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Abstract

This study investigates the estimation risk of conditional Asymmetric Least
Squares (ALS) risk measures in the context of heteroskedastic financial time series.
Our idea is to reconcile a risk measure that takes into account the time-varying
effects of market risk, satisfying the essential mathematical and statistical properties.
The conditional expectiles (Newey & Powell 1987) and extremiles (Daouia et al. 2019)
are both law-invariant and coherent risk measures conditional to the GARCH-type
volatility model framework. To account for the estimation risk, we assess the large
sample properties of both conditional estimators. Monte Carlo simulations highlight
the effectiveness of the bootstrap approach for estimating conditional extremiles
and expectiles, and the robustness of confidence intervals created through the
resampling method. Empirical analysis reveals that the one-step-ahead forecast of
the conditional extremile outperforms conditional VaR and expectile in terms of
exceptions across all selected assets. The confidence bands of the conditional risk
measures allow us to adopt an aggressive or conservative risk management strategy,
although it may be sensitive to the level of volatility of a given asset.

Keywords: Asymmetric Least Squares, Extremiles, Expectiles, Risk Management, GARCH.

1



1 Introduction

Risk plays a pivotal role in economics essentially because risk-averse agents smooth their

consumption across different states of nature. Literature has shown that agents tend to

respond more intensively in face of downside movements than positive outcomes (Kahneman

& Tversky 2013). For instance, investors more sensitive to downside losses requires a

premium for holding stocks that strongly covary to downside market movements Ang et al.

(2006)]. As the nature of the risks changes over time, a reliable framework to assess downside

risk is imperative to financial and regulatory decisions, for example, capital allocation and

risk management.

A risk measure can be defined as the amount of capital required to make a position with loss

acceptable. Value-at-Risk1 (VaR) and Expected Shortfall (ES) are both leading measures

to assess portfolio risk. Despite the VaR popularity, the lack of subadditivity property

precludes the diversification of risk (Artzner et al. 1999). Expected Shortfall, on the other

hand, enjoys several desirable mathematical properties that made the Basel Committee on

Banking Supervision2 (BCBS) recommend changing the quantitative risk metrics system

from VaR to ES in internal market risk models late in 2013. However, Expected Shortfall

does not satisfy the elicitability property, meaning that is not possible to compare its

performance with different forecast methods (Gneiting 2011).

Furthermore, both VaR and ES are criticized for being tail shape-dependent (Kuan et al.

2009, Daouia et al. (2019)), suggesting that both measures may not be suitable to evaluate

downside risk scenarios. In particular, quantile-based ES is considered too conservative,
1https://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2-3449d5c7e95a
2Fundamental review of the trading book: A revised market risk framework. Basel Committee on

Banking Supervision, October 2013
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since it is conditional only on the tail event. Conversely, quantile-based VaR is considered

too liberal, since investors could no be fully aware of the potential size of the loss of an

investment due to stock market crashes. Either way, both measures tend to underestimate

or overestimate the exposure of a position to market risks, which may generates inefficiency

in the allocation of financial resources.

Rather than relying on conventional probability level interpretation of quantiles subject

to excessive optimism or pessimism, we propose to manage the market risk exposure of a

portfolio under two Asymmetric Least Squares (ALS) estimators called expectiles (Newey

& Powell 1987) and extremiles (Daouia et al. 2019). By definition, both expectiles and

extremiles of order 𝜏 ∈ (0, 1) can be formulated by a minimization problem analog to

quantiles, although considering a quadratic loss function.

As a risk measure, Bellini & Di Bernardino (2017) and Daouia et al. (2019) observe that

both 𝑒𝜏 and 𝜉𝜏 are law-invariant, but also satisfy other appealing mathematical properties

such as positive homogeneity, translation invariance, monotonicity, and subadditivity, being

coherent risk measures (Artzner et al. 1999).

Therefore, both risk measures have many advantages for quantifying risk, especially because

their populational estimator depend on the distance to observations and their probability,

which is particularly important for actuarial and portfolio allocation problems (Daouia

et al. 2018, Daouia et al. (2019)).

The empirical finance literature has documented compelling evidence that heavy-tailed

distributions are associated with autocorrelation between squared returns, suggesting that

the volatility of market risk factors changes conditionally on their past values (Bollerslev

et al. 1994). Since unconditional approaches potentially neglect the evolution of risk over
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time, our main contribution is to estimate the time-varying effect of both expectiles and

extremiles conditional to heteroskedastic models.

The estimation of risk measures under conditional volatility models is not new to the litera-

ture (McNeil & Frey 2000, Christoffersen et al. (2004), Kuester et al. (2006)). Gao & Song

(2008) were the first to establish consistency and asymptotic normality for Value-at-Risk

(VaR) and Expected Shortfall (ES) conditional to standard GARCH process (Bollerslev

1986). Furthermore, they assess the inaccuracy associated with the estimation process by

constructing closed-form confidence intervals to quantify the estimation risk.

Recently, Francq & Zakoïan (2015) introduce the risk parameter estimation for general

GARCH-type models such as Nelson (1991), Ding et al. (1993), and Glosten et al. (1993),

to name a few. They estimate the conditional volatility model using a generalized Quasi-

Maximum Likelihood (QML) based on instrumental densities and derive the asymptotic

theory for the conditional VaR3. Their approach allows one to derive a confidence interval

for all parametric forms of the volatility stable by scaling.

Therefore, we propose to estimate the conditional expectiles and extremiles under the

Francq & Zakoïan (2015) framework. To the best of our knowledge, there is no study

that quantifies the magnitude of the estimation risk for the conditional Asymmetric Least

Squares.

A key challenge in constructing proper confidence intervals for both risk measures emerges

from the fact that we do not observe the conditional variance and hence we have to account

for its estimation. In the case of extremiles, there is no asymptotic theory for the conditional

estimator based on volatility models. The absence of a closed-form expression for the
3Throughout the paper, we will refer as conditional VaR, ES, expectile, and extremiles, the risks com-

puted conditional on the past returns.
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conditional extremiles asymptotic variance and the lack of studies that investigates the

estimation risk of conditional ALS motivate us to assess the large sample properties of

both estimators by Monte Carlo simulations.

The Monte Carlo study considers a heteroskedastic data scenario that mimics the most

important stylized facts of financial time series. Hence, we simulate eight data-generating

process that combines the assumption of thin- and heavy-tailed innovations with two dis-

tinct parametrizations of the standard GARCH(1,1) process, considering two sample sizes.

To evaluate the precision of the conditional ALS, we estimate the processes through the

QML and the bootstrap approach of Pascual et al. (2006).

In all scenarios, we observe that both bootstrap and QMLE empirical distribution of the

conditional ALS risk measures are unbiased, regardless of the data-generating process. On

the other hand, only the bootstrap technique corrects the excess of kurtosis produced by the

QMLE in the first step of the estimation. Therefore, the bootstrap distribution coincides

with the simulated distribution, being adequate to provide proper confidence intervals.

In addition, we conduct an empirical analysis to give an assessment about the performance

of conditional extremiles and expectiles in implementations. First, we consider an ex-

panding window approach to forecast the ALS risk measures conditional to the standard

GARCH(1,1) model using the Gaussian QML. Second, we construct bootstrap confidence

bands for each measure using the resampling method of Pascual et al. (2006) and Christof-

fersen et al. (2004). Third, we backtest the forecasts comparing them with the returns

realizations in terms of exceptions.

The backtest results show that the lower (upper) bound of the confidence interval is more

liberal (conservative) in terms of violations than its one-step-ahead point estimates for all
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conditional risk measures. In addition, the conditional extremile outperforms the Value-

at-Risk and the expectile, assigning fewer events of exceptions than its competing risk

measures for all selected assets. Therefore, the first assessment of the conditional Asym-

metric Least Squares indicates that the conditional extremile is a promising candidate to

estimate the downside risks in implementations, especially for risk management purposes.

The parper is organized as follows. In Section 2 we discuss the methodology. Section 3

we discuss the Monte Carlo study and the empirical analysis. Section 4 presents the final

considerations.

2 Methodology

In this section, I briefly discuss the mathematical properties of leading risk measures. In

addition, we follow Newey & Powell (1987) and Daouia et al. (2019) to introduce the

expectiles and extremiles risk measures, respectively.

2.1 Risk Measures

Artzner et al. (1999) defines a coherent risk measure as a real-valued random variable

𝑋 ∈ 𝒳 on a measurable space (Ω, ℱ), a mapping 𝜚 ∶ 𝒳 → ℝ that satisfies the following

four axioms:

i. Translation invariance: 𝜚(𝑋 + 𝛼) = 𝜚(𝑋) − 𝛼, for all 𝛼 ∈ ℝ and 𝑋 ∈ 𝒳;

ii. Positive homogeneity: 𝜚(𝛼𝑋) = 𝛼𝜚(𝑋), for all 𝛼 ≥ 0 and 𝑋 ∈ 𝒳;

iii. Subadditivity: 𝜚(𝑋 + 𝑌 ) ≤ 𝜚(𝑋) + 𝜚(𝑌 ), for all 𝑋, 𝑌 , 𝑋 + 𝑌 ∈ 𝒳;

iv. Monotonicity: 𝜚(𝑋) ≤ 𝜚(𝑌 ), for all 𝑋, 𝑌 ∈ 𝒳, with 𝑋 ≤ 𝑌 .
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Acerbi (2002) extend the coherence concept to spectral measures of risk by adding two

additional mathematical properties:

v. Law invariance: 𝜚(𝑋) = 𝜚(𝑌 ), if 𝑋 and 𝑌 have the same distribution;

vi. Comonotonic additivity: 𝜚(𝑋 + 𝑌 ) = 𝜚(𝑋) + 𝜚(𝑌 ), if 𝑋 and 𝑌 are comonotonic

random variables.

Our first measure of interest is the Value-at-Risk (VaR). VaR can be defined as the minimal

loss under extraordinary market circumstances:

VaR𝜏(𝑋) ≡ 𝐹 −1
𝑋 (𝜏) = inf {𝑥 ∈ ℝ ∶ 𝐹𝑋(𝑥) ≥ 𝜏} (1)

where 𝜏 ∈ (0, 1) denotes the probability level, 𝑋 is the loss, and 𝐹𝑋 is the Cumulative

Distribution. Conversely, a VaR with the confidence level of (1 − 𝜏) is defined as the

possible maximum loss for a given holding period.

VaR is extensively used in the industry, being a subject of interest among academics special-

ized in actuarial science literature over the last decades, establishing itself as a benchmark

in the financial universe. On the other hand, the VaR is not considered a coherent risk

measure, since it does not satisfy the subadditivity property (Artzner et al. 1999) and often

fails to take into account the size of losses beyond the level 𝜏 (Danielsson et al. 2001).

2.2 Conditional Asymmetric Least Squares

It is well-documented in the empirical finance literature that asset returns typically exhibit

a mean value approaching zero, a certain degree of skewness, and display a significant

excess of kurtosis.

The second moment of the asset returns’ distribution, namely return volatility, exhibits

positive autocorrelation coefficients, implying that squared returns are dependent across
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time. As a matter of fact, the magnitude of changes in prices tends to cluster in such

a way that shocks on 𝑡 would influence the volatility for many periods ahead, generating

persistency across time.

Other features of the volatility, such as long-memory process (Ding et al. 1993, Baillie

et al. (1996)) and leverage effect (Black 1976, Christie (1982)) are also documented in the

literature. See Bollerslev et al. (1994) for a good review about stylized facts of series of

financial time series.

As defined by Francq & Zakoïan (2015), most conditional volatility models takes the form:

⎧{
⎨{⎩

𝜖𝑡 = 𝜎𝑡𝜂𝑡

𝜎𝑡 = 𝜎 (𝜖𝑡−1, 𝜖𝑡−2, … ; 𝜃0)
(2)

where (𝜂𝑡) is a sequence of i.i.d random variables, 𝜂𝑡 being independent of {𝜖𝑢, 𝑢 < 𝑡} , 𝜃0 ∈

ℝ𝑚 is a parameter belonging to a parameter space Θ, and 𝜎 ∶ ℝ∞ × Θ → (0, ∞).

Equation (2) show that the return volatility changes conditionally on their past values.

Thus, a reliable specification should take into account the time-varying effects of market

risk associated with a given portfolio. Therefore, risk measures must provide an assessment

of the future portfolio’s worst loss conditional to the most recent information.

Let 𝑟 denote a risk measure and assume that 𝑟 satisfy the positively homogeneous (ii) and

law-invariant (v) mathematical properties. Then, the risk of 𝜖𝑡 conditional on {𝜖𝑢, 𝑢 < 𝑡}

is given by:

𝑟𝑡−1(𝜖𝑡) = 𝜎(𝜖𝑡−1, … ; 𝜃0)𝑟(𝜂𝑡) (3)

In particular, Newey & Powell (1987) propose a new class of estimator that generalizes the

first central moment to all quantile levels called expectiles. The expectile population (𝑒𝜏)
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can be defined as the minimizer of an asymmetric quadratic loss function in 𝜏 ∈ (0, 1), that

is

𝑒𝜏 = arg min
𝑧∈ℝ

𝔼 {| 𝜏 − 1{𝑌 ≤𝜃}|(𝑌 − 𝑧)2} (4)

Then, for any 𝜏 ∈ (0, 1), the 𝜏 -expectile is given by the unique solution 𝑧 of

𝜏E [(𝑌 − 𝑧)+] = (1 − 𝜏)E [(𝑌 − 𝑧)−] (5)

where 𝑥+ = max {𝑥, 0} and 𝑥− = min {𝑥, 0}.

Expectiles are the only coherent law-invariant risk measure with elicitability property

(Ziegel 2016). In that sense, the expectile becomes a convenient and backtestable mea-

sure to assess risk (Bellini & Di Bernardino 2017).

In the GARCH framework, the conditional expectiles can be defined as

𝑒𝑡(𝜏) = −𝜎(𝜖𝑡−1, … ; 𝜃0)𝑒𝜂(𝜏) (6)

Daouia et al. (2019) introduce a new asymmetric least squares estimator called extremiles

(𝜉𝜏). The minimization problem of the population extremiles are defined in similar fashion

as quantiles, replacing the absolute deviations as well as the check function to a quadratic

loss function and a special weight-generating function for the 𝜏 -th quantile of 𝑌 :

𝜉𝜏 = arg min
𝜃∈ℝ

𝔼 {𝐽𝜏(𝐹(𝑌 )) ⋅ [|𝑌 − 𝜃|2 − |𝑌 |2]} (7)

where 𝐹 is a continuous cumulative distribution function and 𝐽𝜏(⋅) = 𝐾′
𝜏(⋅), with

𝐾𝜏(𝑡) =
⎧{
⎨{⎩

1 − (1 − 𝑡)𝑠(𝜏) if 0 < 𝜏 ⩽ 1/2

𝑡𝑟(𝜏) if 1/2 ⩽ 𝜏 < 1
(8)

being a distribution function with support [0, 1], and 𝑟(𝜏) = 𝑠(1 − 𝜏) = log(1/2)/ log(𝜏).
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Then, for any 𝜏 ∈ (0, 1), the 𝜏 -extremile 𝜉𝜏 has the following closed-form expression:

𝜉𝜏 = 𝔼[𝑌 𝐽𝜏(𝐹(𝑌 ))]
𝔼 [𝐽𝜏(𝐹(𝑌 )] = ∫

1

0
𝑞𝑡𝑑𝐾𝜏(𝑡) (9)

where 𝑞𝑡 is the quantile function.

Equation (9) also share standard mathematical properties with expectiles, such law invari-

ance and the coherent risk measure properties of Artzner et al. (1999).

In the GARCH framework, the conditional expectiles can be defined as

𝜉𝑡(𝜏) = −𝜎(𝜖𝑡−1, … ; 𝜃0)𝜉𝜂(𝜏) (10)

In general, the quantities in equations (6) and (10) are latent since the parameters in the

conditional volatility, the GARCH parameters, and the innovations are unknown. The so-

called Filtered Historical Simulation (FHS) rely on the Quasi-Maximum Likelihood (QML)

method to consistently estimate the vector of parameters 𝜃 and the standardized residuals

𝜂𝑡. In the following, we formally define the QML estimators in the same fashion as Francq

& Zakoïan (2015).

Given observations 𝜖1, … , 𝜖𝑛, and arbitrary initial values ̃𝜖𝑖 for 𝑖 ≤ 0, we define

�̃�𝑡(𝜃) = 𝜎 (𝜖𝑡−1, … , 𝜖1, ̃𝜖0, ̃𝜖−1, … ; 𝜃)

which is used to approximate 𝜎𝑡(𝜃) = 𝜎 (𝜖𝑡−1, … , 𝜖1, 𝜖0, 𝜖−1, … ; 𝜃). Given an instrumental

density ℎ > 0, consider the QML criterion

𝑄𝑛(𝜃) = 1
𝑛

𝑛
∑
𝑡=1

𝑔 (𝜖𝑡, �̃�𝑡(𝜃)) , 𝑔(𝑥, 𝜎) = log { 1
𝜎ℎ (𝑥

𝜎)} (11)

and let the QMLE

̂𝜃
∗
𝑛 = arg max

𝜃∈Θ
𝑄𝑛(𝜃) (12)
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In particular, the estimator in equation (11) is the standard Gaussian QMLE whenever

ℎ is the standard Gaussian density 𝜙. Let ̂𝜃
∗
𝑛 denote the Gaussian QMLE. Then, the

parameters of the (2) can be obtained by maximizing the (12).

Given the QML estimates ̂𝜃
∗
𝑛, one can estimate the conditional volatility �̂�( ̂𝜃

∗
𝑛) and calculate

the standardized residuals

̂𝜂𝑡 = 𝜖𝑡

�̂�( ̂𝜃
∗
𝑛)

(13)

Then, the ALS risk measures can be estimated using the empirical standardized residuals

distribution ̂𝐹𝜂. Since equation (9) belongs to the class of distortion risk measures (Wang

2000), the 𝜏 -extremile of order 𝜏 ∈ (0, 1) can be estimated by

̂𝜉�̂�(𝜏) = ∫
1

0
̂𝑞𝜏𝑑𝐾𝜏(𝑡) =

𝑛
∑
𝑖=1

{𝐾𝜏 ( 𝑖
𝑛) − 𝐾𝜏 (𝑖 − 1

𝑛 )} 𝑌𝑖,𝑛

where 𝑌1,𝑛 ≤ 𝑌2,𝑛 ≤ ⋯ ≤ 𝑌𝑛,𝑛 denotes the ordered sample.

On the other hand, the sample expectiles does not have a closed-form expression. Hence,

̂𝑒�̂�(𝜏) is fitted to univariate samples with least asymmetrically weighted squares for asym-

metries between 0 and 1 (Sobotka & Kneib 2012).

Naturally, estimation risk arises when computing the measures because we estimate ex-

pectiles and extremiles from the observed data. Hence, it is imperative to account the

estimation risk, controlling the uncertainty by constructing proper confidence bands.

Berkes & Horváth (2003) demonstrate that GARCH estimation affects the asymptotic be-

havior of the empirical distribution function and the empirical process of squared residuals.

In the case of VaR, Gao & Song (2008) and Francq & Zakoïan (2015) establish that the

asymptotic variance of the empirical 𝑡-th quantile of the standardized residuals depends

of the asymptotic variance of the empirical quantile of the innovations plus a term that

depends on the estimation of the GARCH parameters.
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Although there is an asymptotic theory developed for conditional expectiles (Girard et al.

2021), the asymptotic behavior of the conditional extremile distribution remains unknown.

Hence, we propose to assess the large sample properties of both ALS risk measures by

Monte Carlo simulations, relying on the resampling method of Pascual et al. (2006) for

heteroskedasticity data, extended to conditional risk measures (Christoffersen et al. 2004).

The bootstrap algorithm for GARCH-based risk measures is given as follows:

1. Estimate the GARCH(1,1) model by QML and compute the standardized residuals

̂𝜂∗
𝑡 = 𝜖∗

𝑡/𝜎∗
𝑡 , 𝑡 = 1, … , 𝑇 where 𝐹�̂�𝑡

is the empirical distribution function of the

standard residuals.

2. Generate the bootstrap samples 𝜖∗
𝑡 = 𝜂∗

𝑡 �̂�∗
𝑡 , with �̂�2

𝑡 = �̂�+ ̂𝛼𝐿2
𝑡−1 + ̂𝛽�̂�2

𝑡−1 where 𝜂∗
𝑡 are

random draws with replacement from 𝐹�̂�𝑡
with the initial condition �̂�2

1 = �̂�/(1− ̂𝛼− ̂𝛽).

3. Compute QMLE for each bootstrap sample: ̂𝜃∗ = (�̂�∗, ̂𝛼∗, ̂𝛽∗).

4. Compute the bootstrap estimates of the standard residuals: ̂𝜂∗
𝑡 = 𝜖∗

𝑡/𝜎∗
𝑡 .

5. Compute the conditional volatility prediction one-step-ahead

�̂�∗2
𝑇 +1|𝑇 = �̂�∗ + ̂𝛼∗𝜖∗2

𝑇 + ̂𝛽∗�̂�∗2
𝑇

given 𝜖∗
𝑇 = 𝜖𝑇 and

�̂�∗2
𝑇 = �̂�∗

1 − ̂𝛼∗ − ̂𝛽∗
+ ̂𝛼∗

𝑇 −2
∑
𝑗=0

̂𝛽∗𝑗 (𝜖2
𝑇 −𝑗−1 − �̂�∗

1 − ̂𝛼∗ − ̂𝛽∗
)

6. Compute the bootstrap estimates of the risk measures ̂𝑟∗
𝜂∗(𝜏) using the standard

residuals ̂𝜂∗
𝑡 .

7. Compute the bootstrap estimates of the conditional risk measures ̂𝑟∗
𝑇 +1(𝜏).
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8. Repeat the steps 1-7 a large number of times (𝐵 = 999) and obtain a sequence of

bootstrap conditional risk measures.

9. Obtain the 100(1−𝛼)% bootstrap confidence interval for the conditional risk measures

[𝑄𝛼/2(𝑟∗
𝑇 +1(𝜏)), 𝑄𝛼/2(𝑟∗

𝑇 +1(𝜏))]

As Christoffersen et al. (2004) remark, the bootstrap procedure accounts for the estimation

risk in computing �̂�2
𝑇 +1|𝑇 when we replace the estimates ̂𝜃 = (�̂�, ̂𝛼, ̂𝛽)′ by their bootstrap

estimates ̂𝜃∗ = (�̂�∗, ̂𝛼∗, ̂𝛽∗)′ and compute �̂�∗2
𝑇 +1|𝑇 instead.

3 Results

3.1 Monte Carlo Simulation

We perform a Monte Carlo study to assess the large sample properties of the asymmetric

least squares estimators, considering that the data-generating process (DGP) mimics a data-

dependent scenario commonly observed in financial data. For that purpose, we simulate

daily returns from a GARCH(1,1) assuming heavy-tailed (t-Student with 𝑡8) and thin-tailed

(t-Student with 𝑡500) innovation distributions.

Also, we consider that both DGP’s sets an unconditional volatility of 20% per year i.e,

𝜔 = 202/252 × (1 − 𝛼 − 𝛽) under two distinct scenarios, namely Benchmark and High-

persistence, whose GARCH parametrization is given as follows:

1. Benchmark: 𝛼 = 0.10 and 𝛽 = 0.80;

2. High-persistence: 𝛼 = 0.10 and 𝛽 = 0.89.
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For each one of the four DGP considered below

⎧{{{{{{
⎨{{{{{{⎩

𝜖𝑡 = 𝜎𝑡𝜂𝑡, 𝜎2
𝑡 = 0.16 + 0.10𝜖2

𝑡−1 + 0.80𝜎2
𝑡−1, 𝜂𝑡 ∼ 𝑡8

𝜖𝑡 = 𝜎𝑡𝜂𝑡, 𝜎2
𝑡 = 0.02 + 0.10𝜖2

𝑡−1 + 0.89𝜎2
𝑡−1, 𝜂𝑡 ∼ 𝑡8

𝜖𝑡 = 𝜎𝑡𝜂𝑡, 𝜎2
𝑡 = 0.16 + 0.10𝜖2

𝑡−1 + 0.80𝜎2
𝑡−1, 𝜂𝑡 ∼ 𝑡500

𝜖𝑡 = 𝜎𝑡𝜂𝑡, 𝜎2
𝑡 = 0.02 + 0.10𝜖2

𝑡−1 + 0.89𝜎2
𝑡−1, 𝜂𝑡 ∼ 𝑡500

(14)

we draw 𝑆 = 10, 000 sample paths of size 𝑇 = {1, 500; 2, 000}, burning the first 1, 000

realizations.

In order to verify the asymptotic behavior of the ALS risk measures, first we evaluate the

distribution of both QMLE and bootstrap with respect to the standardized residuals. Then,

we investigate the distribution of the conditional risk measures 𝜉𝑡(𝜏) and 𝑒𝑡(𝜏), respectively.

Figure 1 displays the nonparametric density distribution of the 𝜏 -extremile of order 𝜏 = 0.05

with respect to the four DGP scenarios.
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Figure 1: Extremile Distribution of the standardized residuals
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Figure 2 shows the nonparametric density distribution of the 𝜏 -expectile of order 𝜏 = 0.05

with respect to the four DGP scenarios.
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Figure 2: Expectile Distribution of the standardized residuals

In general, we verify in Figure 1 and Figure 2 that a smaller sample size (𝑇 = 500) adds

more dispersion relatively to a larger sample size (𝑇 = 1000) for all four DGP’s. Thus,

both bootstrap and QMLE empirical distribution of the conditional ALS risk measures

tend to approximate the simulated distribution, regardless of the data-generating process.

Therefore, the QMLE and bootstrap estimation of 𝜉𝜏(𝜂) and 𝑒𝜏(𝜂) seem to be unbiased. On

the other hand, only the bootstrap distribution is adequate to provide reliable confidence

intervals.

Figure 3 reports the one-step-ahead forecast distribution of the QMLE conditional extremile

of order 𝜏 = 0.05 considering the four DGP scenarios.
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Figure 3: QMLE Conditional Extremile Distribution

Figure 4 shows the one-step-ahead forecast distribution of the QMLE conditional expectile

of order 𝜏 = 0.05 considering the four DGP scenarios.
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Figure 4: QMLE Conditional Expectile Distribution
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As one may observe in Figure 3 and Figure 4, by multiplying the conditional one-step-

ahead volatility forecast by a constant amount, say 𝜉𝜂(𝜏) and 𝑒𝜂(𝜏), would produce a

highly skewed empirical distribution for both conditional risk measures. In particular, the

higher the persistence of 𝛽 is, the heavier the tail of the conditional ALS risk measures,

whether the innovations are assumed to be Gaussian or t-Student.

3.2 Empirical Results

The empirical analysis is conducted by considering the daily price data of the S&P 500

equity index (SPX), the eurodollar exchange rate (EURUSD), and the most traded cryp-

tocurrencies in terms of market cap such as Bitcoin (BTC), Ethereum (ETH), Binance

Coin (BNB), and Dogecoin (DOGE), respectively. The sample period spans approximately

6 years, from September 2017 through June 2023, resulting in 1,510 trading days included

in the sample.

Figure 3 shows the evolution of the daily prices of selected assets. Despite the rally of

the SPX, the performance of the cryptocurrencies stood out especially after COVID-19,

reaching their peak values during the market’s surge in late 2021. However, many digital

assets experienced significant price corrections in the following year. In particular, Bit-

coin reached its all-time high of $67, 566.83 on November 8, 2021, although experienced a

substantial decline in value, trading at $15, 787.28 on November 21, 2022.
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Figure 5: Daily prices time series of selected assets. The historical data of Binance Coin

(BNB), Bitcoin (BTC), Dogecoin (DOGE), Ethereum (ETH), eurodollar exchange rate

(EURUSD), and S&P 500 equity index (SPX) dates from September 2017 through June

2023.

To evaluate the magnitude of a value drop for each asset, Figure 4 illustrates the boxplot of

the historical drawdowns for the S&P 500 and EURUSD compared to selected cryptocur-

rencies from 2017 to 2023. It is evident from the interquartile range (IQR) standpoint

that Ethereum, Dogecoin, Bitcoin, and Binance Coin have experienced significant declines

in value with respect to their respective peak values, in contrast to the relatively milder

drawdowns of the eurodollar and S&P 500 during this period. These results show the

substantial price fluctuations and volatility observed in the cryptocurrency market while

highlighting the comparatively more stable performance of traditional financial benchmarks

like the S&P 500 index and EURUSD.
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Figure 6: Boxplot of the historical drawdowns from 2017 to 2023. The first quartile (Q1)

of Binance Coin (BNB), Bitcoin (BTC), Dogecoin (DOGE), and Ethereum (ETH) is equal

to or higher than the upper fence (1.5 times the third quartile (Q3)) of the eurodollar

exchange rate (EURUSD), and S&P 500 equity index (SPX).

Table 1 reports the summary statistics of the selected assets. As one should expect, re-

turns are stationary since we rejected (not rejected) the null hypothesis of the Augmented

Dickey-Fuller (Kwiatkowski-Phillips-Schmidt-Shin) unit-root (stationary) test for a level

of significance 𝛼 = 0.05. Besides, the skewness and kurtosis coefficients suggest that the

returns are not normally distributed.

Table 1: Summary statistics of the returns for selected assets

ticker Min Q1 Med Q3 Max Avg SD Skew Kurt ADF KPSS

BNB -0.42 -0.02 0 0.03 0.70 0.00 0.06 1.96 23.45 -28.79 0.28

BTC -0.37 -0.02 0 0.02 0.25 0.00 0.04 -0.02 7.03 -32.11 0.22
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ticker Min Q1 Med Q3 Max Avg SD Skew Kurt ADF KPSS

DOGE -0.40 -0.02 0 0.02 3.56 0.01 0.11 18.74 589.57 -23.45 0.16

ETH -0.42 -0.02 0 0.03 0.26 0.00 0.05 -0.23 5.55 -30.64 0.15

EURUSD-0.03 0.00 0 0.00 0.02 0.00 0.00 -0.13 1.83 -28.08 0.11

SPX -0.12 0.00 0 0.01 0.09 0.00 0.01 -0.52 13.35 -11.83 0.06

To evaluate the accuracy of each conditional ALS risk measure, we carry out one-step-ahead

sample predictions using a GARCH(1,1) model. This is done by employing an expanding

window approach starting with a window size of 𝑊𝑇 = 1, 000, allowing us to refit the

model recursively with the Gaussian QML. For backtesting purposes, we reserve the last

510 days of the sample for testing the precision of the conditional extremiles and expectiles,

contrasting their results with the conditional VaR of Gao & Song (2008).

Figure 7 contrasts the Historical (dotted line) and Filtered Historical Simulation (dashed

line) of the VaR, expectiles, and extremiles estimates from the third quarter of 2022 until the

most recent returns realization of the SPX and BTC. As one may observe, there is transitiv-

ity among the three risk measures for the selected assets, in which ̂𝑒𝑡(𝜏) < V̂aR𝑡(𝜏) < ̂𝜉𝑡(𝜏),

meaning that the conditional VaR show itself as a middle course between the expectiles

and the extremiles.
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Figure 7: Historical and Filtered Historical Simulation of risk measures for selected assets

In addition, we observe that the historical simulation estimation method completely ne-

glects the time-varying effect of the volatility, in contrast to the Filtered Historical Simu-

lation method. Therefore, the conditional risk measures under the FHS framework present

themselves as a reliable alternative to gauge the asset’s market risk.

As previously discussed, an alternative to take into account the the parameter uncertainty

associated to the FHS estimation process would be the resampling technique of Christof-

fersen et al. (2004) to construct proper confidence intervals for the extremiles and expectiles.

For that purpose, we contrast the daily returns with each of the conditional risk measures

with their estimates and confidence bands, but we also provide a backtest procedure based

on the number of violations to given an assessement about the performance of the condi-

tional estimators.

Figure 8 shows the bootstrap confidence interval of the conditional extremile of order
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𝜏 = 0.05, considering a level of significance of 𝛼 = 0.05 for the S&P 500 equity index and

the Bitcoin.
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Figure 8: Bootstrap confidence interval of conditional extremiles for selected assets

Likewise, Figure 9 illustrates the bootstrap confidence interval of the conditional expectile

of order 𝜏 = 0.05, considering a level of significance of 𝛼 = 0.05 for the S&P 500 equity

index and the Bitcoin.
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Figure 9: Bootstrap confidence interval of conditional expectiles for selected assets.

Table 2 reports the backtest of the VaR, extremile and expectile at level 𝜏 = 0.05 for

selected assets, considering a confidence level with level of significance 𝛼 = 0.05. Overall,

we verify that the lower bound (upper bound) of the conditional risk measures tends to be

much more liberal (conservative) than its point estimates for all selected assets, according

to the number of violations. Besides, the confidence bands seem to be sensitive to the level

of volatility of a given asset, especially for the DOGE coin, in which we observe several

exceptions for the lower bound estimates and none for the upper bound, regardless the

conditional risk measure considered.

Table 2: Number of violations of the conditional risk measures one-step-ahead forecasts.

Ticker Risk Measure Lower Bound Estimate Upper Bound

BNB Expectile 28 22 17

BNB Extremile 9 4 2
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Ticker Risk Measure Lower Bound Estimate Upper Bound

BNB VaR 15 11 4

BTC Expectile 24 21 19

BTC Extremile 10 6 4

BTC VaR 17 15 7

DOGE Expectile 57 42 0

DOGE Extremile 27 12 0

DOGE VaR 33 21 0

ETH Expectile 29 21 17

ETH Extremile 13 8 5

ETH VaR 16 13 8

EURUSD Expectile 34 30 27

EURUSD Extremile 14 9 8

EURUSD VaR 21 14 11

SPX Expectile 27 22 17

SPX Extremile 3 0 0

SPX VaR 7 3 0

Moreover, we observe less exceptions in the conditional extremile estimates than the con-

ditional VaR for all assets considered, in contrast to the expectiles, in which the latter has

a poor performance in terms of violations.

Therefore, although both asymmetric least squares risk measures take into account both

frequency and the distance to observations in their formulation, the extremile presents itself

as a proper candidate to estimate the downside risks in implementations.
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4 Final Remark

In this study, we investigate the estimation risk of the conditional Asymmetric Least

Squares (ALS) risk measures in the context of heteroskedastic financial time series.

We assess the large sample properties of both conditional extremiles and expectiles by

Monte Carlo experiment. Our simulations show that the bootstrap standardized residu-

als tend to approximate towards the true simulated distribution, regardless of the data-

generating process. Moreover, we demonstrated the effectiveness of the resampling method

proposed by Christoffersen et al. (2004) in constructing robust confidence intervals for

ALS risk measures, especially in the absence of a closed-form expression for the extremiles

asymptotic variance.

Also, we conduct an analysis of the performance of conditional extremiles and expectiles

in implementations. Empirically, we found that the one-step-ahead predictions of the

conditional extremile outperformed both the conditional VaR and expectile in terms of

exceptions for all selected assets. Additionally, the confidence bands of the conditional risk

measures allow us to adopt an aggressive or conservative risk management strategy, which

may be sensitive to the level of volatility of a given asset.

These conditional Asymmetric Least Squares models could also be extended to other uni-

variate GARCH-type models (Francq & Zakoïan 2015). Most important, although the

derivation of the limiting distribution for GARCH-based conditional ALS risk measures is

not trivial, an alternative to provide closed-form confidence intervals to quantify the esti-

mation risk is to show that the estimator is asymptotically multivariate normal and then

apply the delta method. We left this for future research.
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