct consequence of Proposition F.1 is the identi�cation of the quantile

marginal treatment response function QMTRd pτ, p, y � δq conditional on the censoring vari-
able for any τ P r0, τ d pp, y � δqq, where τ d pp, y � δq :� DMTRd pγC , p, y � δq. Additionally,
if we impose Assumptions 7 and 8, then we straight-forwardly identify the MTE function

conditional on the censoring variable.

Remark 2. The comparison between Propositions 4.1 and F.1 illustrate the identifying

power of Assumption 5. It allows us to combine multiple values of the censoring variable to

54



identify a single point of theDMTR function through the integral of
BP rY ¤ y,D � d|P pZ,Cq � p, C � y � δs

Bp
over di�erent values of δ. In our empirical application, it means that we can combine multiple

defendant cohorts to identify a single evaluation point in the DMTR function.

Proof. For brevity, we show the proof of Proposition F.1 when d � 1.

Fix y   γC , p P P and δ P R�� such that y � δ P C. Note that

P rY ¤ y,D � 1|P pZ,Cq � p, C � y � δs
� E r1 tY ¤ yu1 tP pZ,Cq ¥ V u|P pZ,Cq � p, C � y � δs

by Equation (1)

� E r1 tY �p1q ¤ yu1 tp ¥ V u|P pZ, y � δq � p, C � y � δs
because Y �

1 is not censored when C ¡ y

�
» 1

0

E r1 tY �p1q ¤ yu1 tp ¥ vu|P pZ, y � δq � p, C � y � δ, V � vs dv

by the Law of Iterated Expectations and Assumption 3

�
» 1

0

1 tp ¥ vuE r1 tY �p1q ¤ yu|P pZ, y � δq � p, C � y � δ, V � vs dv

�
» p

0

E r1 tY �p1q ¤ yu|P pZ, y � δq � p, C � y � δ, V � vs dv

�
» p

0

P rY �p1q ¤ y|C � y � δ, V � vs dv

by Assumption 1.

Consequently, the Leibniz Integral Rule implies that

BP rY ¤ y,D � 1|P pZ,Cq � p, C � y � δs
Bp � P rY �p1q ¤ y|C � y � δ, V � ps

� DMTR1 py, p, y � δq .

We can prove the same result for d � 0 analogously.
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G Partial Identi�cation under Median Independence

The researcher may believe that imposing that the censoring variable is fully independent

of the potential outcomes (Assumption 5) is too strong in many empirical contexts. Alter-

natively, the researcher may prefer to impose the potential outcome is median independent

from the censoring variable conditioning on the value of the latent cost of treatment.

Assumption G.1 (Median Independence). MedrY �pdq|C � c, V � vs � MedrY �pdq|V �
vs

Under this assumption, we can identify the sign of the DMTE function for some values

of the outcome variable. We discuss how to derive this result below.

From the �rst part of Lemma 4.1 and the Leibniz Integral Rule for any C � y � δ, we

can identify Md :�MedrY �pdq|C � y � δ, V � vs from

BP rY ¤M1, D � 1|P pZ,Cq � p, C � y � δs
Bp � 1

2
(G.1)

and

BP rY ¤M0, D � 0|P pZ,Cq � p, C � y � δs
Bp � 1

2
. (G.2)

Consequently, we can know if M1 ¡M0 or vice-versa.

Moreover, note then that, for y ¤Md,

P rY �pdq ¤ y|V � vs ¤ 1{2

and, for y ¥Md,

P rY �pdq ¤ y|V � vs ¥ 1{2.

Then, we have that

P rY �p1q ¤ y|V � vs � P rY �p0q ¤ y|V � vs P p�1{2, 1{2q (G.3)

if M1 ¡M0 and y ¤M0,

P rY �p1q ¤ y|V � vs � P rY �p0q ¤ y|V � vs P p�1, 0q (G.4)
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if M1 ¡M0 and M0 ¤ y ¤M1, and

P rY �p1q ¤ y|V � vs � P rY �p0q ¤ y|V � vs P p�1{2, 1{2q (G.5)

if M1 ¡M0 and y ¥M1.

Similarly, we have that:

P rY �p1q ¤ y|V � vs � P rY �p0q ¤ y|V � vs P p�1{2, 1{2q (G.6)

if M0 ¡M1 and y ¤M1,

P rY �p1q ¤ y|V � vs � P rY �p0q ¤ y|V � vs P p0, 1q (G.7)

if M0 ¡M1 and M1 ¤ y ¤M0, and

P rY �p1q ¤ y|V � vs � P rY �p0q ¤ y|V � vs P p�1{2, 1{2q (G.8)

if M0 ¡M1 and y ¥M0,

Thus, the sign of the DMTE function is identi�ed between M1 and M0.
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