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ABSTRACT

We develop an “omitted variable bias” framework for sensitivity analysis of instru- 10

mental variable (IV) estimates that naturally handles multiple “side-effects” (viola-
tions of the exclusion restriction assumption) and “confounders” (violations of the
ignorability of the instrument assumption) of the instrument, exploits expert knowl-
edge to bound sensitivity parameters, and can be easily implemented with standard
software. Specifically, we introduce sensitivity statistics for routine reporting, such 15

as (extreme) robustness values for IV estimates, describing the minimum strength
that omitted variables need to have to change the conclusions of an IV study. Next we
provide visual displays that fully characterize the sensitivity of IV point estimates
and confidence intervals to violations of the standard IV assumptions. Finally, we
offer formal bounds on the worst possible bias under the assumption that the max- 20

imum explanatory power of omitted variables is no stronger than a multiple of the
explanatory power of observed variables. Conveniently, many pivotal conclusions
regarding the sensitivity of the IV estimate (e.g. tests against the null hypothesis of
zero causal effect) can be reached simply through separate sensitivity analyses of
the effect of the instrument on the treatment (the “first stage”) and the effect of the 25

instrument on the outcome (the “reduced form”). We apply our methods in a running
example that uses instrumental variables to estimate the returns to schooling.

Some key words: Instrumental Variables; Omitted Variable Bias; Sensitivity Analysis; Robustness Values.

1. INTRODUCTION

Unobserved confounding often complicates efforts to make causal claims from observational 30

data (e.g. Pearl, 2009; Imbens and Rubin, 2015). Instrumental variable (IV) regression offers a
powerful and widely used tool to address unobserved confounding, by exploiting “exogenous”
sources of variation of the treatment (e.g. Angrist et al., 1996; Angrist and Pischke, 2009). IV
methods are “a central part of the econometrics canon since the first half of the twentieth cen-
tury” (Imbens, 2014, p.324), and, beyond economics, are now prominent tools in the arsenal of 35

investigators seeking to make causal claims across the social sciences, epidemiology, medicine,
genetics, and other fields (see e.g. Hernán and Robins, 2006; Burgess and Thompson, 2015).
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Yet, IV methods carry their own set of demanding assumptions. Principally, conditionally on
certain observed covariates, an instrumental variable must not be confounded with the outcome,
and it should influence the outcome only by affecting uptake of the treatment. These assumptions40

can be violated by omitted confounders of the instrument-outcome association, and by omitted
“side-effects” of the instrument that influence the outcome via paths other than through the treat-
ment.1 Although in certain cases the IV assumptions may entail testable implications (Pearl,
1995; Gunsilius, 2020; Kédagni and Mourifié, 2020), they are often unverifiable and must be de-
fended by appealing to domain knowledge. Whether a given IV study identifies the causal effect45

of interest, then, turns on debates as to whether these assumptions hold.
Particularly in recent years, economists and other scholars have adopted a more skeptical pos-

ture towards IV methods, emphasizing the importance of both defending the credibility of these
assumptions as well as assessing the consequences of their failures (e.g., Deaton, 2009; Heckman
and Urzua, 2010). Extensive reviews of many widely-used instrumental variables have cataloged50

several plausible violations of the exclusion restriction for such instruments (e.g. Gallen, 2020;
Mellon, 2020). More worrisome, if the IV assumptions fail to hold, it is well known that the bias
of the IV estimate may be worse than the original confounding bias of the simple regression es-
timate that the IV was supposed to address (Bound et al., 1995). Therefore, researchers are also
advised to perform sensitivity analyses to assess the degree of violation of the IV assumptions55

that would be required to alter the conclusions of an IV study. While a number of sensitivity
analyses for IV have been proposed (DiPrete and Gangl, 2004; Small, 2007; Small and Rosen-
baum, 2008; Conley et al., 2012; Wang et al., 2018; Masten and Poirier, 2021), such sensitivity
analyses still remain rare in practice.2

We suggest several reasons for this slow uptake. First, the traditional approach for the sensitiv-60

ity of IV has focused on parameterizing violations of the IV assumptions with a single parameter
summarizing the “bias” in the association of the instrument with the outcome. While this param-
eterization may be well-suited when the bias is only due to the direct effect of the instrument on
the outcome (not through the treatment), it is not as straightforward to use when reasoning about
multiple side-effects or confounders of the instrument, in which case that sensitivity parameter is65

a complicated composite of many sources of bias (see Supplementary Material for a comparison
of our proposal with the traditional approach to the sensitivity of IV). Second, while users of
IV methods are instructed to routinely report quantities to diagnose certain inferential problems
such as “weak instruments” (eg, Stock and Yogo, 2002) we lack sensitivity statistics that can
quickly communicate how robust an IV study is to violations in the form of omitted confounders70

or side-effects of the instrument. Finally, it is often difficult to connect the formal results of a
sensitivity analysis to a cogent argument about what types of biases can be ruled out by expert
knowledge.

In this paper, we develop an omitted variable bias (OVB) framework for assessing the sen-
sitivity of IV estimates that aims to address these challenges. Building on the Anderson-Rubin75

approach to IV estimation (Anderson and Rubin, 1949) and on recent developments of OVB for
ordinary least squares (OLS) (Cinelli and Hazlett, 2020), we develop a simple suite of sensitivity
analysis tools for IV that: (i) has correct test size regardless of instrument strength; (ii) naturally
handles violations due to multiple “side-effects” and “confounders,” possibly acting non-linearly;
1 In the recent IV literature, the first assumption is usually called exogeneity, ignorability, or unconfoundedness of the instrument,

whereas the second assumption is called the exclusion restriction (Angrist and Pischke, 2009; Imbens and Rubin, 2015). In earlier
econometric works, these two assumptions were often combined into one, also labeled the “exclusion restriction” (Imbens, 2014).

2 In economics, only 1 out of 27 papers using IV published in the American Economic Review in 2020 performed formal sensitivity
analysis. In political science, this number was 1 out of 12 papers, considering the top three general interest journals (American
Political Science Review, American Journal of Political Science, and Journal of Politics) for 2019. In Sociology, it was zero out
of 34, in the American Journal of Sociology and the American Sociology Review from 2004 to 2022 (Felton and Stewart, 2022).
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(iii) is well suited for routine reporting; and (iv) exploits expert knowledge to bound sensitivity 80

parameters.3

Specifically, we introduce two main sensitivity statistics for IV estimates: (i) the robustness
value (RV) describes the minimum strength of association (in terms of partial R2) that omit-
ted variables (side-effects or confounders) need to have, both with the instrument and with the
outcome, in order to change the conclusions of the study; and (ii) the extreme robustness value, 85

which describes the minimal strength of association that omitted variables need to have with
the instrument alone in order to be problematic. Routine reporting of these quantities provides a
quick and simple way to improve the transparency and facilitate the assessment of the credibility
of IV studies. Next, we offer intuitive graphical tools for investigators to assess how postulated
confounding of any degree would alter the IV hypothesis tests, as well as lower or upper lim- 90

its of confidence intervals. Finally, these tools can be supplemented with formal bounds on the
worst possible bias that side-effects or confounders could cause, under the assumption that the
maximum explanatory power of these omitted variables is no stronger than a chosen multiple of
the explanatory power of one or more observed variables.

Conveniently, considering that investigators are already well-advised to carefully examine 95

their “first stage” (the effect of the instrument on the treatment) and “reduced form” (the ef-
fect of the instrument on the outcome) (e.g. Angrist and Krueger, 2001; Angrist and Pischke,
2009) our analysis affirms that certain pivotal conclusions regarding the sensitivity of the IV es-
timate can be reached simply through separate sensitivity analyses of these two familiar auxiliary
OLS estimates4 A final contribution of this paper is the proposal of a novel “bias-adjusted” crit- 100

ical value that accounts for a postulated degree of omitted variable bias. Notably, this correction
on the critical value does not depend on the data, and can be computed by simply postulating a
hypothetical partial R2 of the omitted variables with the dependent and independent variables of
the OLS regression. Researchers, readers, and reviewers can thus quickly and easily perform sen-
sitivity analysis by simply substituting traditional thresholds with bias-adjusted thresholds, when 105

testing a particular null hypothesis, or when constructing confidence intervals. The extreme sim-
plicity of this approach may further aid in the adoption of sensitivity analysis in applied work.
All proofs and details can be found in the Supplementary Materials.

2. RUNNING EXAMPLE

We begin by introducing the running example and reviewing the required background on IV. 110

2.1. Ordinary least squares and the OVB problem
Many observational studies have established a positive and large association between edu-

cational achievement and earnings using regression analysis. Here we consider the work of
Card (1993), which employed a sample of n = 3, 010 individuals from the National Longitu-
dinal Survey of Young Men (NLSYM). Considering the following multiple linear regression 115

Y = τ̂OLS,resD + Xβ̂OLS,res + ε̂OLS,res, where Y denotes Earnings and measures the log trans-
formed hourly wages of the individual D denotes Education and consists of an integer-valued

3 Here we focus on the one treatment and one instrument (“just-identified”) case. We do so for two reasons. First, thoroughly
considering how identification assumptions may be violated is complicated enough with one instrument (Angrist and Pischke,
2009). Second, most applied IV work uses this approach. Reviewing papers in the American Economic Review and 15 other
journals of the American Economic Association, Young (2022) finds that 80% of IV regressions used a single instrument. Even
in “multiple instrument” studies, it is not uncommon for researchers to also report and give special focus to the analysis of their
“best” single instrument (Angrist and Pischke, 2009), or to combine multiple instruments into a single instrument.

4 In the context of randomization inference, similar observations have been noted by Rosenbaum (1996); Imbens and Rosenbaum
(2005); Small and Rosenbaum (2008); Keele et al. (2017) and Rosenbaum (2017)
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variable indicating the completed years of education of the individual, and the matrix X com-
prises race, experience, and a set of regional factors, Card concluded that each additional year of
schooling was associated with approximately 7.5% higher wages.120

Educational achievement, however, is not randomly assigned; perhaps individuals who obtain
more education have higher wages for other reasons, such as family background, or higher levels
of some other unobserved characteristic such as “ability” or “motivation.” If data on these vari-
ables were available, then further adjustment for such variables would capture the causal effect
of educational attainment on schooling, as in Y = τ̂OLSD + Xβ̂OLS + U γ̂OLS + ε̂OLS, where U125

is a set of variables that, along with X , eliminates confounding concerns.5 Unfortunately, such
detailed information on individuals is not available, and researchers may not agree on which
variables U are needed. Regression estimates that adjust for only a partial list of characteristics
(such as X) may suffer from OVB, likely overestimating the “true” returns to schooling.

2.2. Instrumental variables as a solution to the OVB problem130

Instrumental variable methods offer an alternative route to estimate the causal effect of school-
ing on earnings without having data on the unobserved variables U . The key for such methods
to work is to find a new variable (the “instrument”) that changes the incentives to educational
achievement, but is associated with earnings only through its effect on education. To that end,
Card (1993) proposed exploiting the role of geographic differences in college accessibility. In135

particular, consider the variable Proximity, encoding an indicator of whether the individual grew
up in an area with a nearby accredited 4-year college, which we denote by Z. Students who grow
up far from the nearest college may face higher educational costs, discouraging them from pur-
suing higher level studies. Next, and most importantly, Card (1993) argues that, conditional on
the set of observed variables X (available on the NLSYM), whether one lives near a college is140

not itself confounded with earnings, nor does proximity to college affect earnings apart from its
effect on years of education. If we believe such assumptions hold it is possible to recover a valid
estimate of the (weigthed average of local) average treatment effect(s) of Education on Earnings
by simply taking the ratio of two OLS coefficients6, one measuring the effect of Proximity on
Earnings, and another measuring the effect of Proximity on Education, as in the two OLS models145

First Stage: D = θ̂resZ + Xψ̂res + ε̂d,res (1)

Reduced Form: Y = λ̂resZ + Xβ̂res + ε̂y,res (2)

Throughout the paper we refer to these equations as the “first stage” (Equation 1) and the “re-
duced form” (Equation 2), as these are now common usage (Angrist and Pischke, 2009; Im-
bens and Rubin, 2015; Andrews et al., 2019).The coefficient for Proximity (Z) on the first-150

stage regression reveals that those who grew up near a college indeed have higher educa-
tional attainment, having completed an additional 0.32 years of education, on average. Like-
wise, the coefficient for Proximity (Z) on the reduced-form regression suggests that those who
grew up near a college have 4.2% higher earnings. The IV estimate is then given by the ratio,

5 I.e, the set {X,U} is sufficient to render the treatment assignment ignorable. In graphical terms, the set would satisfy the
backdoor criterion (see, e.g, Pearl, 2009; Angrist and Pischke, 2009). Beyond ignorability, if the treatment effect is heterogeneous,
this may affect the causal interpretation of τ̂OLS (e.g. Angrist and Pischke, 2009).

6 Conditions that allow a causal interpretation of the “traditional” IV estimand (also known as the “2SLS estimand”) are extensively
discussed elsewhere and will not be reviewed here, see Angrist et al. (1996); Angrist and Pischke (2009); Imbens (2014); Swanson
et al. (2018); Słoczyński (2020) and Blandhol et al. (2022). In particular, Blandhol et al. (2022) provides conditions for a “weakly
causal” interpretation of the traditional IV estimand. Here we start from the premise that the researcher has already decided she
is interested in the results of Equations 4-6.We note the bulk of current applied work using instrumental variables takes this form,
and non-parametric estimation is still rare in practice (Blandhol et al., 2022, p.11). It is nevertheless possible to extend our tools
to nonparametric settings leveraging recent results in Chernozhukov et al. (2022). We leave this to future work.



Omitted Variable Bias for Instrumental Variables 5

τ̂res := λ̂res/θ̂res ≈ 0.042/0.319 ≈ 0.132. The value of τ̂res ≈ 0.132 suggests that, contrary to the 155

OLS estimate of 7.5%, and perhaps surprisingly, each additional year of schooling instead raises
wages by much more—13.2%.

The ratio λ̂res/θ̂res is sometimes called the indirect least squares (ILS) estimator, or the “ratio
of coefficients” estimator. Inference in the ILS framework is usually performed using the delta-
method. A closely related approach is denoted by “two-stage least squares” (2SLS), in which one 160

saves the predictions of the first-stage regression, and then regress the outcome on these fitted
values. By the Frisch-Waugh-Lovell (FWL) theorem (Frisch and Waugh, 1933; Lovell, 1963)
one can readily show that 2SLS and ILS are numerically identical.

2.3. Anderson-Rubin regression and Fieller’s theorem.
The methods of ILS and 2SLS may prove unreliable when the first-stage coefficient is “close” 165

to zero, relative to the sampling variability of its estimator, known as the “weak instrument”
problem.7 The Anderson-Rubin (AR) regression (Anderson and Rubin, 1949) provides one ap-
proach to constructing confidence intervals with correct coverage, regardless of the “strength”
of the first stage. It starts by creating the random variable Yτ0 := Y − τ0D in which we subtract
from Y a “putative” causal effect of D, namely, τ0. If Z is a valid instrument, under the null 170

hypothesis H0 : τ = τ0, we should not see an association between Yτ0 and Z, conditional on X .
In other words, if we run the OLS model

Anderson-Rubin: Yτ0 = φ̂τ0,resZ + Xβ̂τ0,res + ε̂τ0,res (3)

we should find that φ̂τ0,res is equal to zero, but for sampling variation. To test the null hypothesis
H0 : φτ0,res = 0 in the Anderson-Rubin regression is thus equivalent to test the null hypothesis 175

H0 : τ = τ0. The 1− α confidence interval is constructed by collecting all values τ0 such that the
null hypothesis H0 : φτ0,res = 0 is not rejected at the chosen significance level α. This approach
is numerically identical to Fieller’s theorem (Fieller, 1954). Finally, it is convenient to define
the point estimate τ̂AR,res as the value τ0 which makes φ̂τ0,res exactly equal to zero. By the FWL
theorem, we can easily show that τ̂AR,res is numerically identical to 2SLS and ILS. 180

2.4. The IV estimate may suffer from OVB
The previous IV estimate relies on the assumption that, conditional on X , Proximity and

Earnings are unconfounded, and the effect of Proximity on Earnings must go entirely through
Education. As is often the case, neither assumption is easy to defend. First, the same factors that
might confound the relationship between Education and Earnings could similarly confound the 185

relationship of Proximity and Earnings (e.g. family wealth or connections). Second, as argued
in Card (1993), the presence of a college nearby may be associated with high school quality,
which in turn also affects earnings. Finally, other geographic confounders can make some lo-
calities likely to both have colleges nearby and lead to higher earnings. These are only coarsely
conditioned on by the observed regional indicators, and residual biases may still remain. 190

Therefore, instead of adjusting for X only, as in the previous regressions, we should have
adjusted for both the observed covariates X and unobserved covariates W as in

First Stage: D = θ̂Z + Xψ̂ + W δ̂ + ε̂d (4)

Reduced Form: Y = λ̂Z + Xβ̂ + W γ̂ + ε̂y (5)

Anderson-Rubin: Yτ0 = φ̂τ0Z + Xβ̂τ0 + W γ̂τ0 + ε̂τ0 (6) 195

7 See Andrews et al. (2019) for an extensive review of inference with weak instruments. An intuitive visual comparison between
the delta-method and Fieller’s approach is given by Hirschberg and Lye (2010, 2017).
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where W stands for all unobserved factors necessary to make Proximity a valid instrument for the
effect of Education on Earnings (e.g, Family Wealth, High School Quality, Place of Residence).8

Our task is thus to characterize how the IV point estimates and confidence intervals, as given by
Equations 4-6, would have changed due to the inclusion of omitted variables W .

2.5. Linearity, heterogeneity, and inference200

Before proceeding with our main results, two remarks are in order. First, regarding statistical
inference, throughout the paper we focus solely on exact algebraic results pertaining to “clas-
sical” (homoskedastic) standard errors. Conditions under which classical confidence intervals
have nominal coverage are well-known and thus omitted. While this may seem restrictive to
some readers, we note that the main concern of sensitivity analysis is systematic bias, and not205

sampling uncertainty. Moreover, as we explain in Section 3.1, inference with robust standard
errors is straightforward using the bootstrap or the delta-method. Second, we note again that our
target parameter is the traditional IV estimand, defined as the ratio τ := λ/θ. While treatment
effect heterogeneity may affect the precise causal interpretation of τ , it has no bearing on the par-
tial identification results we present here, which consist of bounds on (ratios of) linear projection210

coefficients. These bounds hold whether the true conditional expectation functions are linear or
not, and even in the latter case, (ratios of) linear projections may still recover interesting causal
parameters (Angrist and Pischke, 2009). See also Footnote 6 and Section 6.

3. OVB WITH THE PARTIAL R2 PARAMETERIZATION

Our proposed sensitivity analysis of the IV estimate requires first extending recently devel-215

oped tools for sensitivity analysis of OLS (Cinelli and Hazlett, 2020). These extensions are not
only useful on their own, but importantly, for present purposes, they greatly simplify the devel-
opment of a suite sensitivity analysis tools for IV in Section 4. Toward this end, in this section
we first propose bias-adjusted critical values for OLS, which allows sensitivity analysis to be
performed by simply substituting traditional critical values with adjusted ones (which we later220

apply to IV in the Anderson-Rubin setting). Next, we introduce new sensitivity statistics for rou-
tine reporting, such as extreme robustness values, characterizing the bare minimum strength that
omitted variables must have to overturn certain conclusions. Finally, we derive a novel bound on
the strength of omitted variables on the basis of comparison with observed variables.

3.1. Bias-adjusted estimates and standard errors225

We first establish key ideas, formulae, and notations from prior work on OVB (Cinelli and
Hazlett, 2020). For concreteness, suppose we are interested in the regression coefficient λ̂ and the
(estimated) standard error ŝe(λ̂) of Equation 5, namely, the OLS regression of the outcome Y on
the instrument Z, adjusting for a set of observed covariates X and (for now) a single unobserved
covariate W (we generalize to multivariate W below). Here Y , Z and W are (n× 1) vectors,230

X is an (n× p) matrix (including a constant), with n observations; λ̂, β̂ and γ̂ are the OLS
coefficient estimates and ε̂y the corresponding residuals. As W is unobserved, the investigator
instead estimates the restricted model of Equation 2 where λ̂res and β̂res are the coefficients of the
restricted OLS adjusting for Z and X alone, and ε̂y,res the corresponding residuals. The OVB
framework seeks to answer the following question: how do the inferences from the restricted235

OLS model compare with the inferences from the full OLS model?

8 See Supplementary Material for “canonical” causal diagrams illustrating settings in which {X,W } renders Z a valid instrument
for the effect of D and Y . Equivalent assumptions can be articulated in the potential outcomes framework (Angrist et al., 1996;
Pearl, 2009; Swanson et al., 2018).
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Let R2
Y∼W |Z,X denote the (sample) partial R2 of W with Y , after controlling for Z and X ,

and let R2
Z∼W |X denote the partial R2 of W with Z after adjusting for X . Given the point

estimate and (estimated) standard error of the restricted model actually run, λ̂res and ŝe(λ̂res), the
valuesR2

Y∼W |Z,X andR2
Z∼W |X are sufficient to recover λ̂ and ŝe(λ̂) (Cinelli and Hazlett, 2020). 240

More precisely, define b̂ias(λ) := λ̂res − λ̂ as the difference between the restricted estimate and
the full estimate. Then,

|b̂ias(λ)| =

√√√√R2
Y∼W |Z,XR

2
Z∼W |X

1−R2
Z∼W |X

× ŝd(Y ⊥X,D)

ŝd(D⊥X)
= BF× ŝe(λ̂res)

√
df (7)

Where here ŝd(Y ⊥X,D) is the (sample) residual standard deviation of Y after removing the
part linearly explained by {X, D}, and ŝd(D⊥X) is the (sample) residual standard deviation of 245

D after removing the part linearly explained by X . To aid interpretation, we define the term

BF :=

√
R2
Y∼W |Z,XR2

Z∼W |X
1−R2

Z∼W |X
as the “bias factor” of W , which is the part of the bias solely deter-

mined by R2
Y∼W |Z,X and R2

Z∼W |X . The second equality follows from the fact that the classical

(estimated) standard error equals ŝe(λ̂res) = ŝd(Y ⊥X,D)

ŝd(D⊥X)
df−1/2 (here df = n− p− 1 is the resid-

ual degrees of freedom from the restricted model actually run). We note the standard error in the 250

bias formula is used mainly for computational convenience. Likewise, the classical (estimated)
standard error of the full model can be recovered with

ŝe(λ̂) =

√√√√1−R2
Y∼W |Z,X

1−R2
Z∼W |X

× ŝe(λ̂res)
√

df /(df −1) = SEF× ŝe(λ̂res)
√

df /(df −1) (8)

where we similarly define SEF :=

√
1−R2

Y∼W |Z,X
1−R2

Z∼W |X
as the “standard error factor” of W , summa-

rizing the factor of the standard error which is solely determined by the sensitivity parameters 255

R2
Y∼W |Z,X and R2

Z∼W |X .
For simplicity of exposition, throughout the text we usually refer to a single omitted variable

W . These results, however, can be used for performing sensitivity analyses considering multi-
ple omitted variables W = [W1,W2, . . . ,Wl], and thus also non-linearities and functional form
misspecification of observed variables. In such cases, barring an adjustment in the degrees of 260

freedom, the equations are conservative, and reveal the maximum bias a multivariate W with
such pair of partial R2 values could cause (Cinelli and Hazlett, 2020, Sec. 4.5).

Finally, we note sensitivity analyses could alternatively be made in terms of population pa-
rameters. As per Equation 7, the partially identified region for λ is given by:

λ± = λres ± BF× sd(Y ⊥X,D)

sd(D⊥X)
(9) 265

where in Equation 9 all terms (including BF) stand for population quantities. Confidence inter-
vals for the partially identified region [λ−, λ+] can then be constructed using traditional statisti-
cal inference methods, such as the bootstrap or the delta-method; see, for instance, Chernozhukov
et al. (2022, Theorem 4). Throughout the paper we keep the analysis at the sample level, with the
understanding that similar analyses at the population level can be easily done as outlined above. 270
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3.2. Bias-adjusted critical values
We now introduce a novel correction to traditional critical values that researchers can use to

account for omitted variable bias. Let t∗α,df −1 denote the critical value for a standard t-test with
significance level α and df −1 degrees of freedom. Now let LL1−α(λ) be the lower limit and
UL1−α(λ) be the upper limit of a 1− α confidence interval for λ in the full model, i.e.,275

LL1−α(λ) := λ̂− t∗α,df −1 × ŝe(λ̂), UL1−α(λ) := λ̂+ t∗α,df −1 × ŝe(λ̂), (10)

Considering the direction of the bias that further reduces the lower limit, as well as the direction
that further increases the upper limit, Equations 7 and 8 imply that both quantities can be written
as a function of the restricted estimates and a new multiplier

LL1−α(λ) = λ̂res − t†α,df −1,R2 × ŝe(λ̂res), UL1−α(λ) = λ̂res + t†
α,df −1,R2 × ŝe(λ̂res) (11)280

where t†
α,df −1,R2 is the bias-adjusted critical value

t†
α,df −1,R2 := SEF

√
df /(df −1)× t∗α,df −1 + BF

√
df. (12)

As the subscript R2 = {R2
Y∼W |Z,X , R

2
Z∼W |X} conveys, t†

α,df −1,R2 depends on both sensitivity
parameters. Notably, this correction does not depend on the data (but for the degrees of freedom).
This allows researchers, readers, and reviewers to quickly assess the robustness of reported find-285

ings to omitted variables of any postulated strength.
For a numerical example, it is instructive to consider the case in which the omitted variable W

has equal strength with Y and Z, i.e,R2
Y∼W |Z,X = R2

Z∼W |X = R2. We then have that SEF = 1

and BF = R2/
√

1−R2 resulting in a very simple correction formula,

t†
α,df −1,R2,R2 ≈ t∗α,df −1 +

R2

√
1−R2

√
df, (13)290

where we employ the approximation
√

df/(df− 1) ≈ 1. Table 1 shows the adjusted critical val-
ues for this case, considering different strengths of the omitted variable and various sample sizes.

R2 Degrees of Freedom (sample size)
100 1,000 10,000 100,000 1,000,000

0.00 1.98 1.96 1.96 1.96 1.96
0.01 2.08 2.28 2.97 5.14 12.01
0.02 2.19 2.60 3.98 8.35 22.16
0.03 2.29 2.92 5.01 11.59 32.42
0.04 2.39 3.25 6.04 14.87 42.78
0.05 2.50 3.58 7.09 18.18 53.26

Table 1: Bias-adjusted critical values, t†
α,df −1,R2,R2 , for different strengths of the omitted vari-

able W (with R2
Y∼W |Z,X = R2

Z∼W |X = R2) and various sample sizes; α = 5%.

Tests using these new critical values thus account both for sampling uncertainty and residual
biases with the postulated strength. Note how t†

α,df −1,R2 increases the larger the sample size.
This behaviour is simply a consequence of the well-known, but often overlooked fact that in295

large samples any signal will eventually be detected, even if such signal is spurious. Thus, as the



Omitted Variable Bias for Instrumental Variables 9

sample size grows, a higher threshold is needed in order to protect inferences against systematic
biases.

3.3. Compatible inferences given bounds on partial R2

Given hypothetical values for R2
Y∼W |Z,X and R2

Z∼W |X , the previous results allow us to de- 300

termine exactly how the inclusion of W with such strength would change inference regarding
the parameter of interest. Often, however, the analyst does not know the exact strength of omit-
ted variables, and wishes to investigate the worst possible inferences that could be induced by
a W with bounded strength, for instance, R2

Y∼W |Z,X ≤ R
2max
Y∼W |Z,X and R2

Z∼W |X ≤ R
2max
Z∼W |X .

Writing t†
α,df −1,R2 as a function of the sensitivity parametersR2

Y∼W |Z,X andR2
Z∼W |X , we then 305

solve the maximization problem

max
R2
Y∼W |Z,X ,R2

Z∼W |X

t†
α,df −1,R2 s.t. R2

Y∼W |Z,X ≤ R
2max
Y∼W |Z,X , R

2
Z∼W |X ≤ R

2max
Z∼W |X (14)

Denoting the solution to the optimization problem in expression (14) as t†max
α,df −1,R2 , the most

extreme possible lower and upper limits after adjusting for W are given by

LLmax
1−α,R2(λ) = λ̂res − t†max

α,df −1,R2 × ŝe(λ̂res), ULmax
1−α,R2 = λ̂res + t†max

α,df −1,R2 × ŝe(λ̂res) 310

The interval composed of such limits,

CImax
1−α,R2(λ) =

[
LLmax

1−α,R2(λ), ULmax
1−α,R2(λ)

]
retrieves all confidence intervals for λ that are compatible with an omitted variable with such
strengths. If the confidence interval adjusting forW has nominal coverage, and if the true sample
partialR2 ofW lies within the posited bounds (note that here the judgment is made at the sample 315

level), then it immediately follows that CImax
1−α,R2(λ) is also a confidence interval with at least

1− α coverage.

3.4. Sensitivity statistics for routine reporting
Widespread adoption of sensitivity analysis benefits from simple and interpretable statistics

that quickly convey the overall robustness of an estimate. To that end, Cinelli and Hazlett (2020) 320

proposed two sensitivity statistics for routine reporting: (i) the partial R2 of Z with Y , R2
Y∼Z|X ;

and, (ii) the robustness value (RV). Here we generalize the notion of a partial R2 as a measure of
robustness to extreme scenarios, by introducing the extreme robustness value (XRV), for which
the partial R2 is a special case. We also recast these sensitivity statistics as a solution to an “in-
verse” question regarding the interval CImax

1−α,R2(λ). This framework facilitates extending these 325

metrics to other contexts, in particular to the IV setting in Section 4.

The extreme robustness value
Our first inverse question is: what is the bare minimum strength of association of the omitted

variable W with Z that could bring its estimated coefficient to a region where it is no longer
statistically different than zero (or another threshold of interest)? To answer this question, we 330

can see CImax
1−α,R2(λ) as a function of the bound R2max

Z∼W |X alone, obtained from maximizing the
adjusted critical value in expression 14 where: (i) the parameter R2

Y∼W |Z,X is left completely
unconstrained (i.e, R2

Y∼W |Z,X ≤ 1); and, (ii) the parameter R2
Z∼W |X is bounded by XRV (i.e,

R2max
Z∼W |X ≤ XRV). The Extreme Robustness Value XRVq∗,α(λ) is defined as the greatest lower

bound XRV such that the null hypothesis that a change of (100× q∗)% of the original estimate, 335
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H0 : λ = (1− q∗)λ̂res, is not rejected at the α level,

XRVq∗,α(λ) := inf
{

XRV; (1− q∗)λ̂res ∈ CImax
1−α,1,XRV(λ)

}
(15)

The solution to this problem gives,

XRVq∗,α(λ) =


0, if fq∗(λ) ≤ f∗α,df−1
f2q∗(λ)− f∗2α,df−1

1 + f2q∗(λ)
, otherwise.

Where fq∗(λ) := q∗|fY∼Z|X | (here fY∼Z|X stands for the partial Cohen’s f and we define the340

critical threshold f∗α,df −1 := t∗α,df −1/
√

df −1).9 Note XRVq∗,α(λ) can be interpreted as an “ad-
justed partial R2” of Z with Y . To see why, let us first consider the case of the minimal strength
to bring the point estimate (α = 1) to exactly zero (q∗ = 1). We then have that f∗α=1,df −1 = 0

and f2q∗=1(λ) = f2Y∼Z|X , resulting in XRVq∗=1,α=1(λ) =
f2
Y∼Z|X

1+f2
Y∼Z|X

= R2
Y∼Z|X . For the gen-

eral case, we simply perform two adjustments that dampens the “raw” partial R2 of Z with345

Y . First we adjust it by the proportion of reduction deemed to be problematic q∗ through
fq∗ = q∗|fY∼Z|X |; next, we subtract the threshold for which statistical significance is lost.

The robustness value
An alternative measure of robustness of the OLS estimate is to consider the minimal strength

of association that the omitted variable needs to have, both with Z and Y , so that a 1− α confi-350

dence interval for λwill include a change of (100× q∗)% of the current restricted estimate. Write
CImax

1−α,R2(λ) as a function of both bounds varying simultaneously, CImax
1−α,RV,RV(λ), by maximiz-

ing the adjusted critical value with bounds given by R2
Y∼W |Z,X ≤ RV and R2

Z∼W |X ≤ RV.

The Robustness Value RVq∗,α(λ) for not rejecting the null hypothesis thatH0 : λ = (1− q∗)λ̂res,
at the significance level α, is defined as355

RVq∗,α(λ) := inf
{

RV; (1− q∗)λ̂res ∈ CImax
1−α,RV,RV(λ)

}
(16)

We then have that,

RVq∗,α(λ) =


0, if fq∗(λ) ≤ f∗α,df−1
1

2

(√
f4q∗,α(λ) + 4f2q∗,α(λ)− f2q∗,α(λ)

)
, if f∗α,df−1 < fq∗(λ) < f∗−1α,df−1

XRVq∗,α(λ), otherwise.

Where fq∗,α(λ) := q∗|fY∼Z|X | − f∗α,df −1. The first case occurs when the confidence interval
already includes (1− q∗)λ̂res or the mere change of one degree of freedom achieves this. In the360

second case, both associations ofW reach the bound. The last case is an interior point solution—
when the constraint on the partialR2 with the outcome is not binding, the RV reduces to the XRV.

3.5. Bounding the plausible strength of omitted variables
One final result is required before turning to the sensitivity of IV estimates. LetXj be a specific

covariate of the set X , and define365

kZ :=
R2
Z∼W |X−j

R2
Z∼Xj |X−j

, kY :=
R2
Y∼W |Z,X−j

R2
Y∼Xj |ZX−j

. (17)

9 Cohen’s f2 can be written as f2 = R2/(1−R2).
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where X−j represents the vector of covariates X excluding Xj . These new parameters, kZ and
kY , stand for how much “stronger” W is relatively to the observed covariate Xj in terms of
residual variation explained of Z and Y . Our goal in this section is to re-express (or bound)
the sensitivity parameters R2

Z∼W |X and R2
Y∼W |Z,X in terms of the relative strength parameters 370

kZ and kY . Cinelli and Hazlett (2020) derived bounds considering the part of W not linearly
explained by X . These are particularly useful when contemplating Xj and W both confounders
of Z (violations of the ignorability of the instrument). In the IV setting, however,W andXj may
be side-effects of Z, instead of causes of Z. In such cases, it may be more natural to reason about
the orthogonality of X and W after conditioning on Z. Therefore, here we additionally provide 375

bounds under the condition R2
W∼Xj |Z,X−j = 0. We then have that

R2
Z∼W |X ≤ ηf

2
Z∼Xj |X−j , R2

Y∼W |Z,X = kY f
2
Y∼Xj |Z,X−j (18)

where η is a multiplier function of ky, kZ and R2
Z∼Xj |X−j . These results allow investigators

to leverage knowledge of relative importance of variables (Kruskal and Majors, 1989) when
making plausibility judgments regarding sensitivity parameters. 380

4. AN OVB FRAMEWORK FOR THE SENSITIVITY OF IV
We are now ready to develop a suite of sensitivity analysis tools for instrumental variable

regression. In this section, we first show how separate sensitivity analysis of the reduced form
and first stage is sufficient to draw many valuable conclusions regarding the sensitivity of IV. We
then construct a complete OVB framework for the sensitivity analysis of the IV estimate itself 385

within the Anderson-Rubin approach.

4.1. Sensitivity analysis of the reduced form and first stage
The critical examination of the first stage and the reduced form plays an important role for

supporting the causal story behind a particular instrumental variable. Researchers are thus ad-
vised to report and interpret the first stage and the reduced form by, e.g., assessing whether those 390

results are consistent with theory and the postulated mechanisms that justify the choice of instru-
ment (Angrist and Krueger, 2001; Angrist and Pischke, 2009; Imbens, 2014). While investigating
these separate regressions, all sensitivity analysis results discussed in the previous section can
be readily deployed. Fortunately, such sensitivity analyses also answer many pivotal questions
regarding the IV estimate itself. First, if the investigator is interested in assessing the strength 395

of confounders or side-effects needed to bring the IV point estimate to zero, or to not reject the
null hypothesis of zero effect, the results of the sensitivity analysis of the reduced form is all that
is needed. Second, the sensitivity of the first stage (to confounding that could change its sign)
reveals whether the IV estimate could be arbitrarily large in either direction. We now formalize
these claims. 400

What the reduced form and first stage reveal about the IV point estimate
Recall that all IV estimators under consideration are equivalent, equal to the ratio of the

reduced-form and the first-stage regression coefficients, τ̂ := λ̂/θ̂. This simple algebraic fact
leads to two important conclusions regarding the sensitivity of τ̂ from the sensitivity of λ̂ and θ̂
alone. First, residual biases can bring the IV point estimate to zero if and only if they can bring 405

the reduced-form point estimate to zero. Therefore, if sensitivity analysis of the reduced form
reveals that omitted variables are not strong enough to explain away λ̂, then they also cannot
explain away the IV point estimate τ̂ . Or, more worrisome, if analysis reveals that it takes weak
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confounding or side-effects to explain away λ̂, the same holds for the IV estimate τ̂ . Second,
if we cannot rule out confounders or side-effects able to change the sign of the first stage, we410

cannot rule out that the IV point estimate τ̂ could be arbitrarily large in either direction. This
can be immediately seen by letting θ̂ approach zero on either side of the limit. Thus, whenever
we are interested in biases as large or larger than a certain amount, the robustness of the first
stage to the zero null puts an upper bound on the robustness of the IV point estimate.

What the reduced form and first stage reveal about IV hypothesis tests415

Consider now the IV estimand τ = λ/θ (i.e, the population parameter). Provided the ratio is
well defined (θ 6= 0), we have that τ = 0 ⇐⇒ λ = 0. Therefore, a test of the null hypothesis
H0 : λ = 0 in the reduced-form regression is logically equivalent to a test of the null hypothesis
H0 : τ = 0 for the IV estimand. Similarly, for a fixed λ, if we cannot rule out that θ is arbitrarily
close to zero in either direction, then, logically, we also cannot rule out that τ is arbitrarily large420

in either direction—a test for the null hypothesisH0 : θ = 0 is thus logically equivalent to testing
whether arbitrarily large sizes for τ can be ruled out.

The Anderson-Rubin approach is coherent with respect to these logical implications. Recall
the Anderson-Rubin test for the null hypothesisH0 : τ = τ0 is based on the test ofH0 : φτ0 = 0.
By the FWL theorem, the point estimate and (estimated) standard error for φ̂τ0 can be expressed425

in terms of the first-stage and reduced-form estimates, namely, φ̂τ0 = λ̂− τ0θ̂ and, ŝe(φ̂τ0) =√
v̂ar(λ̂) + τ20 v̂ar(θ̂)− 2τ0ĉov(λ̂, θ̂). Testing H0 : φτ0 = 0 requires comparing the t-value for

φ̂τ0 with a critical threshold t∗α,df −1, and the null hypothesis is not rejected if |tφ̂τ0 | ≤ t
∗
α,df −1.

Squaring and rearranging terms we obtain the quadratic inequality,(
θ̂2 − v̂ar(θ̂)t∗2α,df −1

)
︸ ︷︷ ︸

a

τ20 + 2
(

ĉov(λ̂, θ̂)t∗2α,df −1 − λ̂θ̂
)

︸ ︷︷ ︸
b

τ0 +
(
λ̂2 − v̂ar(λ̂)t∗2α,df −1

)
︸ ︷︷ ︸

c

≤ 0 (19)430

When considering the null hypothesis H0 : τ0 = 0, only the term c remains, and c is less or
equal to zero if and only if one cannot reject the null hypothesis H0 : λ = 0 in the reduced-form
regression. Also note that arbitrarily large values for τ0 will satisfy the inequality in Equation 19
if, and only if, a < 0, meaning that we cannot reject the null hypothesis H0 : θ = 0 in the first-
stage regression. Within the Anderson-Rubin framework, we thus reach analogous conclusions435

regarding hypothesis testing as those regarding the point estimate: (i) when interest lies in the
zero null hypothesis, the sensitivity of the reduced form is exactly the sensitivity of the IV—no
other analyses are needed. and, (ii) if one is interested in biases of a certain amount, or larger,
then the sensitivity of the first stage to the zero null hypothesis needs also to be assessed.

It is not uncommon for frequentist statistical tests to lead to logically incoherent decisions440

(Schervish, 1996). While inferences made in the Anderson-Rubin approach have the expected
behavior in this setting, inferences using ILS or 2SLS may not. Cases can be found for ILS and
2SLS where, for instance, one fails to reject the null hypothesis H0 : λ = 0, yet still rejects the
null hypothesis H0 : τ = 0 (and vice-versa). Such claims do not conform to current guidelines
for interpreting the first-stage and reduced-form regressions (Angrist and Pischke, 2009).445

4.2. Sensitivity analysis in the Anderson-Rubin approach
We now build a complete set of sensitivity tools for IV within the Anderson-Rubin approach.
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Testing a specific null hypothesis
We begin by examining the sensitivity of the t-value for testing a specific null hypothe-

sis H0 : τ = τ0, as this is a straightforward application of the tools of Section 3. Recall that, 450

in the Anderson-Rubin approach, a test for the null hypothesis H0 : τ = τ0 is given by the
test of the null hypothesis H0 : φτ0 = 0 in the regression of Yτ0 on the instrument Z and co-
variates X and W . Therefore, standard OLS sensitivity analysis for testing the null hypoth-
esis H0 : φτ0 = 0 on the Anderson-Rubin regression gives the desired results for IV. In de-
tail, a sensitivity analysis for the null hypothesis that the IV estimate τ equals τ0 can be 455

performed by: (i) constructing Yτ0 = Y − τ0D under the null value H0 : τ = τ0; (ii) running
the OLS model Yτ0 = φ̂res,τ0Z + Xβ̂res,τ0 + ε̂τ0,res; and (iii) performing regular OLS sensi-
tivity analysis for the null H0 : φτ0 = 0. This tells us how omitted variables no worse than
R2 = {R2

Z∼W |X , R
2
Yτ0∼W |Z,X

}would alter inferences regarding the nullH0 : τ = τ0, as well as

the minimal strength of R2 required to not reject the nullH0 : τ = τ0, as given by the RV or XRV. 460

Compatible inferences given bounds on partial R2

More broadly, analysts can recover the set of inferences compatible with plausibility judg-
ments on the maximum strength of W . For a critical threshold t∗α,df −1, the confidence interval
for τ in the Anderson-Rubin framework is given by CI1−α(τ) = {τ0; t2φτ0 ≤ t

∗2
α,df −1}. Thus,

consider bounds on sensitivity parameters R2
Yτ0∼W |Z,X

≤ R2max
Y0∼W |Z,X (which should be judged 465

to hold regardless of the value of τ0) and R2
Z∼W |X ≤ R

2max
Z∼W |X . Let t†max

α,df −1,R2 denote the max-
imum bias-adjusted critical value under the posited bounds on the strength of W . The set of
compatible inferences for τ , CImax

1−α,R2(τ) is then simply given by

CImax
1−α,R2(τ) =

{
τ0; t

2
φ̂res,τ0

≤
(
t†max
α,df −1,R2

)2}
(20)

This interval can be found analytically using the same inequality as in Equation 19, now with 470

the parameters of the restricted regression actually run, and t∗α,df −1 replaced by t†max
α,df −1,R2 . Note

that users can easily obtain CImax
1−α,R2(τ) with any software that computes Anderson-Rubin or

Fieller’s confidence intervals by simply providing the modified critical threshold t†max
α,df −1,R2 .

Here it is useful to discuss the possible shapes of CImax
1−α,R2(τ) as this will help understand-

ing the robustness values for IV we derive next. Let r = {rmin, rmax} denote the roots of the 475

quadratic equation, which can be written as r = −b±
√

∆/2a, with ∆ = b2 − 4ac. If a > 0 (i.e,
we have a statistically significant first stage), the quadratic equation will be convex, and thus only
the values between the roots will be non-positive. This leads to the connected confidence interval
CImax

1−α,R2 = [rmin, rmax]. When a < 0 (i.e, the null hypothesis of zero for the first stage is not re-
jected), the curve is concave and this leads to unbounded confidence intervals. Here we have two 480

sub-cases: (i) when ∆ < 0, the quadratic curve never touches zero, and thus the confidence inter-
val is simply the whole real line CImax

1−α,R2 = (−∞,+∞); and, (ii) when ∆ > 0 the confidence
interval will be union of two disjoint intervals CImax

1−α,R2 = (−∞, rmin] ∪ [rmax,+∞).10

Armed with the notion of a set of compatible inferences for IV, CImax
1−α,R2(τ), we are now able

to formally define and derive (extreme) robustness values for instrumental variable estimates. 485

10 See Mehlum (2020) for an intuitive graphical characterization of Fieller’s solutions using polar coordinates.
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Extreme robustness values for IV.
The extreme robustness value XRVq∗,α(τ) for the IV estimate is defined as the minimum

strength of association of omitted variables with the instrument so that we cannot reject a reduc-
tion of (100× q∗)% of the original IV estimate; that is,

XRVq∗,α(τ) := inf
{

XRV; (1− q∗)τ̂res ∈ CImax
1−α,1,XRV(τ)

}
. (21)490

It then follows immediately from Equation 20 that XRVq∗,α(τ) = XRV1,α(φτ∗), where τ∗ =
(1− q∗)τ̂res. Also of interest is the special case of the minimum strength to bring the IV estimate
to a region where it is no longer statistically different than zero (q∗ = 1), in which we obtain
XRV1,α(τ) = XRV1,α(λ). That is, for the null hypothesis of H0 : τ = 0, the extreme robustness
value of the IV estimate equals the extreme robustness value of the reduced-form estimate, as495

logically concluded in the prior section.
The XRVq∗,α(τ) computes the minimal strength of W required to not reject a particular null

hypothesis of interest. We might be interested, instead, in asking about the minimal strength of
omitted variables to not reject a specific value or worse. When confidence intervals are con-
nected, such as the case of standard OLS, the two notions coincide. But in the Anderson-Rubin500

case, as we have seen, confidence intervals for the IV estimate can sometimes consist of dis-
joint intervals. Therefore, let the upper and lower limits of CImax

1−α,R2(τ) be LLmax
1−α,R2(τ) and

ULmax
1−α,R2(τ) respectively. The extreme robustness value XRV≥q∗,α(τ) for the IV estimate is

defined as the minimum strength of association that confounders or side-effects need to have
with the instrument so that we cannot reject a change of (100× q∗)% or worse of the original505

IV estimate;

XRV≥q∗,α(τ) := inf
{

XRV; (1− q∗)τ̂res ∈
[
LLmax

1−α,1,XRV(τ), ULmax
1−α,1,XRV(τ)

]}
(22)

Whenever CImax
1−α,df −1(τ) is connected, we must have that XRV≥q∗,α(τ) = XRVq∗,α(τ). On the

other hand, recall that CImax
1−α,df −1(τ) will be disjoint only if t2

θ̂res
≤ (t†max

α,df −1,R2)2, which is pre-
cisely the condition for the extreme robustness value of the first stage. Therefore,510

XRV≥q∗,α(τ) = min{XRV1,α(φτ∗), XRV1,α(θ)} (23)

corroborating our conclusion that, the robustness of IV estimates against biases as large or larger
than a certain amount is bounded by the robustness of the first stage assessed at the zero null.

Robustness values for IV.
The definitions of the robustness value for IV follow the same logic discussed above, but now515

considering both bounds on CImax
1−α,R2 varying simultaneously. That is,

RVq∗,α(τ) := inf
{

RV; (1− q∗)τ̂res ∈ CImax
1−α,RV,RV(τ)

}
(24)

Again from Equation 20 we have that RVq∗,α(τ) = RV1,α(φτ∗), which for the special case of
q∗ = 1 simplifies to RV1,α(τ) = RV1,α(λ), as before. We can also define the RV for not rejecting
the null of a reduction of (100× q∗)% or worse520

RV≥q∗,α(τ) := inf
{

RV; (1− q∗)τ̂res ∈
[
LLmax

1−α,RV,RV(τ), ULmax
1−α,RV,RV(τ)

]}
(25)

By the same arguments articulated above, RV≥q∗,α(τ) must be the minimum of the robustness
value of the Anderson-Rubin regression evaluated at τ∗ = (1− q∗)τ̂res and the robustness value
of the first-stage regression evaluted at the zero null

RV≥q∗,α(τ) = min{RV1,α(φτ∗), RV1,α(θ)} (26)525
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For the special case of q∗ = 1 (zero null hypothesis), RV≥q∗,α(τ) simplifies to the mini-
mum of the robustness value of the first stage and of the reduced form, RV≥q∗=1,α(τ) =
min{RV1,α(λ), RV1,α(θ)}.

Bounds on the strength of omitted variables
When testing a specific null hypothesis H0 : τ = τ0 in the AR regression, we have kZ as

in Section 3.5, and instead of kY we now have kYτ0 := R2
Yτ0∼W |Z,X−j

/R2
Yτ0∼Xj |ZX−j

. The
plausibility judgment one is making here is that of how W is relative to observed covariates,
underH0 : τ = τ0. Since the judgment is made under a specific null, the bounds will be different
when testing different hypotheses. Therefore, it is useful to compute bounds under a slightly more
conservative assumption. We can posit that the omitted variables are no stronger than (a multiple
of) the maximum explanatory power of an observed covariate, regardless of the value of τ0, i.e,

kmax
Yτ0

:=
maxτ0 R

2
Yτ0∼W |Z,X−j

maxτ0 R
2
Yτ0∼Xj |ZX−j

.

This has the useful property of providing a unique bound for any null hypothesis, and can be used 530

to place bounds on the sensitivity contours of the lower and upper limit of the AR confidence
intervals, as we show next.

5. USING THE OVB FRAMEWORK FOR THE SENSITIVITY OF IV
In this section we return to our running example and show how these tools can be deployed

to assess the robustness of those findings to violations of the IV assumptions. Throughout, we 535

focus the discussion on violations of the ignorability of the instrument due to confounders, as this
is the main threat of the study under investigation. Readers should keep in mind, however, that
mathematically all analyses performed here can be equally interpreted as assessing violations of
the exclusion restriction (or both). Here we focus on the sensitivity of the IV estimate, separate
analyses of the reduced form and first stage are provided in the Supplementary Materials. 540

5.1. Minimal sensitivity reporting

Outcome: Earnings (log)
Treatment Estimate LL1−α UL1−α t-value XRV≥q∗,α RV≥q∗,α
Education (years) 0.132 0.025 0.285 2.33 0.05% 0.67%
Bound (1x SMSA): R2

Y0∼W |Z,X = 2%, R2
W∼Z|X = 0.6%, t†max

α,df −1,R2 = 2.55

Note: df = 2994, q∗ = 1, α = 0.05

Table 2: Minimal sensitivity reporting of the IV estimate (Anderson-Rubin).

Table 2 shows our proposed minimal sensitivity reporting for IV estimates. It starts by repli-
cating the usual statistics, such as the point estimate (0.132), as well as the lower and upper limits
of the Anderson-Rubin confidence interval [0.025, 0.285] , and the t-value against the null hy-
pothesis of zero effect (2.33). Next, we propose researchers report the extreme robustness value 545

(XRV≥q∗,α = 0.05%) and the robustness value (RV≥q∗,α = 0.67%) required to bring the lower
limit of the confidence interval to or beyond zero (or another meaningful threshold), at the 5%
significance level. As derived in the previous section, the (extreme) robustness value of the IV
estimate required to bring the lower limit of the confidence interval to zero or below is the min-
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imum of the (extreme) robustness value of the reduced form and the (extreme) robustness value550

of the first stage. In our running example, the reduced form is more fragile, thus the sensitivity
of the IV hinges critically on the sensitivity of the reduced form.

The RV reveals that confounders explaining 0.67% of the residual variation both of proximity
and of (log) Earnings are already sufficient to make the IV estimate statistically insignificant.
Further, the XRV shows that, if we are not willing to impose constraints on the partialR2 of con-555

founders with the outcome, they need only explain 0.05% of the residual variation instrument to
“lose statistical significance.” To aid users in making plausibility judgments, the note of the table
provides bounds on the maximum strength of unobserved confounding if it were as strong as
SMSA (an indicator variable for whether the individual lived in a metropolitan region) along with
the bias-adjusted critical value for a confounder with such strength, t†max

α,df −1,R2 = 2.55. Since560

the observed t-value (2.33) is less than the adjusted critical threshold of 2.55, this immediately
reveals that confounding as strong as SMSA (e.g. residual geographic confounding) is already
sufficiently strong to be problematic.

5.2. Sensitivity contours plots
It will often be valuable to assess the sensitivity of the IV against hypothesis other than zero.565

To that end, investigators may wish to examine sensitivity contour plots showing the whole range
of adjusted lower and upper limits of the AR confidence interval against various strengths of the
omitted variablesW . These contours are shown in Figure 1. Here the horizontal axis indicates the
bounds on the partialR2 of the confounder with the instrument, and the vertical axis indicates the
bounds onR2

Yτ0∼W |Z,X
, i.e, the partialR2 of the confounder with Yτ0 := Y − τ0D (the outcome570

after subtracting the “putative causal effect” ofD). Under a constant treatment effects model, this
has a simple interpretation—it is the untreated potential outcome. For simplicity, of exposition,
we adopt this interpretation here. The contour lines show the worst lower (or upper) limit of
the CImax

1−α,R2(τ), with omitted variables bounded by such strength. Red dashed lines shows a
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critical contour line of interest (such as zero) as well as the boundary beyond confidence intervals 575

become unbounded. The red diamonds places bounds on strength of W as strong as Black (an
indicator for race) and, again, SMSA, as per Section 4.2. As the plot reveals, both confounding
as strong as SMSA, or as strong as black, could lead to an interval for the target parameter of
CImax

1−α,R2(τ) = [−0.02, 0.40], which includes not only implausibly high values (40%), but also
negative values (-2%), and is thus too wide for any meaningful conclusions. Since it is not very 580

difficult to imagine residual confounders as strong or stronger than those (e.g., parental income,
finer grained geographic location, etc), these results call into question the strength of evidence
provided by this IV study.

6. DISCUSSION

Here we focused on the sensitivity of the “traditional” IV estimate, consisting of the ratio of 585

two OLS regression coefficients. We chose to do so because this reflects current practices, and
encompasses the vast majority of applied work. These tools can thus be immediately put to use to
improve the robustness of current research, without requiring any additional assumptions, beyond
those that already justified the IV estimate (including W ) as the target of interest. Recent papers,
however, have correctly questioned the causal interpretation of the traditional IV estimand, as it 590

relies on strong parametric assumptions (Słoczyński, 2020; Blandhol et al., 2022). Extension of
the sensitivity tools we present here to the nonparametric case is possible by leveraging recent
results in Chernozhukov et al. (2022), and offers an interesting direction for future work.
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Appendix for

“An Omitted Variable Bias Framework for Sensitivity Analysis of

Instrumental Variables”

A The mechanics of IV estimation

For ease of reference, in this section we show in detail some of the algebraic identities (and di↵erences) of
the main approaches to IV estimation.

Notation. We denote by Y the (n ⇥ 1) vector of the outcome of interest with n observations; by D the
(n ⇥ 1) treatment vector; by Z the (n ⇥ 1) vector of the instrument; by X an (n ⇥ p) matrix of observed
covariates (including a constant), and by W an (n ⇥ l) matrix of unobserved covariates. We use Y

?X to
denote the part of Y not linearly explained by X, that is, Y ?X := Y �X(X 0X)�1X 0

Y . Throughout, we
assume that the relevant matrices have full rank. Here df := n� p� l � 1.

A.1 Indirect Least Squares (ILS)

ILS is perhaps the most straightforward approach to instrumental variable estimation. We start with two
OLS models, one capturing the e↵ect of the instrument on the treatment (first stage) and another the e↵ect
of the instrument on the outcome (reduced form),

First stage: D = ✓̂Z +X ̂ +W �̂ + "̂d (31)

Reduced form: Y = �̂Z +X�̂ +W �̂ + "̂y (32)

Where ✓̂,  ̂ and �̂ are the OLS estimates of the regression of D on Z, X and W , and "̂d its corresponding
residuals; analogously, �̂, �̂ and �̂ are the OLS estimates of the regression of Y on Z, X and W , and "̂y its
corresponding residuals.

Point Estimate. The estimator for ⌧ is constructed by simply using the plug-in principle and taking the
ratio of �̂ and ✓̂

⌧̂ILS :=
�̂

✓̂
(33)

Inference. Inference in the ILS framework is usually performed using the delta-method, with estimated
variance

cvar(⌧̂ILS) :=
1

✓̂2

⇣
cvar(�̂) + ⌧̂

2

ILScvar(✓̂)� 2⌧̂ILSdcov(�̂, ✓̂)
⌘

(34)

where, using the FWL formulation,

cvar(�̂) = var(Y ?Z,X,W )

var(Z?X,W )
⇥ df�1

, cvar(✓̂) = var(D?Z,X,W )

var(Z?X,W )
⇥ df�1 (35)

are the estimated variances of the reduced form and first stage, and

1



dcov(�̂, ✓̂) = cov(Y ?Z,X,W
, D

?Z,X,W )

var(Z?X,W )
⇥ df�1 (36)

is the estimated covariance of �̂ and ✓̂. Here var(·) and cov(·) denote sample variances of covariances.

A.2 Two-Stage Least Squares (2SLS)

A closely related approach for instrumental variable estimation is denoted by “two-stage least squares”
(2SLS). As its name suggests, this involves two nested steps of OLS estimation: a first-stage regression given
by Equation 31 to produce fitted values for the treatment ( bD), then regressing the outcome on these fitted
values,

Second stage: Y = ⌧̂2SLS
bD +X�̂2SLS +W �̂2SLS + "̂2SLS (37)

The 2SLS estimate corresponds to the coe�cient ⌧̂2SLS in Equation 37, called the “second-stage” regression.

Point Estimate. By the FWL theorem, the 2SLS point estimate can be written as

⌧̂2SLS =
cov(Y ?X,W

, bD?X,W )

var( bD?X,W )
(38)

In the just-identified case, the ILS and 2SLS point estimates are numerically identical. Expanding bD and
partialling out {X,W } we have that

⌧̂2SLS =
cov(Y ?X,W

, bD?X,W )

var( bD?X,W )
=

cov(Y ?X,W
, ✓̂Z

?X,W )

var(✓̂Z?X,W )
(39)

=
✓̂ ⇥ cov(Y ?X,W

, Z
?X,W )

✓̂2 ⇥ var(Z?X,W )
=
�̂

✓̂
(40)

Which establishes the equality ⌧̂2SLS = ⌧̂ILS =: ⌧̂ .

Inference. By the FWL theorem, the standard two-stage least squares estimate of the variance of ⌧̂2SLS
can be written as

cvar(⌧̂2SLS) :=
var(Y ?X,W � ⌧̂D

?X,W )

var( bD?X,W )
⇥ df�1 (41)

As with the point estimate, for the just-identified case, the estimated variance of ILS and 2SLS are numeri-
cally identical. To see why, note the denominator of Equation 41 can be expanded to

var( bD?X,W ) = var(✓̂Z?X,W ) = ✓̂
2 var(Z?X,W ) (42)
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Finally, the numerator can be written as,

var(Y ?X,W � ⌧̂D
?X,W ) = var(Y ?X,W � ⌧̂(✓̂ZX,W +D

?Z,X,W )) (43)

= var((Y ?X,W � �̂Z
X,W )� ⌧̂D

?Z,X,W ) (44)

= var(Y ?Z,X,W � ⌧̂D
?Z,X,W ) (45)

= var(Y ?Z,X,W ) + ⌧̂
2 var(D?Z,X,W )� 2⌧̂ cov(Y ?Z,X,W

, D
?Z,X,W ) (46)

Plugging in Equations 46 and 42 back in Equation 41, then using Equations 35 and 36 establishes the desired
equality.

A.3 Anderson-Rubin (AR)

The Anderson-Rubin approach (Anderson and Rubin, 1949) starts by creating the random variable Y⌧0 :=
Y � ⌧0D in which we subtract from Y a “putative” causal e↵ect of D, namely, ⌧0. If Z is a valid instrument,
under the null hypothesis H0 : ⌧ = ⌧0, we should not see an association between Y⌧0 and Z, conditional on
X and W . In other words, if we run the OLS model

Anderson-Rubin: Y⌧0 = �̂⌧0Z +X�̂⌧0 +W �̂⌧0 + "̂⌧0 (47)

we should find that �̂⌧0 is equal to zero, but for sampling variation. This forms the basis for the point
estimate and confidence interval in the AR approach.

Point Estimate. We define the Anderson-Rubin point estimate to be the value of ⌧0 that makes �̂ = 0,
ie,

⌧̂AR = {⌧0; �̂⌧0 = 0} (48)

Resorting again to the FWL theorem, we can write the regression coe�cient of the AR regression, �̂⌧0 , as a
function of the regression coe�cients of the first stage and reduced form,

�̂⌧0 =
cov(Y ?X,W � ⌧0D

?X,W
, Z

?X,W )

var(Z?X,W )
(49)

=
cov(Y ?X,W

, Z
?X,W )

var(Z?X,W )
� ⌧0

cov(D?X,W
, Z

?X,W )

var(Z?X,W )
(50)

= �̂� ⌧0✓̂ (51)

Thus solving for the condition �̂⌧0 = 0 gives us

⌧̂AR =
�̂

✓̂
(52)

Which establishes the equality ⌧̂AR = ⌧̂ILS . Therefore, all the point estimates of ILS, 2SLS and AR are
numerically identical.

Inference. The AR confidence interval with significance level ↵ is defined as all values of ⌧0 such that we
cannot reject the null hypothesis H0 : �⌧0 = 0 at the chosen significance level

CI1�↵(⌧) = {⌧0; t2�̂⌧0
 t

⇤2
↵,df} (53)
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This confidence interval can be obtained analytically as functions of the estimates of the first-stage and
reduced form regressions. As shown in Equation 51, �̂⌧0 can be written as the linear combination

�̂⌧0 = �̂� ⌧0✓̂ (54)

Likewise, by the FWL theorem, the estimated variance of �̂⌧0 is given by

cvar(�̂⌧0) =
var(Y ?Z,X,W � ⌧0D

?Z,X,W )

var(Z?X,W )
⇥ df�1 (55)

=

✓
var(Y ?Z,X,W )

var(Z?X,W )
+ ⌧

2

0

var(D?Z,X,W )

var(Z?X,W )
� 2⌧0

cov(Y ?Z,X,W
, D

?Z,X,W )

var(Z?X,W )

◆
⇥ df�1 (56)

= cvar(�̂) + ⌧
2

0 cvar(✓̂)� 2⌧0dcov(�̂, ✓̂) (57)

Thus, we obtain that the t-value t�̂⌧0
for testing the null hypothesis H0 : �⌧0 = 0 equals to

t�̂⌧0
=

�̂� ⌧0✓̂q
cvar(�̂) + ⌧

2
0
cvar(✓̂)� 2⌧0dcov(�̂, ✓̂)

(58)

And our task is to find all values of ⌧0 such that the following inequality holds

(�̂� ⌧0✓̂)2

cvar(�̂) + ⌧
2
0
cvar(✓̂)� 2⌧0dcov(�̂, ✓̂)

 t
⇤
2

↵,df (59)

First, note that the empty set is not possible here. If we pick ⌧0 = ⌧̂AR, then the numerator in Equation 59
is zero, and the inequality trivially holds—therefore, the point-estimate is always included in the confidence
interval. Now squaring and rearranging terms we obtain

⇣
✓̂
2 � cvar(✓̂)⇥ t

⇤2
↵,df

⌘

| {z }
a

⌧
2

0 + 2
⇣
dcov(�̂, ✓̂)⇥ t

⇤2
↵,df � �̂✓̂

⌘

| {z }
b

⌧0 +
⇣
�̂
2 � cvar(�̂)⇥ t

⇤2
↵,df

⌘

| {z }
c

 0 (60)

Our task has simplified to find all values of ⌧0 that makes the above quadratic equation, with coe�cients a,
b and c, non-positive. As discussed in Section 4.2.2, this confidence intervals can take three di↵erent forms,
depending on the instrument strength: (i) finite and connected, (ii) the union two disjoint half lines; or, (iii)
the whole real line.

A.4 Fieller’s theorem

Fieller’s proposal to test the null hypothesis H0 : ⌧ = ⌧0 is to construct the linear combination �̂⌧0 = �̂�⌧0✓̂,
and to test the null hypothesis H0 : �⌧0 = 0. The standard estimated variance for �̂⌧0 equals Equation 57,
resulting in a test statistic equal to Equation 58, and thus numerically identical to the AR approach.

B Adjusted critical values and set of compatible inferences

B.1 Bias-adjusted critical values

As in the main text, using the reduced form as an example, let LL1�↵(�) := �̂� t
⇤
↵,df �1

⇥ bse(�̂) be the lower
limit of a 1�↵ level confidence interval of the full reduced form regression, where t⇤↵,df �1

denotes the critical
↵-level threshold of the t-distribution with df �1 degrees of freedom. Considering the direction of the bias
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that reduces the lower limit, Equations 8 and 9 imply

LL1�↵(�) := �̂� t
⇤
↵,df �1 ⇥ bse(�̂) (61)

= �̂res � BF
p
df ⇥ bse(�̂res)� t

⇤
↵,df �1 ⇥ SEF

p
df /(df �1)⇥ bse(�̂res) (62)

= �̂res �
⇣
SEF

p
df /(df �1)⇥ t

⇤
↵,df �1 + BF

p
df
⌘
⇥ bse(�̂res) (63)

Similarly, now let UL1�↵(�) the upper limit of the confidence interval and consider the direction of the bias
that increases the upper limit. By the same algebraic manipulations, we obtain

UL1�↵(�) = �̂res +
⇣
SEF

p
df /(df �1)⇥ t

⇤
↵,df �1 + BF

p
df
⌘
⇥ bse(�̂res) (64)

Note that, in both Equations 63 and 64, the only part that depends on the omitted variable W is the
common multiple of the observed standard error, which defines the new bias-adjusted critical value,

t
†
↵,df �1,R2 := SEF

p
df /(df �1)⇥ t

⇤
↵,df �1 + BF

p
df. (65)

B.2 Compatible inferences given bounds on the partial R2

Now suppose the analyst wishes to investigate the worst possible lower (or upper) limits of the confidence
intervals induced by a confounder with strength no stronger than certain bounds, for instance, R2

Y⇠W |Z,X 
R

2max

Y⇠W |Z,X and R
2

Z⇠W |X  R
2max

Z⇠W |X . As per the last section, this amounts to finding the largest bias-
adjusted critical value induced by an omitted variable W with at most such strength. That is, we need to
solve the following maximization problem

max
R2

Y ⇠W |Z,X ,R2

Z⇠W |X

t
†
↵,df �1,R2 s.t. R

2

Y⇠W |Z,X  R
2max

Y⇠W |Z,X , R
2

Z⇠W |X  R
2max

Z⇠W |X (66)

Dividing t
†
↵,df �1,R2 by

p
df and letting f

⇤
↵,df �1

:= t
⇤
↵,df �1

/
p
df �1, we see that the derivative of t†↵,df �1,R2

with respect to R
2

Z⇠W |X is always increasing, since

@(t†↵,df �1,R2/
p
df)

@R
2

Z⇠W |X
=

@ BF

@R
2

Z⇠W |X
+ f

⇤
↵,df �1 ⇥

@ SEF

@R
2

Z⇠W |X
(67)

=
(R2

Y⇠W |Z,X)1/2

2(1�R
2

Z⇠W |X)3/2(R2

Z⇠W |X)1/2
+ f

⇤
↵,df �1

(1�R
2

Y⇠W |Z,X)1/2

2(1�R
2

Z⇠W |X)3/2
(68)

=
(R2

Y⇠W |Z,X)1/2 + f
⇤
↵,df �1

(1�R
2

Y⇠W |Z,X)1/2(R2

Z⇠W |X)1/2

2(1�R
2

Z⇠W |X)3/2(R2

Z⇠W |X)1/2
� 0 (69)

Therefore, the “optimal” R
2⇤
Z⇠W |X (the one the minimizes (maximizes) the lower (upper) limit of the confi-

dence interval) always reaches the bound. However, the same is not true for the derivative with respect to
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R
2

Y⇠W |Z,X . To see that, write,

@(t†↵,df �1,R2/
p
df)

@R
2

Y⇠W |Z,X
=

@ BF

@R
2

Y⇠W |Z,X
+ f

⇤
↵,df �1 ⇥

@ SEF

@R
2

Y⇠W |Z,X
(70)

=
(R2

Z⇠W |X)1/2

2(1�R
2

Z⇠W |X)1/2(R2

Y⇠W |Z,X)1/2
+

�f
⇤
↵,df �1

2(1�R
2

Y⇠W |Z,X)1/2(1�R
2

Z⇠W |X)1/2
(71)

=
(R2

Z⇠W |X)1/2(1�R
2

Y⇠W |Z,X)1/2 � f
⇤
↵,df �1

(R2

Y⇠W |Z,X)1/2

2(R2

Y⇠W |Z,X)1/2(1�R
2

Y⇠W |Z,X)1/2(1�R
2

Z⇠W |X)1/2
(72)

That is, due to the variance reduction factor of the omitted variable (VRF in Equation 9), it could be the
case that increasing R

2

Y⇠W |Z,X reduces the standard error more than enough to compensate for the increase
in bias, resulting in tighter confidence intervals.

We have, thus, two cases. First, consider the case in which the optimal point reaches both bounds. In
that case, the numerator of Equation 72 must be positive when evaluated at the solution. Rearranging and
squaring, we see that this happens when

R
2max

Z⇠W |X � f
⇤2
↵,df �1 ⇥ f

2max

Y⇠W |Z,X (73)

Clearly, when considering the sensitivity of the point estimate, we have f
⇤
↵,df �1

= 0, and the condition

always holds. If condition of Equation 73 fails, then the optimal R2⇤
Y⇠W |Z,X will be an interior point. This

will happen when the numerator of Equation 72 equals zero. Since we know R
2

Z⇠W |X reaches its maximum,

the optimal R2⇤
Y⇠W |Z,X will be,

R
2⇤
Y⇠W |Z,X =

R
2max

Z⇠W |X

f
⇤2
↵,df �1

+R
2max

Z⇠W |X
(74)

Denoting the solution to the optimization problem as t†max

↵,df �1,R2 , the most extreme possible lower and upper
limits after adjusting for W are given by

LLmax

1�↵,R2(�) = �̂res � t
†max

↵,df �1,R2 ⇥ bse(�̂res), ULmax

1�↵,R2 = �̂res + t
†max

↵,df �1,R2 ⇥ bse(�̂res) (75)

And interval composed of such limits

CImax

1�↵,R2(�) =
h
LLmax

1�↵,R2(�), ULmax

1�↵,R2(�)
i

(76)

Defines the set of compatible inferences given the bounds on the partial R2, R2

Y⇠W |Z,X  R
2max

Y⇠W |Z,X and

R
2

Z⇠W |X  R
2max

Z⇠W |X .

C (Extreme) Robustness Values

C.1 The Extreme Robustness Value

The Extreme Robustness Value XRVq⇤,↵(�) is defined as the greatest lower bound XRV on the sensitivity
parameter R

2

Z⇠W |X , while keeping the parameter R
2

Y⇠W |Z,X unconstrained, such that the null hypothesis
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that a change of (100⇥ q)% of the original estimate, H0 : � = (1� q
⇤)�̂res, is not rejected at the ↵ level:

XRVq⇤,↵(�) := inf
n
XRV; (1� q

⇤)�̂res 2 CImax

1�↵,1,XRV(�)
o

(77)

First, consider the case where fq⇤(�) < f
⇤
↵,df �1

. Note the XRV will be zero, since we already cannot reject

the null hypothesis H0 : � = (1 � q
⇤)�̂res even assuming zero omitted variable bias. Next, note that, when

f
⇤
↵,df �1

> 0, we can always pick a large enough value for R2

Y⇠W |Z,X until condition 73 fails (since f2

Y⇠W |Z,X
is unbounded). Therefore, XRV will be given by an interior point solution. Using Equation 74 to express

t
†max

↵,df �1,R2 solely in terms of the optimal R2

Z⇠W |X , and solving for the value that gives us (1 � q
⇤)�̂res, we

obtain

XRVq⇤,↵(�) =

8
>><

>>:

0, if fq⇤(�)  f
⇤
↵,df�1

f
2
q⇤(�)� f

⇤2
↵,df�1

1 + f
2
q⇤(�)

, otherwise.
(78)

C.2 The Robustness Value

The Robustness Value RVq⇤,↵(�) for not rejecting the null hypothesis that H0 : � = (1 � q
⇤)�̂res, at the

significance level ↵, is defined as

RVq⇤,↵(�) := inf
n
RV; (1� q

⇤)�̂res 2 CImax

1�↵,RV,RV(�)
o

(79)

Where now we consider both sensitivity parameters bounded by RV. Again, consider the case where fq⇤(�) <

f
⇤
↵,df �1

. The RV then must be zero, since we already cannot reject the null hypothesis H0 : � = (1� q
⇤)�̂res

given the current data. Next, let’s consider the case when the bound on R
2

Y⇠W |Z,X is not biding—here our
optimization problem reduces to the XRV case. Finally, we have the solution in which both coordinates
achieve the bound, resulting in a quadratic equation as solved in Cinelli and Hazlett (2020). We thus have,

RVq⇤,↵(�) =

8
>>><

>>>:

0, if fq⇤(�)  f
⇤
↵,df�1

1

2

⇣q
f
4
q⇤,↵(�) + 4f2

q⇤,↵(�)� f
2

q⇤,↵(�)
⌘
, if f

⇤
↵,df�1

< fq⇤(�) < f
⇤�1

↵,df�1

XRVq⇤,↵(�), otherwise.

(80)

The condition fq⇤(�) < f
⇤�1

↵,df�1
, stems from the fact that the XRV solution cannot satisfy Equation 73.

We now show that this is equivalent to the condition RVq⇤,↵(�) > 1 � 1/f2
q⇤(�) that Cinelli and Hazlett

(2020) had previously established. If fq⇤(�) < 1/f⇤
↵,df�1

then,
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RVq⇤,↵(�) =
1

2

⇣q
f
4
q⇤,↵(�) + 4f2

q⇤,↵(�)� f
2

q⇤,↵(�)
⌘

(81)

=
1

2

⇣q
(fq⇤(�)� f

⇤
↵,df�1

)4 + 4(fq⇤(�)� f
⇤
↵,df�1

)2 � (fq⇤(�)� f
⇤
↵,df�1)

2

⌘
(82)

>
1

2

✓q
(fq⇤(�)� 1/fq⇤(�))4 + 4(fq⇤(�)� 1/fq⇤(�))2 � (fq⇤(�)� 1/fq⇤(�))

2

◆
(83)

=
1

2

0

B@

vuut
✓
f2
q (�)� 1

fq⇤(�)

◆4

+ 4

 
f
2
q⇤(�)� 1

fq⇤(�)

!2

�
 
f
2
q⇤(�)� 1

fq⇤(�)

!2

1

CA (84)

=

✓
1

2

◆ 
f
2
q⇤(�)� 1

f
2
q⇤(�)

!⇣q
(f2

q (�)� 1)2 + 4f2
q⇤(�)� f

2

q⇤(�) + 1
⌘

(85)

=

✓
1

2

◆�
1� 1/f2

q⇤(�)
� ⇣q

f4
q (�) + 1� 2f2

q⇤(�) + 4f2
q⇤(�)� f

2

q⇤(�) + 1
⌘

(86)

=

✓
1

2

◆�
1� 1/f2

q⇤(�)
� ⇣q

f4
q (�) + 1 + 2f2

q⇤(�)� f
2

q⇤(�) + 1
⌘

(87)

=

✓
1

2

◆�
1� 1/f2

q⇤(�)
� �

f
2

q⇤(�) + 1� f
2

q⇤(�) + 1
�

(88)

= 1� 1/f2

q⇤(�) (89)

Therefore, fq⇤(�) < 1/f⇤
↵,df�1

=) RVq⇤,↵(�) > 1 � 1/f2
q⇤(�). By the same argument one can derive

RVq⇤,↵(�) > 1�1/f2
q⇤(�) =) fq(�) > 1/f⇤

↵,df�1
. Hence, both conditions are equivalent. The new condition,

however, is much simpler to verify.

D Bounds on the strength of W

Let Xj be a specific covariate of the set X. Now define

kZ :=
R

2

Z⇠W |X�j

R
2

Z⇠Xj |X�j

, kY :=
R

2

Y⇠W |Z,X�j

R
2

Y⇠Xj |ZX�j

. (90)

Where X�j is the set X excluding covariate Xj . Our goal in this section is to re-express (or bound) both
sensitivity parameters as a function of the new parameters kZ and kY and the observed data.

Cinelli and Hazlett (2020) showed how to obtains bounds for the strength ofW under the assumption that
R

2

W⇠Xj |X�j
= 0, or, equivalently, when we consider the part of W not linearly explained by X. This result

may be particularly useful when considering both X and W as causes of Z, as in such cases contemplating
the marginal orthogonality of W (or its part not explained by observed covariates) is more natural.

Here we additionally provide bounds under the assumption that R2

W⇠Xj |Z,X�j
= 0. This condition may

be helpful when contemplating the strength of W against Xj whenever these variables are side-e↵ects of Z,
instead of causes of Z. In such cases, reasoning about the marginal orthogonality of W with respect to X
may not be natural, as Z itself is also a source of dependence between these variables.

We can thus start by re-expressing R
2

Y⇠W |Z,X in terms of kY , which in this case is straightforward.

Using the recursive definition of partial correlations, and considering our two conditions R
2

W⇠Xj |Z,X�j
= 0
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and R
2

Y⇠W |Z,X�j
= kY R

2

Y⇠Xj |ZX�j
, we obtain

��RY⇠W |Z,X
�� =

������

RY⇠W |Z,X�j �RY⇠Xj |Z,X�jRW⇠Xj |Z,X�jq
1�R

2

Y⇠Xj |Z,X�j

q
1�R

2

W⇠Xj |Z,X�j

������
(91)

=

������

RY⇠W |Z,X�jq
1�R

2

Y⇠Xj |Z,X�j

������
(92)

=

������

p
kY RY⇠Xj |Z,X�jq
1�R

2

Y⇠Xj |Z,X�j

������
(93)

=
p
kY

���fY⇠Xj |Z,X�j

��� (94)

Hence,

R
2

Y⇠W |Z,X = kY ⇥ f
2

Y⇠Xj |Z,X�j
(95)

Moving to bound R
2

Z⇠W |X , it is useful to first note that the conditions R2

W⇠Xj |Z,X�j
= 0 and R

2

Z⇠W |X�j
=

kZR
2

Z⇠Xj |X�j
allow us to re-express RW⇠Xj |X�j

as a function of kZ

RW⇠Xj |Z,X�j
= 0 =)

RW⇠Xj |X�j
�RW⇠Z|X�j

RXj⇠Z|X�jq
1�R

2

W⇠Z|X�j

q
1�R

2

Xj⇠Z|X�j

= 0 (96)

=) RW⇠Xj |X�j
�RW⇠Z|X�j

RXj⇠Z|X�j
= 0 (97)

=) RW⇠Xj |X�j
= RW⇠Z|X�j

RXj⇠Z|X�j
(98)

=) RW⇠Xj |X�j
= RZ⇠W |X�j

RZ⇠Xj |X�j
(99)

=) |RW⇠Xj |X�j
| =

p
kZR

2

Z⇠Xj |X�j
(100)

Now we can re-write R
2

Z⇠W |X using the recursive definition of partial correlations

��RZ⇠W |X
�� =

������

RZ⇠W |X�j
�RZ⇠Xj |X�j

RW⇠Xj |X�jq
1�R

2

Z⇠Xj |X�j

q
1�R

2

W⇠Xj |X�j

������
(101)



���RZ⇠W |X�j

���+
���RZ⇠Xj |X�j

RW⇠Xj |X�j

���
q

1�R
2

Z⇠Xj |X�j

q
1�R

2

W⇠Xj |X�j

(102)

=

���
p
kZRZ⇠Xj |X�j

���+
���
p
kZR

3

Z⇠Xj |X�j

���
q
1�R

2

Z⇠Xj |X�j

q
1� kZR

4

Z⇠Xj |X�j

(103)

=

0

@
p
kZ +

���R3

Z⇠Xj |X�j

���
q
1� kZR

4

Z⇠Xj |X�j

1

A⇥

0

@

���RZ⇠Xj |X�j

���
q
1�R

2

Z⇠Xj |X�j

1

A (104)

= ⌘
0|fZ⇠Xj |X�j

| (105)
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Hence we have that

R
2

Z⇠W |X  ⌘
02
f
2

Z⇠Xj |X�j
(106)

Where ⌘0 =

0

@
p
kZ+

����R
3

Z⇠Xj |X�j

����
q

1�kZR4

Z⇠Xj |X�j

1

A.

E Comparison with traditional approaches

Traditional approaches for the sensitivity of IV have focused on parameterizing the bias of the IV estimate
with a single coe�cient that summarizes how strongly the instrument relates to the outcome “not through”
the treatment. For example, Conley et al. (2012) considers the model (for simplicity, we omit covariates X):

Yi = ⌧Di + ⌘Zi + "i (107)

Where ⌧ is the parameter of interest, and cov(Zi, "i) = 0. Here, the coe�cient ⌘ is a sensitivity parameter
that directly summarizes violations of instrument validity. To recover the target parameter ⌧ , it thus su�ces
to subtract ⌘ from the reduced-form regression coe�cient �,

⌧ =
�� ⌘

✓
. (108)

Inference for the above estimand can be done in numerous ways. At a given choice of ⌘, one could simply
subtract the postulated bias from the reduced form estimate; similarly, confidence intervals can be obtained
using the delta-method. Another popular, and computationally simpler alternative is to construct an auxil-
iary outcome Y⌘ := Y � ⌘Z, and then proceed with any of the estimation methods discussed here (e.g, 2SLS
or Anderson-Rubin regression) using the auxiliary variable Y⌘ instead of Y .

Applying this approach to our running example we reach the correct, but perhaps trivial conclusion that,
in order to bring the causal e↵ect estimate to zero (⌧ = 0), all of the reduced-form estimate (4.2%) must
be due to the e↵ects of proximity to college on income, not through its e↵ect on years of schooling, i.e.
⌘ = 4.2%. Other approaches, although di↵erent in details, can be understood in similar terms. For instance,
starting from a potential outcomes framework, Wang et al. (2018) obtains a similar sensitivity model as
Equation 107, and derive the distribution of the Anderson-Rubin statistic for a given postulated value of ⌘.

In contexts where researchers can make direct plausibility judgments about the coe�cient ⌘, these
approaches o↵er a simple and useful sensitivity analysis. In many cases, however, such as in our running
example, violations of instrument validity arise due to many possible confounding variables acting in concert,
such as family wealth, high school quality, and regional indicators. How can we reason whether all these
variables are strong enough to bring about an ⌘ ⇡ 4.2%? The OVB approach we present here change
the focus from ⌘ to the omitted variables W . That is, instead of asking for direct judgments about ⌘,
the OVB approach reveals what one must believe about the maximum explanatory power of such omitted
variables in order for them to be problematic. Here W consists of the necessary set of variables to block
both confounding between the instrument and the outcome, as well as blocking paths from the instrument
to the outcome, not through the treatment (e.g, see Figure 4).

Finally, it is worth mentioning that these two approaches are not necessarily mutually exclusive. To
illustrate, suppose we have a structural model

Yi = ⌧Di + ⌘Zi + �W + "i (109)

with cov(Zi, "i) = 0. Here suppose ⌘ now e↵ectively stands for the direct e↵ect of Z on Y , not through
D nor W . If plausibility judgments on the direct e↵ect of Z are available, we can leverage such knowledge
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by first subtracting this o↵ and then employing all OVB-based tools we have presented in this paper to
perform sensitivity analysis with respect to the remaining bias due to W .

F Supplementary Results for the Empirical Example

F.1 Minimal reporting and sensitivity contours of the reduced form

Table 5 shows our proposal for a minimal sensitivity reporting of the reduced-form estimate (here, the e↵ect
of Proximity on Earnings). Beyond the usual statistics such as the point estimate, standard-error and t-
value, we recommend that researchers also report the: (i) partial R2 of the instrument with the outcome
(R2

Y⇠Z|X = 0.18%), as well as (ii) the robustness value (RVq⇤,↵ = 0.67%), and (iii) the extreme robustness

value (XRVq⇤,↵ = 0.05%), both for where the confidence interval would cross zero (q⇤ = 1), at a chosen
significance level (here, ↵ = 0.05).

Outcome: Earnings (log)

Instrument Estimate Std. Error t-value R
2

Y⇠Z|X XRVq⇤,↵ RVq⇤,↵

Proximity 0.042 0.018 2.33 0.18% 0.05% 0.67%
Bound (1x SMSA): R2

Y⇠W |Z,X = 2%, R2
W⇠Z|X = 0.6%, t

†max
↵,df �1,R2 = 2.55

Note: df = 2994, q
⇤ = 1, ↵ = 0.05

Table 5: Minimal sensitivity reporting of the reduced-form regression.

In our running example, the RV reveals that confounders explaining 0.67% of the residual variation both
of proximity and of (log) Earnings are already su�cient to make the reduced-form estimate statistically
insignificant. Further, the XRV and the R

2

Y⇠Z|X show that, if we are not willing to impose constraints

on the partial R2 of confounders with the outcome, they need only explain 0.05% of the residual variation
instrument to “lose significance,” or 0.18% to fully eliminating the point estimate. To aid users in making
plausibility judgments, the note of Table 5 provides the maximum strength of unobserved confounding if it
were as strong as SMSA (an indicator variable for whether the individual lived in a metropolitan region)

along with the bias-adjusted critical value for a confounder with such strength, t†max

↵,df �1,R2 = 2.55. Since

the observed t-value (2.33) is less than the adjusted critical threshold of 2.55, this immediately reveals
that confounding as strong as SMSA (e.g. residual geographic confounding) is su�ciently strong to be
problematic.

Beyond the results of Table 5, researchers can also explore sensitivity contour plots of the t-value for
testing the null hypothesis of zero e↵ect, while showing di↵erent bounds on strength of confounding, under
di↵erent assumptions of how they compare to the observed variables. This is shown in Figure 3a. The
horizontal axis describes the partial R2 of the confounder with the instrument whereas the vertical axis
describes the partial R

2 of the confounder with the outcome. The contour lines show the t-value one
would have obtained, had a confounder with such postulated strength been included in the reduced-form
regression. The red dashed line shows the statistical significance threshold, and the red diamonds places
bounds on strength of confounding as strong as Black (an indicator for race) and, again, SMSA. As we can
see, confounders as strong as either Black or SMSA are su�cient to bring the reduced form, and hence also
the IV estimate, to a region which is not statistically di↵erent from zero. Since it is not very di�cult to
imagine residual confounders as strong or stronger than those (e.g., parental income, finer grained geographic
location, etc), these results for the reduced form already call into question the reliability of the instrumental
variable estimate.
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(a) Sensitivity contours of the reduced form.
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(b) Sensitivity contours of the first stage.

Figure 3: Sensitivity contour plots of the reduced form and first stage.

F.2 Minimal reporting and sensitivity contours of the first stage

Table 6 performs the same sensitivity exercises for the regression of Education (treatment) on Proximity
(instrument). As expected, the association of proximity to college with years of education is stronger
than its association with earnings. This is reflected in the robustness statistics, which are slightly higher
(R2

D⇠Z|X = 0.44%, XRVq⇤,↵ = 0.31% and RVq⇤,↵ = 3.02%). Confounding as strong as SMSA would not be
su�ciently strong to bring the first-stage estimate to a region where it is not statistically di↵erent than zero.

Treatment: Education (years)

Instrument Estimate Std. Error t-value R
2

D⇠Z|X XRVq⇤,↵ RVq⇤,↵

Proximity 0.32 0.088 3.64 0.44% 0.31% 3.02%
Bound (1x SMSA): R2

D⇠W |Z,X = 0.5%, R2
Z⇠W |X = 0.6%, t

†max
↵,df �1,R2 = 2.26

Note: df = 2994, q
⇤ = 1, ↵ = 0.05

Table 6: Minimal sensitivity reporting of the first-stage regression.

Figure 3b supplements those analysis with the sensitivity contour plot for the t-value of the first-stage
regression. Here the horizontal axis still describes the partial R2 of the confounder with the instrument,
but now the vertical axis describes the partial R2 of the confounder with the treatment. The plot reveals
that, contrary to the reduced form, the first stage survives confounding once or twice as strong as Black or
SMSA.

G Supplementary Tables and Figures
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Dependent variable:

Education Earnings (log)

FS RF OLS IV

(1) (2) (3) (4)

Proximity 0.320⇤⇤⇤ 0.042⇤⇤

(0.088) (0.018)

Education 0.075⇤⇤⇤ 0.132⇤⇤

(0.003) (0.055)

Black �0.936⇤⇤⇤ �0.270⇤⇤⇤ �0.199⇤⇤⇤ �0.147⇤⇤⇤

(0.094) (0.019) (0.018) (0.054)

SMSA 0.402⇤⇤⇤ 0.165⇤⇤⇤ 0.136⇤⇤⇤ 0.112⇤⇤⇤

(0.105) (0.022) (0.020) (0.032)

Other covariates yes yes yes yes

Observations 3,010 3,010 3,010 3,010
R2 0.477 0.195 0.300 0.238

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Table 7: Results of Card (1993). Columns show estimates and standard errors (in parenthesis) of the First Stage
(FS), Reduced Form (RF), Ordinary Least Squares (OLS) and Indirect Least Squares/Two-Stage Least Squares (IV).
Black is an indicator of race; SMSA an indicator for whether the individual lived in a metropolitan area. Following
Card (1993), other covariates include age, regional indicators, experience and experience squared.
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Figure 4: Causal diagrams illustrating traditional IV assumptions. Directed arrows, such as X ! Y , denote a possible
direct causal e↵ect of X on Y . Bidirected arrows, such as D $ Y , stand for latent common causes between D and Y .
In Figure 4a, X is su�cient for rendering Z a valid instrumental variable. In Figures 4b and 4c, however, W is also
needed to render Z a valid IV, either because it confounds the instrument-outcome relationship (Fig. 4b) or because
it is a side-e↵ect of the instrument a↵ecting the outcome other than through its e↵ect of on the treatment (Fig. 4c).
In practice, all these violations will be happening simultaneously.
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