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Abstract

This paper analyzes difference-in-differences setups with a continuous treatment. We show
that treatment effect on the treated-type parameters can be identified under a generalized paral-
lel trends assumption that is similar to the binary treatment setup. However, interpreting differ-
ences in these parameters across different values of the treatment can be particularly challenging
due to treatment effect heterogeneity. We discuss alternative, typically stronger, assumptions
that alleviate these challenges. We also provide a variety of treatment effect decomposition re-
sults, highlighting that parameters associated with popular linear two-way fixed-effect (TWFE)
specifications can be hard to interpret, even when there are only two time periods. We introduce
alternative estimation procedures that do not suffer from these TWFE drawbacks.
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1 Introduction

The canonical difference-in-differences (DiD) research design compares outcomes between treated
and untreated groups (difference one), before and after treatment started (difference two). But in
many DiD applications the treatment does not simply turn “on”, it has a “dose” or operates with
varying intensity. Pollution dissipates across space, affecting locations near its source more severely
than locations far away. Localities spend different amounts on public goods and services, or set
different minimum wages. Students choose how long to stay in school.

Continuous treatments1 can offer advantages over binary ones. Variation in intensity makes it
possible to evaluate treatments that all units receive. A clear “dose-response” relationship between
outcomes and treatment intensity can bolster the case for a causal interpretation or test a theo-
retical prediction.2 Finally, we may care more about the effect of changes in treatment intensity
(e.g., increased funding, pollution abatement, or expanded eligibility) than about the effect of the
existence of a program that already exists.

Despite how conceptually useful and practically common continuous DiD designs are, econo-
metric theory provides little guidance about how researchers should apply and interpret them. For
cross-sectional designs, econometric results discuss how to estimate causal effects of small changes in
a continuous treatment (Hirano and Imbens, 2004; Florens, Heckman, Meghir, and Vytlacil, 2008),
and applied researchers often report this “marginal” interpretation when they use a continuous
treatment in a DiD setting (Goodman-Bacon, 2018). But econometric theory research on continu-
ous (and multi-valued) DiD designs is scarce and limited to identification results for individual-level
treatment effects from aggregating binary treatment data as in “fuzzy” DiD designs (de Chaise-
martin and D’Haultfœuille, 2018), or the causal effects of different multi-level treatments compared
to no treatment (see the supplemental appendix of de Chaisemartin and D’Haultfœuille, 2020).3

Moreover, following the advice in several prominent textbooks (e.g., Cameron and Trivedi, 2005,
Angrist and Pischke, 2008, and Wooldridge, 2010), applied researchers almost universally estimate
continuous DiD designs using two-way fixed effects (TWFE) regressions, which we now know that
are not robust to treatment effect heterogeneity in other complex DiD designs such as staggered
timing (Goodman-Bacon, 2021). Therefore, the theoretical gap in our understanding of contin-
uous DiD designs contributes to ambiguity about the best way to implement and interpret such
designs in practice. The main goal of this paper is to tackle this problem and provide a new set
of well-understood and formally justified tools that are suitable for DiD setups with variations in
treatment dosage.

We start our discussion by analyzing DiD designs in which units move from no treatment to a

1With some abuse of terminology, we refer to treatments being “continuous” to all cases where treatment can
take several different levels. Thus, technically speaking, this includes continuous and multi-valued ordered discrete
treatments. Whenever these distinctions are not crucial for the points we are making, we omit them.

2In his 1965 presidential address to the Royal Society of Medicine, Sir Austin Bradford Hill, a pioneer in the
study of smoking and cancer, included among his criteria for inferring causality from observational data, “a biological
gradient, or dose-response curve” and argued that “we should look most carefully for such evidence” (Hill, 1965).

3See also D’Haultfoeuille, Hoderlein, and Sasaki (2021) for Changes-in-Changes-type of procedures based on
rank-invariance as in Athey and Imbens (2006).
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non-zero dose. We first define two types of causal effects. The difference between a unit’s potential
outcome under dose d and its untreated potential outcome is a level treatment effect. The difference
in a unit’s potential outcome with a marginal increase in the dose is a causal response (Angrist and
Imbens, 1995). Level treatment effects and causal responses can have meaningfully different inter-
pretations, and we show that they require different identifying assumptions as well. Comparisons
between treated and untreated units identify average (level) treatment effect parameters under a
parallel trends assumption on untreated potential outcomes, just like in binary DiD designs. Com-
parisons between adjacent dose groups, however, only identify average causal response parameters
under a stronger assumption, which we call “strong parallel trends”, that restricts treatment effect
heterogeneity so that groups would have responded to the lower dose in the same way. Intuitively,
to be a good counterfactual, lower-dose units must reflect how higher-dose units’ outcomes would
have changed without treatment and at the lower level of the treatment.Without the strong par-
allel trends assumption, comparisons across treatment dosages are “contaminated” with selection
bias related to treatment effect heterogeneity.4 These results come from comparisons between two
groups, but also apply to estimators of the entire average level effect or average causal response
curves or summary estimates that average across doses.

We use the identification results to evaluate the most common way that practitioners estimate
a summary parameter in continuous DiD designs, which is to run a TWFE regression that includes
time fixed effects (θt), unit fixed effects (ηi), and the interaction of a dummy for the post-treatment
period (Postt) with a variable that measures unit i’s dose or treatment intensity, Di:

Yit = θt + ηi + βtwfeDi · Postt + vit. (1.1)

Under parallel trends, we decompose βtwfe into three different weighted sums corresponding
to the causal parameter being used as the “building block”: level effects, scaled level effects, and
causal responses. None of the weighted sum representations provide a clear causal and policy-
relevant interpretation of βtwfe.

For instance, expressing βtwfe as a weighted sum of average level treatment effect parame-
ters shows that it is equivalent to a binary DiD with the treatment group defined as units with
above-average doses and a comparison group of units with below-average doses, and with weights
proportional to a unit’s absolute distance from the mean dose. TWFE, therefore, puts “negative
weights” on the treatment effects of lower-dose groups by using them as “controls”. When units
with below-average treatment dosage have non-zero level treatment effects, it is hard to attach
a meaningful causal interpretation to βtwfe in terms of average level treatment effects. This is
particularly true when the share of untreated units (dosage d = 0) is small in the population.5

4Interpreting comparisons of average treatment effect on the treated at different values of treatment dosage d
is related to existing points made on comparing “local” treatment effect parameters to each other, e.g., Oreopoulos
(2006), Angrist and Fernandez-Val (2013), and Mogstad, Santos, and Torgovitsky (2018) in the context of local
average treatment effects, or Cattaneo, Titiunik, Vazquez-Bare, and Keele (2016) and Cattaneo, Keele, Titiunik, and
Vazquez-Bare (2021) in the context of regression discontinuity designs with multiple cutoffs.

5We also present a similar decomposition based on average level treatment effect parameters scaled by their dose.
It also puts negative weight on effects for below-average dose units, but weights these comparisons slightly differently.
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On the other hand, the decomposition in terms of average casual responses parameters has no
negative weights, but does include an additional “selection bias” term stemming from heterogeneous
treatment effect functions across dose groups.6 When one imposes the strong parallel trends as-
sumption this “selection bias” term disappears. The weights on causal responses at different doses,
however, differ from the distribution of the dose, which creates a further challenge to interpreting
βtwfe in the presence of heterogeneity, even if strong parallel trends holds.

When TWFE fails to deliver interpretable causal parameters, what is the alternative? We
propose nonparametric estimators of the average level treatment effect and average causal response
curves based on Chen, Christensen, and Kankanala (2022). These tools are motivated by clearly
defined parallel trends assumptions, do not rely on strong functional form assumptions, are easy
to implement, are fully data-driven. By leveraging the procedures in Chen, Christensen, and
Kankanala (2022), we show that our estimators converge at the fastest possible (i.e., minimax)
rate in sup-norm, and our uniform confidence bands are asymptotically narrower (more precise)
than those based on undersmoothing, and yet have correct asymptotic coverage and contract at,
or within a log log n factor of, the minimax rate. We also show how to construct easy-to-interpret
summary measures that use the treatment dosage density to average parameters across doses. For
average level treatment effects, estimating this summary parameter is as simple as running a binary
DiD with a “treatment dummy” equal to one for any units with positive doses.

To show how TWFE performs in practice and to illustrate the benefits of our proposed estima-
tors, we replicate Acemoglu and Finkelstein (2008) study of a 1983 Medicare reform that eliminated
labor subsidies for hospitals. The original paper uses a TWFE estimator to compare the change
in capital/labor ratios between hospitals whose input prices were more or less affected by the end
of the subsidy. It concludes that price regulations that favor capital significantly increase capital
use. The distinction between level treatment effect parameters and causal responses is important
in this example: a positive level treatment effect shows that the policy as a whole increased the use
of capital; a positive causal response, under some assumptions, reflects the sign and magnitude of
the elasticity of substitution. Decomposing the TWFE estimate in terms of level effects shows that
38 percent of hospitals have negative weights and that they have non-negligible effects. [BLAH]

2 A Running Example: Acemoglu and Finkelstein (2008)

To fix ideas and provide intuition for our theoretical results, we revisit Acemoglu and Finkelstein
(2008)’s (AF) study of how price regulations affect firms’ input choices. When Medicare began
in 1965, hospitals received reimbursements from the federal government for a share of their labor
and capital expenditures that was proportional to the share of total patient days accounted for by
Medicare recipients (mi). Hospital i thus faced input prices equal to (1 − sLmi)w for labor and
(1 − sKmi)r for capital, where sL and sK are the labor and capital subsidy rates and w and r

6In an appendix, we extend these baseline results to a setup with more than two time periods and where treatment
varies in intensity as well as timing, generalizing the results in de Chaisemartin and D’Haultfœuille (2020) and
Goodman-Bacon (2021) to the case with a continuous treatment.
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are market wages and rental rates. In 1983, Medicare moved to the Prospective Payment System
(PPS), which replaced the labor subsidy with a small payment per episode/diagnosis. This set
sL = 0 but left he capital subsidy unchanged. Therefore, the price of labor for a given hospital rose
from (1− sLmi)w to w, skewing relative factor prices.

The statutory relationship between a hospital’s Medicare volume, mi, and the change in its price
of labor, sLmiw, motivates AF’s use of a continuous DiD design comparing changes in capital/labor
ratios before and after 1983 between hospitals with different pre-PPS Medicare inpatient shares.7

AF’s description, estimation, and interpretation of this empirical strategy touch on some of the
most common ways that researchers justify and implement continuous DiD designs.

One motivation for this design is practical: variation in a dose permits the evaluation of treat-
ments for which binary DiD is either infeasible or undesirable. In AF’s case, about 15 percent of
hospitals specifically served non-Medicare-eligible populations such as children so they were “un-
treated” by the change in subsidy policy. But this meant that they differed from treated hospitals
in terms of patient mix and may not necessarily constitute a valid comparison group. AF there-
fore describe mi as an “attractive source of variation” in the price of labor both because it varies
substantially–the mean of mi among treated hospitals is 0.45 and the standard deviation is 0.15–
and because hospitals with mi > 0 may be more comparable to each other than treated hospitals
are to untreated hospitals.8

Another common justification for continuous DiD designs is that a “dose-response” relationship
between exposure and outcomes supports a causal interpretation or tests theoretical predictions.
Meyer (1995, pg. 158), for example, argues that “differences in the intensity of the treatment across
different groups allow one to examine if the changes in outcomes differ across treatment levels in
the expected direction”.9 AF lay out a simple theoretical framework showing that if hospitals have
identical homothetic production functions, then the move to PPS should (i) raise capital/labor
ratios and (ii) do so more strongly for hospitals with higher pre-PPS values of mi. They view
their continuous DiD design as a way to estimate a causal effect of PPS as a whole and test the
theoretical predictions of their model.

Finally, researchers often advocate for continuous DiD designs because they can be used to
7AF use data reported by hospitals each year to the American Hospital Association from 1980 to 1986 (CITE).

They proxy for the capital/labor ratio using the depreciation share of total operating expenses, which averages about
4.5 percent in their period.

8A good example of an analysis with no untreated units is Card (1992), who exploits geographic differences in
the “bite” of a 1991 federal minimum wage increase. In a statutory sense, the federal change affected all workers,
so there is no untreated group to use in a binary DiD, and while it should have affected lower-wage workers more
directly than higher-wage workers, comparing these groups would require longitudinal data. Instead, Card regresses
the change in each state’s teen employment rate on the share of teens in that state who earned less than the new
minimum wage in the pre-period and are thus “eligible” for a statutory wage increase. Converting the analysis to the
state-level DiD creates a continuous treatment variable that can identify effects of a federal policy.

9Hill (1965) makes this point in the context of smoking and cancer:
“The fact that the death rate from cancer of the lung rises linearly with the number of cigarettes smoked
daily, adds a very great deal to the simpler evidence that cigarette smokers have a higher death rate
than non-smokers.”

He also notes that more deaths among light rather than heavy smokers would weaken the causal claim unless one
could “envisage some much more complex relationship to satisfy the cause-and-effect hypothesis.”
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Notes: The figure plots TWFE event-study coefficients from regressions with hospital fixed effects, year fixed
effects, and the 1983 Medicare inpatient share (mi) interacted with either a dummy for years after 1983 or the year
dummies. The outcome variable is the depreciation share of total operating expenses, a measure of hospitals’
capital/labor ratio. The data cover the years 1980-1986 and come from the American Hospital Association’s annual
survey (CITE).

Figure 1: Two-Way Fixed Effects Event-Study Estimates of the Effect of Medicare’s Reimbursement
Reform on Hospital Input Mix

estimate causal effects of small changes in the dose. In many economic models price and income
elasticities determine optimal policies like tax rates, tax bases, subsidies, and regulations (Hendren,
2016), but these are continuous concepts that can only be estimated accurately with continuous
variation. We discuss how AF’s theoretical framework implies, under some assumptions, that DiD
estimates can be used to learn about hospitals’ elasticity of substitution between capital and labor,
although AF do not argue for this kind of “marginal” interpretation.

In terms of estimation, AF follow the standard practice for continuous DiD designs: a TWFE
regression with hospital and year fixed effects. They follow textbook advice. Wooldridge (2010,
pg. 132) observes that a two-period DiD regression estimator “can be easily modified to allow for
continuous, or at least nonbinary, ‘treatments’ ”. Angrist and Pischke (2008, pg. 234) emphasize “a
second advantage of regression DD is that it facilitates the study of policies other than those that
can be described by a dummy...the minimum wage is therefore a variable with differing treatment
intensity across states and over time”.

Figure 1 reproduces AF’s DiD event-study coefficients for each calendar year relative to 1983 and
the estimate of βtwfe from equation (1). The findings clearly show that after 1983 capital/labor
ratios rose more strongly for hospitals with higher values of mi, but there was no differential
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change in input mix before PPS. They also follow common practice and describe their identifying
assumption as an extension of the parallel trends assumption from binary designs: “without the
introduction of PPS, hospitals with different mi’s would not have experienced differential changes
in their outcomes in the post-PPS period” [emphasis added].

Our impression is that event-study results like those in Figure 1 would usually be interpreted
as very strong causal evidence because there are small pre-trend estimates, large differences in
outcomes between higher- and lower-dose units after treatment, and tight confidence intervals.
What is missing from most continuous (or nonbinary) DiD analyses, however, is a specific statement
about what causal parameters researchers would like to estimate, the assumptions under which they
are identified, and a formal justification for a particular estimator. Our goal is to shed light on
these three central issues.

3 Baseline Case: A New Treatment with Two Periods

We illustrate our main points in a setup where a researcher has access to two periods of panel data
denoted by t and t−1. In the first period, no unit is treated. In the second period, some units receive
a treatment “dose” denoted by Di, and some others remain untreated. We denote the support of
D by D. We define potential outcomes for unit i in period s ∈ {t − 1, t} by Yis(d). This is the
outcome that unit i would experience in period s under dose d. Di can be (absolutely) continuous
or can be multi-valued ordered, but to simplify the exposition we refer to it as “continuous”. We
assume that all expectations are finite and well-defined.10

3.1 Parameters of Interest with a Continuous Treatment

The potential outcomes notation Yt(d) reflects that treatment can take many values, which also
means that each unit can experience many types of causal effects. The level treatment effect of dose
d in time period t for a given unit equals its potential outcome when D = d minus its untreated
potential outcome: Yt(d)−Yt(0). This is a straightforward extension of a binary “treatment effect”
to a continuous “treatment effect function” or “dose-response function.”11

But no treatment is not the only relevant counterfactual possible. We define a unit’s causal
response at d as Y ′

t (d), the derivative of the potential outcome12 (when d is continuous) or as the
difference in potential outcomes between adjacent doses, Yt(dj) − Yt(dj−1) (when d is discrete).
These two types of treatment effects—the level of Yt(d)−Yt(0) or its slope, Y ′

t (d)—define unit-level
causal parameters in continuous designs, and connect to results in the instrumental variables (IV)
literature on multi-valued or continuous endogenous variables (Angrist and Imbens, 1995, Angrist,
Graddy, and Imbens, 2000).

10A sufficient condition for this is when all potential outcomes Yt(d) are bounded.
11We include i subscripts for units in expressions that refer to sample quantities but not in theoretical expressions

of population quantities.
12This is a slight abuse of notation as we do not require Yt(d) to be differentiable, but rather we mean here the

effect of a marginal change in the dose on a unit’s outcome: limh→0+ (Yt(d+ h)− Yt(d)) /h.
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We focus on “building block” parameters that are averages of these two kinds of causal effects.
Average level treatment effects extend definitions from the binary case so that they refer to the
average effect of being treated with a particular dose compared to not being treated. In particular,
we define

ATT (d|d′) = E[Yt(d)− Yt(0)|D = d′] and ATE(d) = E[Yt(d)− Yt(0)].

ATT (d|d′) is the average effect of dose d compared to zero dosage, on units that actually experienced
dose d′. When d′ = d, this is the ATT among units that received dose d. ATE(d) is the mean
difference between potential outcomes under dose d relative to untreated potential outcomes across
all units, not just those that experienced dose d. We henceforth refer to these functions as Average
treatment effects instead of Average level treatment effects to simplify the terminology.

Average causal response parameters for absolutely continuous treatments are defined as:

ACRT (d|d′) = ∂E[Yt(l)|D = d′]

∂l

∣∣∣∣
l=d′

and ACR(d) =
∂E[Yt(d)]

∂d
,

ACRT (d|d) equals the derivative of the average potential outcome for units that received dose d
evaluated at d. This is also equivalent to the derivative of ATT (s|d) with respect to s, evaluated
at s = d. For multi-valued discrete treatments average causal response are defined in the same way
with slightly different notation:

ACRT (dj |dk) = E[Yt(dj)− Yt(dj−1)|D = dk] and ACR(dj) = E[Yt(dj)− Yt(dj−1)].

ACRT (dj |dj) equals the difference in mean potential outcomes between dose level dj and the next
lowest dose dj−1 (no matter how big the gap between dj and dj−1 is).13 Note that ACR(d) ≡
E[ACRT (d|D)] averages causal responses at dose d across the entire population in the same way
that ATE(d) averages ATT (d|d) terms. It is therefore not “local” to the units that experienced
dose d.

Figure 2 illustrates these parameters graphically. The concave line plots an average treatment
effect function against the dose for units actually treated with dose d, ATT (D|d). If we consider
dose levels d and d′, there are two potential ATT parameters. ATT (d|d), the level of group d’s
average treatment effect function at d, is an average treatment effect that is “local” to units that
experienced dose d. ATT (d′|d) is also “local” to the d group, but refers to the effect they would
experience at dose d′ even though they did not actually receive that dose.The continuous-dose
ACRT parameters are the slopes of tangent lines to the ATT (D|d) function and the discrete-dose
ACRT parameters are the slopes of lines connecting two points on the ATT (D|d) function. As
with ATT s, our definitions encompass causal responses dosages other than the one a given group
actually receives (i.e., ACRT (d′|d)).

A proper interpretation of continuous/multi-valued DiD results hinges on which type of param-
eter one wants to and can identify and estimate. For instance, even if all ATT (d|d) parameters are
large and positive, some ACRT (d|d) parameters could be zero or negative. A researcher misinter-

13Differences in ATT (d|d) between doses that are farther apart than, say, one unit in the discrete case or differ by
a finite amount in the continuous case equal averages of the ACRT between the doses in question.
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Notes: The figure plots ATT (D|d) (the average effect of experiencing each dose among units that actually
experienced dose d). We highlight causal parameters for two doses, d and d′. ATT (d|d) and ATT (d′|d) are average
treatment effect on the treated parameters and refer to the height of the curve. ACRT (d|d) and ACRT (d′|d) are
average causal response parameters and refer to the slope of the curve. We show them for a continuous dose, when
the ACRT is a tangent line, and for a discrete multi-valued dose when ACRT is a line connecting two discrete
points on ATT (D|d).

Figure 2: Causal Parameters in a continuous Difference-in-Differences Design

preting a large ATT estimate as an ACR, in this case, would mistakenly conclude that a policy to
raise every unit’s dose would have large effects. A researcher confusing a small ACR for an ATT

would mistakenly conclude that an entire policy was ineffective when it actually just has small
effects at the margin.

The above-mentioned causal parameters are functional parameters because they are allowed to
vary arbitrarily across treatment dosage groups d′, and/or across (counterfactual) dosages d. But
researchers will also typically want to aggregate these functionals into an interpretable summary
measure or to gain precision. (Regression estimators are one way to do this.) Likely the most
natural way to combine many causal parameters across dose groups (or a function defined over
doses) is to average using the dose distribution itself. We denote these aggregate parameters by:

ATT ∗ = E[ATT (D|D)|D > 0] and ATE∗ = E[ATE(D)|D > 0]

ACRT ∗ = E[ACRT (D|D)|D > 0] and ACR∗ = E[ACR(D)|D > 0].

Note that ACRT ∗ and ACR∗ are average derivatives, a type of parameter that econometricians
have studied in different contexts for a while; see, e.g., Ai and Chen (2007) and Ichimura and Todd
(2007) and references therein.
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3.2 Identification with a Continuous Treatment in the Baseline Case

The definition of the causal parameters in the previous section narrows down the types of causal
questions we attempted to answer in this paper. However, all these causal parameters involve coun-
terfactual quantities, implying that they are not nonparametrically identified without additional
assumptions and structure. In this section, we pursue this route and present identification results
for the average treatment effects and average causal response-type parameters.14

We make the following assumptions:

Assumption 1 (Random Sampling). The observed data consists of {Yit, Yit−1, Di}ni=1, which is
independent and identically distributed.

Assumption 2 (Continuous and Multi-valued Treatment). In period t−1, no unit is treated, while
in period t, the treatment dosage is either continuous or multi-valued. More precisely, one of the
following is true:

(a) The support of the treatment D is given by D = {0} ∪ Dc
+, where Dc

+ = [dL, dU ] with
0 < dL < dU < d < ∞, for some d ∈ R. In addition, P(D = 0) > 0, a−1

f < fD(d) < af

for some positive constant af < ∞ and all d ∈ Dc
+, and E[∆Yt|D = d] is continuously

differentiable on Dc
+.

(b) The support of the treatment D is given by D = {0} ∪ Dmv
+ where Dmv

+ = {d1, d2, . . . , dJ}
where 0 < d1 < d2 < · · · < dJ < d < ∞, for some d ∈ R. In addition, P(D = d) > 0 for all
d ∈ D.

Assumption 3 (No-Anticipation and Observed Outcomes). For all units, and all d ∈ D,

Yit−1 = Yit−1(d) = Yit−1(0) and Yit = Yit(Di).

Assumption 1 says that we observe two periods of iid panel data. Assumption 2 formalizes
that the treatment consists of a mass of units that do not participate in the treatment in both
periods, and an otherwise continuous (part a) or multi-valued (part b) treatment. Assumption 2.a
allows for the smallest value of the treatment to be strictly larger than zero, which is common in
applications. Assumption 3 says that we observe untreated potential outcomes for all units in the
first period, as no unit act on future treatment knowledge before treatment starts. In the second
period, we observe the potential outcome corresponding to the actual dose that unit i experienced.

3.2.1 Identification under parallel trends

Identification of average treatment effects follows closely from the binary treatment case. In par-
ticular, our results rely on an extension of the binary parallel trends assumption:

14In this paper, we use identification as synonymous for point identification. That is, we abstract from partial
identification results.
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Assumption 4 (Parallel Trends). For all d ∈ D,

E[Yt(0)− Yt−1(0)|D = d] = E[Yt(0)− Yt−1(0)|D = 0].

Just like in binary DiD designs, Assumption 4 says that the average path of outcomes that units
with any dose d would have experienced without treatment is the same as the path of outcomes
that units in the untreated group actually experienced. The following result shows that under
Assumption 4, ATT (d|d) is identified; all proofs are in Appendix F. Henceforth, let ∆Yt = Yt−Yt−1.

Theorem 3.1. Under Assumptions 1 to 4, ATT (d|d) is identified for all d ∈ D, and it is given by

ATT (d|d) = E[∆Yt|D = d]− E[∆Yt|D = 0].

Furthermore, ATT ∗ = E[∆Yt|D > 0]− E[∆Yt|D = 0].

The identification results for ATT (d|d) in Theorem 3.1 holds by essentially the same arguments
used for binary treatments. Because Assumption 4 ensures that E[∆Yt|D = 0] is the same as the
path of outcomes that treated units would have experienced absent the treatment, ATT (d|d) equals
the difference between the change in outcomes for the dose d group and the untreated group. As a
direct consequence, by averaging all the ATT (d|d)’s over the distribution of non-zero dosages, we
have that the ATT ∗ is identified by simply comparing units with positive treatment dosage with
those with zero treatment dosage. That is, even with continuous or multi-valued treatments, one
can identify a summary measure of the causal effects among treated units by relying on a binary
comparison.

On the other hand, just like in the binary case, Parallel Trends Assumption 4 is not strong
enough to guarantee the identification of ATE(d).

Proposition 3.1. Under Assumptions 1 to 4, ATE(d) is are not identified.

Intuitively, the result holds because ATE(d) is defined as the average of ATT (d|k) across all
values of k > 0, but Assumption 4 does not allow identification of ATT parameters at doses
other than the one each group actually receives. As a consequence, neither ATE(d) nor ATE∗ are
identified.

We now turn to the identification of average causal response parameters, which differs from
identification of ATT parameters because it requires comparisons between dose groups. Estimating
ATT (d|d) can be done in two equivalent ways. One approach is to compare estimated ATT (d|d)s
across values of d; e.g. ATT (dj |dj)−ATT (dj−1|dj−1). This measures how much average treatment
effects vary with the dose–a “dose-response” relationship. Alternatively, one could use lower-dose
units as a comparison group for higher-dose units: E[∆Yt|D = dj ] − E[∆Yt|D = dj−1]. Designs
without untreated units motivate a continuous/multi-valued DiD strategy this way. Since the
change in outcomes for untreated units, E[∆Yt|D = 0], cancels in the comparison of ATT s, the
two approaches are equivalent. We, therefore, refer to both ACR estimators in Theorem 3.2 and
throughout the paper.
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Our central identification result is that ACR parameters are not identified under Parallel Trends
Assumption 4 alone because comparisons between different dose groups are biased when treatment
effects vary across groups even when the path of untreated potential outcomes is the same.

Theorem 3.2. Under Assumptions 1 to 4 ACRT parameters are not identified. Furthermore,

(a) Under Assumption 2(a), for d ∈ D \ {0},
∂E[∆Yt|D = d]

∂d
=
∂ATT (d|d)

∂d
= ACRT (d|d) + ∂ATT (d|l)

∂l

∣∣∣
l=d︸ ︷︷ ︸

“selection bias”

.

(b) Under Assumption 2(b), for dj ∈ D \ {0},

E[∆Yt|D = dj ]− E[∆Yt|D = dj−1] = ATT (dj |dj)−ATT (dj−1|dj−1)

= ACRT (dj |dj) +ATT (dj−1|dj)−ATT (dj−1|dj−1)︸ ︷︷ ︸
“selection bias”

.

Theorem 3.2 says that under parallel trends, comparisons of outcome paths between higher- and
lower-dose groups mix together (i) ACRT (d|d) and (ii) a “selection bias” type of term that comes
from differences in average treatment effects across groups. Intuitively, even if untreated outcomes
evolve in the same way, observed outcomes may change differently between units with dose dj and
units with dose dj−1 both because dj > dj−1, a causal response, and cross-group differences in the
effect of the first dj−1 dose units, “selection bias”.

Figure 3 illustrates this result for an example with two groups and two doses, d′ = d+ 1. The
slope of the line that connects the points (d,ATT (d|d)) and (d′, ATT (d′|d′)) is steeper than the
average causal response of interest, ACRT (d′|d′), because it jumps from one ATT function to the
other.15 This is captured by the “selection bias” term, which equals the difference in treatment
effects at the lower dose: ATT (d|d′)−ATT (d|d). “Selection bias” is a version of selection-on-gains.
Here, it breaks the causal interpretation because observed outcomes for lower-dose units are not
a valid counterfactual for what higher-dose units would have experienced at a lower dose. The
“selection bias” is not identified because we do not observe Yt(d) for units that experienced dose
d′. Such a result precludes a causal interpretation of ATT differences across doses, at least when
one is not willing to further strengthen the Parallel Trends Assumption 4.

3.2.2 Identification under strong parallel trends

The fact that causal responses are not identified under a “traditional” parallel trends assumption
suggests that learning about the new kind of parameter that continuous DiD designs introduce
requires new assumptions as well. This section introduces a stronger assumption that allows the
identification of ACR (and ATE) parameters:

15Because we are considering one unit increments, the “bias” can be seen on the y-axis as well. ATT (d|d′) −
ATT (d|d) is “bias” and ATT (d′|d′)−ATT (d|d′) is the ACRT (d′|d′).
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Notes: The figure shows that comparing adjacent ATT (d|d) estimates equals an ACRT parameter (the slope of the
higher-dose group’s ATT function) and “selection bias” (the difference between the two groups’ ATT functions at
the lower dose).

Figure 3: Non-Identification of Average Causal Response with Treatment Effect Heterogeneity, Two
Discrete Doses

Assumption 5 (Strong Parallel Trends). For all d ∈ D,

E[Yt(d)− Yt−1(d)] = E[Yt(d)− Yt−1(d)|D = d].

Assumption 5 says that for every dose group, the average change in potential outcomes over
time is the same as the population average change in potential outcomes for the same dose change.
Alternatively, under no-anticipation as in Assumption 3, one can express Assumption 5 as E[Yt(d)−
Yt−1(0)] = E[Yt(d) − Yt−1(0)|D = d], suggesting a type of parallel trends that involves changes in
potential outcomes from zero to dosage d. These two interpretations highlight that Assumption 5
notably differs from Assumption 4 because it involves potential outcomes under different doses
Yt(d) rather than only untreated potential outcomes, Yt(0). The Strong Parallel Trends (SPT)
Assumption 5 is useful because the left-hand side is not identified, but will turn out to be important
in identifying ACR and ATE parameters, while the right-hand side is the observed change in mean
outcomes for dose group d.

In practice, Assumption 5 is most easily understood in terms of a slightly stronger assumption
that imposes that all dose groups would have experienced the same path of potential outcomes
had they been assigned the same dose. This is a treatment effect homogeneity condition because
it implies that ATT (d|d) = ATT (d|d′) = ATE(d); see Proposition B.1 in the Appendix. It rules
out selection-on-gains into a particular dose level and ensures the observed outcome changes for
every dose group reflect what would have happened to all other units had they received that
dose. However, we stress that mathematically speaking, Assumption 5 does not require ruling out
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these behaviors, and does not even guarantee that the ATT (d|d)’s are identified, as we discuss in
Appendix B.16

The following theorem shows that the SPT Assumption 5 allows identification of average treat-
ment effect and average causal response parameters at each dose:

Theorem 3.3. Assume that Assumptions 1 to 3 and 5 hold.

(a) For d ∈ D \ {0}, it follows that

ATE(d) = E[∆Yt|D = d]− E[∆Yt|D = 0].

(b) When Assumption 2(a) holds (i.e., treatment is continuous), it follows that, for d ∈ D \ {0},

ACR(d) =
∂E[∆Yt|D = d]

∂d
=
∂ATE(d)

∂d
,

(c) When Assumption 2(b) holds (i.e., treatment is multi-valued), it follows that, for dj ∈ D\{0},

ACR(dj) = E[∆Yt|D = dj ]− E[∆Yt|D = dj−1] = ATE(dj)−ATE(dj−1),

Theorem 3.3 follows directly from our earlier definition of parameters and of the way that effect
heterogeneity biases outcome comparisons across dose groups. For part (a), note that parallel trends
identifies ATT (d|d), but strong parallel trends identifies ATE(d). The two parameters differ when
there is selection into dose group d on the basis of treatment effects. SPT rules this out and
means that comparing average outcome changes of dose group d to the untreated units identifies
the ATE(d). For parts (b) and (c), the same implication of SPT ensures that lower dose groups are
a valid counterfactual for higher-dose groups. The restriction on potential outcomes that delivers
this property, however, also means that ACR estimands apply to all units, not just those treated
with dose d.

Strong parallel trends only change the interpretation of the estimand, not its form. Theorem 3.3
makes an explicit connection between assumptions and the types of parameters that different com-
parisons in a continuous DiD design can identify. One important implication is that conventional
pre-tests for differential changes across groups before treatment cannot distinguish between As-
sumption 4 and Assumption 5. Only untreated potential outcomes are observed before treatment,
so these periods cannot test the content of an assumption like SPT that necessarily involves treated
potential outcomes.17

16It turns out that Assumption 5 is not even strictly stronger than Assumption 4 in the way it restricts trends in
untreated outcomes; see Appendix B for a discussion.

17An interesting intermediate assumption between Assumption 4 and Assumption 5 would be to directly assume
that the “selection bias” term in Theorem 3.2 (i.e., ∂ATT (d|l)/∂l|l=d) is equal to 0. This would imply that ACRT (d|d)
is identified. Another interesting intermediate assumption is that for d ∈ Ds where Ds ⊂ D+, E[Yt(d)− Yt−1(0)|D ∈
Ds] = E[Yt(d)−Yt−1(0)|D = d]. This would imply that one could identify parameters such as E[Yt(d)−Yt(0)|D ∈ Ds]
for d ∈ Ds (as well as its derivative). These types of assumptions might be appealing in applications where there is
substantial variation in the dose, and the researcher is willing to assume that there is no “selection bias” among units
that selected similar doses, but the researcher is unwilling to assume that there is no “selection bias” among units
that select substantially different doses.

13



Finally, the identification results in Theorem 3.3 immediately imply that averages of the ATE(d)

and ACR(d) building blocks are identified as well. The following lemma states this for the averages
that weight by fD>0(d), the density of dosage d, conditional on the dosage being positive. (When
the dosage is discrete, we write its probability distribution function among units with positive
dosage as P (D = dj |D > 0).)

Corollary 3.1. Assume that Assumptions 1 to 3 and 5 hold.

(a) For d ∈ D \ {0}, it follows that

ATE∗ = E[∆Yt|D > d]− E[∆Yt|D = 0]

(b) When Assumption 2(a) holds (i.e., treatment is continuous), it follows that, for d ∈ D \ {0},

ACR∗ = E
[
∂E[∆Yt|D = d]

∂d

∣∣∣∣
d=D

∣∣∣∣D > 0

]
=

∫ dU

d=dL

∂E[∆Yt|D = d]

∂d

∣∣∣∣
d=s

fD>0(s)ds.

(c) When Assumption 2(b) holds (i.e., treatment is multi-valued), it follows that, for dj ∈ D\{0},

ACR∗ =
J∑

j=1

(E[∆Yt|D = dj ]− E[∆Yt|D = dj−1])P (D = dj |D > 0)

These results highlight how identification in continuous DiD designs is fundamentally a question
about dose-specific building block parameters, not the aggregation choices that lead to particular
summary parameter.

3.3 What Parameter Does TWFE Estimate in the Baseline Case?

In practice, when empirical researchers approach a continuous DiD design they begin by estimating
a single summary parameter using a TWFE regression like Equation (1.1). This section links the
TWFE estimator to the identification results for dose-specific average treatment effect or aver-
age causal response parameters, describes the assumptions necessary to give TWFE some causal
interpretation, and discusses what that interpretation is.

In our baseline case, analyzing the TWFE coefficient βtwfe from Equation (1.1) is straightfor-
ward because it is equivalent to the univariate slope coefficient from a regression of ∆Yit = Yit−Yit−1

on an intercept and Di. From that point, we present two sets of alternative decompositions of βtwfe

in terms of weighted sums of different “causal building block” parameters, one for each of the two
versions of parallel trends considered.

We start our discussion based on the “usual” Parallel Trends (PT)Assumption 4. One of our
decompositions breaks down βtwfe into a weighted sum of ATT (d|d)’s. Another decomposition
we present uses the “per-dosage” scaled ATT (d|d) parameters, ATT (d|d)/d, as the building block.
A third decomposition uses results from Yitzhaki (1996) to express βtwfe as a weighted sum of
ACRT type terms.18 These results stress that the same TWFE coefficient βtwfe can have different

18Appendix C also decomposes βtwfe into a weighted average of DiD comparisons between every pair of dose
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interpretations, which crucially depends on the choice of the “building blocks”.19 We repeat the
same type of exercise but impose the SPT Assumption 5, focusing on ATE, scaled-ATE, and ACR
as the “building blocks” of the decompositions.

The following theorem describes the TWFE estimand with a continuous treatment under Par-
allel Trends Assumption 4; results for the multi-valued results are in Appendix C.

Theorem 3.4. Under Assumptions 1, 2(a), 3, and 4, we can decompose the TWFE regression
coefficient βtwfe in (1.1) in different ways, depending on the choice of the causal estimand that
serves as the summand for these decompositions. More explicitly,

(a) We can decompose βtwfe in terms of ATT ’s as

βtwfe =

∫ dU

dL

wlev(l)ATT (l|l) dl,

where wlev(l) = (l−E[D])
Var(D) fD(l), w

lev(l) ≶ 0 for l ≶ E[D], and
∫
D w

lev(l) dl = 0.

(b) We can decompose βtwfe in terms of scaled-ATT ’s as

βtwfe =

∫ dU

dL

ws(l)
ATT (l|l)

l
dl,

where ws(l) = l (l−E[D])
Var(D) fD(l), w

s(l) ≶ 0 for l ≶ E[D], and
∫ dU
dL

ws(l) dl = 1.

(c) We can decompose βtwfe in terms of ACRT ’s as

βtwfe =

∫ dU

dL

wacr
1 (l)

[
ACRT (l|l) + ∂ATT (l|h)

∂h

∣∣∣
h=l

]
dl + wacr

0

ATT (dL|dL)
dL

where wacr
1 (l) = (E[D|D≥l]−E[D])P(D≥l)

Var(D) and wacr
0 = (E[D|D>0]−E[D])P(D>0)dL

Var(D) . In addition, (i)
wacr
1 (l) ≥ 0 ∀l ∈ D, wacr

0 > 0, and (ii)
∫ dU
dL

wacr
1 (l) dl + wacr

0 = 1

The most important conclusion from Theorem 3.4 is that, with a continuous treatment dose, it is
hard to attach an easy-to-understand causal interpretation to the TWFE regression coefficient under
PT Assumption 4. The basic reason is that TWFE is “variation hungry”; it exploits all the variation
in D, which necessarily means that it compares treated groups to each other. Those comparisons do
not identify treatment effect parameters for which the relevant comparison treatment status is no
treatment, and they do not identify causal response parameters without further restrictions. Parts
(a) to (c) from Theorem 3.4 show that these issues arise for interpretations based on treatment
effects, scaled treatment effects, and causal responses, albeit in slightly different ways.

Part (a) expresses βtwfe as a weighted sum of ATT (d|d) parameters and highlights that the
ATT (d|d) for units with treatment dosage below the mean will get negative weights. In other words,

groups, which extends the decomposition from Goodman-Bacon (2021). We do not discuss that result here because
the theoretical causal interpretation is less clear than the decompositions based directly on ATT ’sand ACRT s.

19The importance of the choice of building blocks have also been highlighted by Słoczyński (2022) in cross-sectional
contexts with binary treatment and unconfoundedness designs; see also Heckman, Urzua, and Vytlacil (2006) for a
related discussion based on identification via instrumental variables.
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TWFE effectively uses units with doses above E[D] as the “treatment group” (positive weights)
and those with doses below E[D] as the “comparison group” (negative weights). However, TWFE
regressions also weigh and scale these groups differently, making it hard to interpret them. Indeed,
from Theorem 3.4(a), some simple algebra, and exploring that ATT (0|0) = 0 and

∫
D w

lev(l) dl = 0,
it follows that we can re-write βtwfe as

βtwfe = E
[
wv(D) m∆(D)

∣∣∣∣ D ≥ E[D]

]
P (D ≥ E[D])

−E
[
wv(D) m∆(D)

∣∣∣∣ D < E[D]

]
P (D < E[D]) (3.1)

= E
[
wv(D) ATT (D|D)

∣∣∣∣ D ≥ E[D]

]
P (D ≥ E[D])

−E
[
wv(D) ATT (D|D)

∣∣∣∣ 0 < D < E[D]

]
P (0 < D < E[D]), (3.2)

with wv(D) =
∣∣∣ (D−E[D])

V ar(D)

∣∣∣, and m∆(D) = E[∆Yt|D]. From (3.1), we see that βtwfe compares weights
averages of m∆(s)’s above and below E[D], and the weights are proportional to “how far” from
E[D] each group is. These weights are particularly hard to justify when D is not symmetric around
its mean, i.e., when P (D ≥ E[D]) ̸= P (D < E[D]).

Even when treatment D is symmetric around its mean, (3.2) point out that expressing
such comparisons across dosages in terms of ATT (d|d)’s can lead to “attenuation” problems or
even sign-reversal due to “negative weights”.20 Although negative weighting also appears in the
TWFE estimand with a binary staggered treatment (Goodman-Bacon, 2021; de Chaisemartin
and D’Haultfœuille, 2020), here we show that this drawback can arise even in the simplest two-
periods DiD setup with continuous treatment. Just like in the binary staggered case, a sufficiently
large untreated group ensures that negative weights are not a first-order concern. Through the
lens of Theorem 3.4(a), “large enough” means that the quantity of untreated observations pulls
E[D] below the minimum treated dose, dL. In that case, the second term in (3.2) drops and
βtwfe = E [wv(D) ATT (D|D)|D ≥ E[D]]P (D ≥ E[D]).

Yet, even when all weights are positive, the way TWFE aggregates ATT (d|d)’s is not very
intuitive or policy-relevant. A perhaps more natural way to aggregate the ATT (d|d) parameters is
to take a simple expectation, i.e., weight them by fD|D>0(d) to get ATT ∗ ≡ E[ATT (D|D)|D > 0].
Indeed, as indicated by Theorem 3.1, ATT ∗ is identified, easy to estimate, and does not suffer from
these non-standard implicit weighting schemes. In setups where treatment effects may vary with
the treatment dose, we recommend favoring ATT ∗ vis-a-vis βtwfe, as the weighting scheme of the
latter may be especially misleading.

Part (b) of Theorem 3.4 extends part (a) to apply to scaled ATT parameters, ATT (d|d)/d,21

which gives a “per-treatment-dosage” interpretation. Part (b) shows that when the scaled ATT

20Chodorow-Reich, Nenov, and Simsek (2021, pg. 1636) cross-region study of marginal propensities to consume
(MPC) notes the possibility of finding a zero even when the MPC>0 in all areas: “ (...) if low wealth areas have
high MPCs and high wealth areas have low MPCs, an increase in the stock market could induce the same change in
spending in both low and high wealth areas.”

21This is the parameter one would obtain by estimating equation (1) on a sample of units with D = 0 or D = d.
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is the building block of interest, TWFE estimand has negative weights under the same conditions
as in part (a). The weights themselves equal wlev(d) weights times the dose, which creates two
key differences. First, they integrate to 1 in the treated sample. Second, they weigh the building
block parameters for the highest and lowest doses even more heavily than in part (a). In the case
of a discrete dose, this result is similar to the one in Theorem S3 of the Supplementary Appendix
of de Chaisemartin and D’Haultfœuille (2020). Therefore, using average slopes as the underlying
parameter of interest does not eliminate the potential negative weighting issue with the TWFE
estimator, and it is still hard to add a convincing justification for such weighting schemes when
treatment effects are heterogeneous.

Theorem 3.4(c) shows that when we attempt to use the ACRT ’s as building blocks of the anal-
ysis, the TWFE estimand can be written as combinations of two positively weighted averages: one
of ACRT (d|d) parameters, and another of “selection bias” terms due to heterogeneous ATT ’sas
derived in Theorem 3.2. The sign of this bias depends on how treatment effects vary across groups
at a given dose. If units with higher doses always have larger positive treatment effects, for exam-
ple, then TWFE will be larger than the average of the ACRT ’s that appear in Theorem 3.4(c).
Figure 3 illustrate this case for two groups. The magnitude of the bias depends on how strong
the heterogeneity is and its relationship to the weights on each ∂ATT (l|h)

∂h

∣∣∣
h=l

term. Heterogeneity
comes from the “technology” that generates treatment effects–do ACRT ’s vary and by how much?–
and the allocation mechanism for the dose–how is the ATT function related to the observed dose?
This has important econometric implications, but does not come from TWFE itself. The weights,
however, do inherit their form from ordinary least squares (OLS). Differentiating wacr

1 (d) shows
that the weights are hump-shaped and centered around E[D], so selection bias around the average
dose affects βtwfe the most. Therefore, even when one takes ACRT ’s as the building block for the
parameter of interest, as many applied papers implicitly do, TWFE still does not yield a causal
estimand under parallel trends. Part (c) also shows how TWFE handles a discrete jump from 0
to the minimum treated dose, dL. Causal responses below dL cannot be estimated, so the scaled
treatment effect of dL, ATT (dL|dL)/dL as in part (b) is averaged into βtwfe.

It is worth stressing that our PT Assumption 4 is not strong enough to guarantee the identi-
fication of the ACRT ’s, as already indicated in theorem 3.2. This implies that coming up with a
reliable and easy-to-use summary measure of the ACRT ’s is not as simple as it was for the ATT ∗.
Putting it simply, we cannot “estimate our way out” when we are interested in causal response type
parameters. Following our discussion around Theorem 3.3, though, one may wonder if imposing
the SPT Assumption 5 may be enough to give the TWFE coefficient βtwfe a causal interpretation.
The following theorem describes the TWFE estimands under Assumption 5. It is the analog of
Theorem 3.4 but replacing the PT Assumption 4 with the SPT Assumption 5.

Theorem 3.5. Under Assumptions 1, 2(a), 3, and 5, we can decompose the TWFE regression
coefficient βtwfe in (1.1) in different ways, depending on the choice of the causal estimand that
serves as the summand for these decompositions. More explicitly,
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(a) We can decompose βtwfe in terms of ATE’s as

βtwfe =

∫ dU

dL

wlev(l)ATE(l) dl.

(b) We can decompose βtwfe in terms of scaled-ATE’s as

βtwfe =

∫ dU

dL

ws(l)
ATE(l)

l
dl,

(c) We can decompose βtwfe in terms of ACR’s as

βtwfe =

∫ dU

dL

wacr
1 (l)ACR(l) dl + wacr

0

ATE(dL)

dL
.

All weights are defined in Theorem 3.4.

Theorem 3.5 shows that the SPT Assumption 5 eliminates selection bias in the ACR interpreta-
tion of βtwfe but still does not deliver an interpretation in terms of treatment effects. Assumption 5
restricts treated potential outcomes, but does not change the TWFE estimator. Since negative
weights in Theorem 3.4 were a consequence of TWFE, additional assumptions about treatment
effects do not change the underlying weighting scheme. Parts (a) and (b) of Theorem 3.5 are thus
the same as in Theorem 3.4 except that they aggregate ATE(d)’s instead of ATT (d|d)’s.

Theorem 3.5(c) is essentially an aggregate version of Theorem 3.3, which shows that Assump-
tion 5 eliminates selection bias in the estimation of eachACR. The particular interpretation of βtwfe

in terms of ACR’s, therefore, hinges on that aggregation, embodied in the weights wacr
1 (d). The

wacr
1 (l) are positive and integrate to 1, so under Assumption 5 βtwfe does have a causal interpreta-

tion. But βtwfe does not estimate a natural target parameter like the ACR∗ ≡ E[ACR(D)|D > 0],
because the TWFE weights do not generally equal the dose distribution among treated, fD|D>0(d).
As discussed above, the weights are hump-shaped and centered on E[D], no matter the underlying
shape of fD|D>0(d). If D is distributed U(0, 1), for example, then relative to ACR∗, βtwfe puts more
weight on ACR(d) parameters close to the mean and less weight on ACR(d)’s closer to 0 or 1.22

For declining distributions like the exponential, TWFE puts less weight on the most common doses
below the mean, and more weight on the rarer doses above the mean.23 For a bimodal distribution
of D with little mass around E[D], wacr

1 (d) will actually put the most weight on ACR’s of the least
common doses. In general, when fD|D>0(d) is approximately Gaussian, the TWFE estimand is
closer to ACR∗. But when the dose distribution is skewed, TWFE weights ACR(d) parameters
close to the mean dose more than their population density weights. If the treatment effect function
is non-linear or non-monotonic, so that ACR(d) parameters vary widely across doses, then the
TWFE estimand may differ meaningfully from ACR∗.

22For a uniformly distributed dose we have wacr
1 (d) = 6d(1 − d). Therefore, the difference in weight on ACR(d)

across the two weighting schemes is fD|D>0(d)−wacr
1 (d) = 1− 6d(1− d). This function is concave up and has roots

at 1/2±
√
3/6, so TWFE puts more over-weights parameters between 0.21 and 0.79.

23For fD(d) = λe−λd, d ≥ 0, we have wacr
1 (d) = λℓf(d). The difference between the distribution of D weights

and the TWFE weights is fD|D>0(d) − wacr
1 (d) = fD(d)λ( 1

λ
− d). This shows that TWFE under-weights ACR’s at

doses below the mean (d < 1
λ

) and over-weights them at doses above the mean (d > 1
λ

).
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We again stress that providing ex-ante justification for the weights wacr
1 (d) is hard, which, in

turn, suggests that βtwfe may have limited interpretability in terms of ACR’s. Instead of letting the
estimation method implicitly select how one aggregates these ACR’s into a summary measure of the
treatment, we recommend that researchers choose these aggregation schemes explicitly. In our view,
a natural and econometrically-guided way to aggregate the ACR’s into a summary parameter is
given by ACR∗, which is identified ( as indicated in Corollary 3.1) and can be efficiently estimated,
as well.

Remark 1 (No untreated units). In some applications, all units end up treated; i.e., there are
no “never-treated” units. In fact, a lack of untreated units is a frequent justification for using a
continuous DiD design. Although ATT (d|d) parameters are not identified in this case, it is still
possible to use the results above to characterize βtwfe in terms of them. When P(D = 0) = 0,
TWFE necessarily puts negative weights on ATT or scaled ATT parameters of lower-dose groups.
The ACR decompositions, on the other hand, are unchanged except that the scaled ATT for dose
dL is not identified (and its weight is zero). In other words, Theorem 3.4 and Theorem 3.5 can still
apply in this case, by noting that P(D = 0) = 0.

Remark 2 (Restrictions on the shape of ATT (d|d) can aid in identification.). Suppose that
ATT (d|d) = 0 for d < d0. Then, for those units, Y (D) = Y (0) and, under parallel trends,
they can be used to identify ATT ’s.24 Alternatively, if ATT ’s were constant and homogeneous (i.e.,
dosage intensity does not matter; ATT (d|d) = a for all units), then TWFE estimates βtwfe = a

under parallel trends, regardless of the negative weights. Negative weights also do not undermine
the causal interpretation based on per-dose effects if ATT is linear and homogeneous in the dose
(ATT (d|d) = b ∗ d), in which case βtwfe = b. However, we note that these are strong, parametric
functional form restrictions.

Remark 3 (Pre-treatment differences). TWFE does not estimate pre-treatment differences between
treated and untreated units when there are negative weights. To see this, consider a case with three
periods, t− 2, t− 1, and t, but otherwise the same as the baseline case. Applying equation (3.1) to
the change between periods t− 2 and t− 1 gives the TWFE estimate of the pre-trend:

βtwfe
pre = E

[
wv(D)mpre

∆ (D)

∣∣∣∣ D ≥ E[D]

]
P (D ≥ E[D])− E

[
wv(D)mpre

∆

∣∣∣∣ D < E[D]

]
P (D < E[D]),

where mpre
∆ (D) = E[Yt−2(0) − Yt−1(0)|D]. If Assumption 4 holds then βtwfe

pre = 0, but because the
change in outcomes for some dose groups can receive negative weight, this quantity can also equal
zero if Assumption 4 is violated. Thus, one should not rely on TWFE to assess the plausibility
of PT; see also Sun and Abraham (2021) for related results in staggered designs with a binary
treatment.

24This kind of assumption has precedent elsewhere. In toxicology, where concerns about dosage drive clinical and
regulatory decisions, the threshold below which D has no (detectable) effect is called the No Observable Adverse
Effects Level (NOAEL).
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4 DiD estimators that can highlight heterogeneity

The results in Theorems 3.4 and 3.5 show that it can be hard to attach a clear causal interpretation
to the TWFE regression coefficient βtwfe in setups with treatment effect heterogeneity, even when
all the weights are positive. Furthermore, in many practical situations, we may be interested
in documenting the impact of different treatment dosages on a given outcome of interest, and
βtwfe is clearly not suitable for that. In this section, we discuss alternative data-driven estimation
procedures that do not suffer from these drawbacks.

Our first suggested estimation procedure focuses in summarizing treatment effects as weighted
averages of ATT (d|d) or ATE(d). In light of Theorems 3.1 and 3.2(a), we can estimate ATT ∗ or
ATE∗ by considering the following simple linear regression specification:

∆Yi = βbin0 + 1{Di > 0}βbin + ϵi, (4.1)

where ∆Yi = ∆it (as we only have two time periods), D>0
i = 1{Di > 0} is a dummy variable

for the treatment dosage being greater than zero, βbin0 and βbin are (unknown) finite-dimensional
parameters, and ϵi and error term. It is straightforward to show that under Assumptions 1 to 4,
βbin = ATT ∗. Thus, one can estimate and make (asymptotically valid) inferences about ATT ∗

using (4.1), as long as some weak and standard regularity conditions are satisfied.25 If one imposes
the SPT Assumption 5 instead of the PT Assumption 4, then it follows that βbin = ATE∗. Such an
estimation strategy is the simplest possible: it only requires researchers to “binarize” their treatment
and rely on familiar regression models. Contrary to βtwfe, though, βbin captures a well-defined and
easily interpretable causal parameter of interest without relying on additional assumptions.

Although (4.1) is simple and intuitive, it is not flexible enough to highlight treatment effect
heterogeneity across dosages, nor suitable to estimate ACR-type parameters. For that, we need
to go beyond (4.1). Before we discuss our proposed method that directly builds on Chen, Chris-
tensen, and Kankanala (2022), it is worth discussing its general intuition. Somehow, the TWFE
specification in (1.1) and the simple “binarize” specification (4.1) are “too restrictive” to accom-
modate richer forms of heterogeneity. Hence, a natural step forward is to consider more flexible
specifications. There are different ways one can achieve that. For instance, one may rely on flexible
regression specifications of the type

∆Yi =

K∑
k=1

ψKk(D)βKk + εi

where ψK(d) = (ψK1(d), ψK2(d), . . . , ψKK(d))′ is a K-dimensional vector of flexible (known) trans-
formations of the treatment dosage D, βK = (βK1, βK2, . . . , βKK)′ is a vector of finite dimensional
(unknown) parameters, and εi is an idiosyncratic error term. One could then estimate these un-
known β coefficients using OLS, and use the (functional) delta method to form estimators for the

25This includes bounded second moments, and P (D = 0) and P (D > 0) being uniformly bounded away from zero.
If one wishes to cluster the standard errors at a higher level than i, there should also be sufficiently many treated
(D > 0) and untreated (D = 0) clusters to justify the application of a Central Limit Theorem; see Roth, Sant’Anna,
Bilinski, and Poe (2023) for a discussion.
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different target parameters, ATT (d|d)’s, ATE(d)’s, ACR(d)’s, ATT ∗, or ACR∗.
When treatment is multi-valued, as considered in Assumption 2(b), this task is simple. In such

cases, ψK(D) can be a saturated set of treatment dosage indicators with the no-treatment as the
baseline, i.e., with some abuse of terminology,

∆Yi = β0 +
J∑

j=1

1{Di = dj}βj + εi,

One can then use OLS estimate the β’s; denote such estimators by β̂ = (β̂0, . . . , β̂J)
′.26 Under

SPT Assumption 5 (and Assumptions 1 and 3), it is very easy to show that each β̂j is a consistent
(nonparametric) estimator for the ATE(dj), and β̂j−β̂j−1 is a consistent (nonparametric) estimator
for ACR(dj). It is straightforward to aggregate these ACR(d)’s to form a plug-in estimator for the
ACR∗ using the identification formula in Corollary 3.1(c),27 i.e.,

ÂCR
∗
=

J∑
j=1

(
β̂j − β̂j−1

)
P̂ (D = dj |D > 0), (4.2)

where P̂ (D = dj |D > 0) =
∑n

i=1 1{Di = dj}/
∑n

i=1 1{Di > 0}. It follows from the delta method,
our identification assumptions, and some weak regularity conditions that, as sample size increases,
√
n
(
ÂCR

∗
−ACR∗

)
converges to a normal distribution with mean zero and estimable asymptotic

variance, implying that standard inference procedures can be reliably used when treatments are
multi-valued. One can follow a similar strategy when using the scaled-ATE(d) as the “building
blocks” of the aggregation.

Now, when the treatment dosage is continuous, as considered in Assumption 2(b), things are
more complicated, especially when one does not want to impose parametric restrictions on the
treatment effect heterogeneity. One needs to be more explicit about the type of “flexible” transfor-
mations ψK(d): it involves picking the class of transformations (basis functions) and the number
of terms K used to implement the method. Poor tuning parameter choices can lead to estimators
that converge “too slowly”, and confidence bands with inappropriate statistical guarantees. On
the other hand, “good” choices of tuning parameters usually require additional knowledge of model
structure, such as the smoothness of ATE(d), which, in practice, it is ex-ante unknown. It is thus
desirable to have a data-driven estimation method that adapts to these unknown model regularities,
yield estimators and confidence bands with solid statistical guarantees and, at the same time, is
easy to implement. The important question is: How to do it? Fortunately, we can build on Chen,
Christensen, and Kankanala (2022), who propose (a) data-adaptive nonparametric estimators for
generic structural functions (conditional expectations) and their derivatives that converge at the
fastest possible (i.e., minimax) rate in sup-norm, and (b) data-driven uniform confidence bands
that have correct asymptotic coverage and contract at the minimax rate. As a direct consequence,

26This is equivalent to running one DiD analysis by comparing each dosage dj with zero dosage; see, e.g., Sun and
Shapiro (2022).

27When one imposes the PT Assumption 4 instead of the SPT Assumption 5, each β̂j is a consistent estimator for
the ATT (dj |dj). However, comparison across β̂j does not give an ACRT -type parameter, as indicated in Theorem 3.2.
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our estimators inherited from Chen, Christensen, and Kankanala (2022) these nice statistical guar-
antees when estimating and making inferences about ATE(d), ATT (d|d), and ACR(d). We also
show how to build on the estimators for ACR(d) to construct an (efficient) estimator for the ACR∗.

In what follows, we discuss how we construct our data-adaptive estimator for the ATE(d)

and ACR(d) curves under the SPT Assumption 5; if one imposes Assumption 4 instead, they
estimate the ATT (d|d) curve instead. First, as discussed above, we must pick a family of basis
functions ψK(d). We restrict our attention to dyadic (cubic) B-Splines as they are able to achieve
minimax sup-norm rates; see, e.g., Belloni, Chernozhukov, Chetverikov, and Kato (2015), Chen
and Christensen (2015) and Chen and Christensen (2018).28

Before discussing how we pick our data-driven choice K̂ of sieve dimension, we introduce some
notation and discuss the form of our proposed estimators. Let K =

{(
2k + 3

)d
: k ∈ N0

}
be the

set of possible sieve dimensions for our cubic B-Splines. For a given sieve dimension K ∈ K, our
proposed nonparametric estimator for ATE(d) and ACR(d) are given by

ÂTEK(d) =
(
ψK(d)

)′
β̂K , ÂCRK(d) =

(
∂ψK(d)

)′
β̂K , (4.3)

where ∂ψK(s) = (dψK1(s)/ ds, . . . , dψKK(s)/ ds)′,

β̂K = arg min
bK∈ΘK

En

[(
∆Y − En [∆Y |D = 0]− ψK(D)′b

)2∣∣∣D > 0
]

= En

[
1{D > 0}ψK(D)ψK(D)′

]− En

[
1{D > 0}ψK(D) (∆Y − En [∆Y |D = 0])

]
, (4.4)

and A− denote the Moore-Penrose inverse of a generic matrix A, and for a generic variable B,

En[B|D > 0] =

∑n
i=1 1{Di > 0}Bi∑n
i=1 1{Di > 0}

.

Note that β̂K is simply the OLS estimated coefficient of the regression of the “transformed outcome”
∆Y −En [∆Y |D = 0] onto the K-dimensional B-spline ψK(D), in the sub-sample of units that have
positive treatment dosage.

Let K+ = min{k ∈ K : k > K} be the smallest sieve dimension in K exceeding K, and
vn = max

{
1, (0.1 log n)4

}
(so vn = 1 unless n is bigger than 10 billion). Let {ωi}ni=1 be iid

standard normal draws independent of the data {Wi}ni=1 = {Yit, Yit−1, Di}ni=1. In addition, for a
given K and K2, let

φ̂K(Wi, d) =
(
ψK(d)

)′
ϕ̂K(Wi),

with

ϕ̂K(Wi) = En

[
1{D > 0} · ψK(D)ψK(D)′

]−
1{Di > 0}ψK(Di)ûi,K ,

28We pick cubic B-splines out of convenience, but other choices are also possible and do not affect our theoretical
results. We also note that one can use Cohen-Daubechies-Vial wavelet basis and get sup-norm minimax rates, though
they are harder to compute than B-splines. On the other hand, not all basis functions lead to minimax rates–for
example, polynomials and Fourier series do not lead to minimax rates. See Belloni, Chernozhukov, Chetverikov, and
Kato (2015), Chen and Christensen (2015), Chen and Christensen (2018) and Chen, Christensen, and Kankanala
(2022) for a discussion.
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and ûi,K = ∆Yi − En[∆Y |D > 0]−
(
ψK(Di)

)′
β̂K . Finally, let

σ̂2K,K2
(d) =

1

n

n∑
i=1

(φ̂K(Wi, d)− φ̂K2(Wi, d))
2

be an estimator of the (asymptotic) variance of the contrast
√
n
(
ÂTEK(d)− ÂTEK2(d)

)
, and

consider the bootstrap process

Z
∗
n(d,K,K2) =

1

σ̂K,K2(d)

 1√
n

n∑
i=1

(φ̂K(Wi, d)− φ̂K2(Wi, d)) · ωi

 .

Our data-driven choice K̂ of the sieve dimension K leverages the Lepskii-type selection of
Chen, Christensen, and Kankanala (2022) (henceforth, CCK) and can be computed according to
the following Algorithm.
Algorithm 1 (Computation of data-driven choice of sieve-dimension K based on CCK.).

1. Compute the data-drive index set of sieve dimensions

K̂ =

{
K ∈ K : 0.1

(
log K̂max

)2
≤ K ≤ K̂max

}
(4.5)

where

K̂max = min
{
K ∈ K : K

√
logKvn ≤ 10

√
n < K+

√
logK+vn

}
(4.6)

2. Let α̂ = min

{
0.5,

√
log K̂max

/
K̂max

}
. For each independent draw of {ωi}ni=1, compute

sup
(d,K,K2)∈Dc

+×K̂×K̂:K2>K

|Z∗
n(d,K,K2)| . (4.7)

Let γ̂1−α̂ denote the (1 − α̂) quantile of the sup-t statistic (4.7) across a large number of
independent draws of {ωi}ni=1, say 1,000.

3. The data-driven choice of the sieve dimension is

K̂ = inf

K ∈ K̂ : sup
(d,K2)∈Dc

+×K̂:K2>K

√
n
∣∣∣ÂTEK(d)− ÂTEK2(d)

∣∣∣
σ̂K,K2(d)

≤ 1.1γ̂1−α̂

. (4.8)

Our data-driven estimators for the ATE(d) and ACR(d) are therefore given by

ÂTE
K̂
(d) =

(
ψK̂(d)

)′
β̂
K̂
, ÂCR

K̂
(d) =

(
∂ψK̂(d)

)′
β̂
K̂
. (4.9)

Before we establish that ÂTE
K̂
(d) and ÂCR

K̂
(d) attain the minimax rate for estimating both

ATE(d) and ACR(d), we introduce some define the parameter space for ATE(·). Let Hp
∞,∞(M)

denote the Holder ball of smoothness p and radius M. For given constantsM > 0 and p > p > 0.5, let
Hp = Hp

∞,∞(M) and H =
⋃

p∈[p,p]Hp. For each ATE(·) ∈ H, we let PATE denote the distribution
of {∆Yi, Di}∞i=1 where each observation is generated by iid draws of of (D,u) from a distribution
of (D,u) satisfying Assumptions 1, 2(a), 3, 5, Assumption 6 listed in the Appendix, and setting
∆Y − E[∆Y |D = 0] = ATE(D) + u.
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Theorem 4.1. Let Assumptions 1, 2(a), 3, 5, and Assumption 6 listed in the Appendix hold. Then:

(a) There exist a universal constant C1 > 0 for which

sup
p∈[p,p]

sup
ATE(·)∈Hp

PATE

(
sup
d∈Dc

+

∣∣∣(ÂTEK̂
−ATE

)
(d)
∣∣∣ > C1

(
log n

n

) p
2p+1

)
→ 0.

(b) For p > 1, there exist a universal constant C ′
1 for which

sup
p∈[p,p]

sup
ATE(·)∈Hp

PATE

(
sup
d∈Dc

+

∣∣∣(ÂCRK̂
−ACR

)
(d)
∣∣∣ > C ′

1

(
log n

n

) p−1
2p+1

)
→ 0.

Importantly, the convergence rates in parts (a) and (b) are the minimax rates for estimating ATE(d)

and ACR(d), d ∈ Dc
+, under sup-norm loss.

Remark 4 (Comparison with CCK). Our Algorithm 1 slightly differs from Procedure 1 of CCK.
For instance, we consider a “transformed outcome” as the regressand of the sieve-based regression,
whereas they consider an “observed” outcome as the regressand. We also focus on a specific sub-
population, those with positive treatment. These modifications are important in our DiD contests,
as we allow for the causal effect of D on Y to be discontinuous when treatment dosage changes from
D = 0 to D = dl (the minimum positive dosage). However, we note that these adaptions of the CCK
procedures do not affect the asymptotic properties of the proposed estimators, as En [∆Y |D = 0]

is
√
n-estimable and can be treated as known when establishing the asymptotic properties of the

procedure. Thus, Theorem 4.1 follows from Theorem 4.1 of CCK.

Next, we show how one can form data-driven uniform confidence bands (UCBs) for both ATE(d)

and ACR(d) by adapting Procedure 2 of CCK to our DiD context. Toward this end, let Â =

log log K̂ and set K̂− = {K ∈ K̂ : J < K̂}. Define the bootstrap processes

Z
∗
n(d,K) =

1

σ̂K(d)

1√
n

n∑
i=1

φ̂K(Wi, d) · ωi, and Z
∗,acr
n (d,K) =

1

σ̂acrK (d)

1√
n

n∑
i=1

φ̂acr
K (Wi, d) · ωi.

where φ̂acr
K (Wi, d) =

(
∂ψK(d)

)′
ϕ̂K(Wi),

σ̂2K(d) =
1

n

n∑
i=1

φ̂K(Wi, d)
2, and σ̂acr,2K (d) =

1

n

n∑
i=1

φ̂acr
K (Wi, d)

2.

Algorithm 2 (Computation of UCBs for ATE(·) and ACR(d) based on CCK.).
4. For each independent draw of {ωi}ni=1, compute

t∗ = sup
(d,K)∈Dc

+×K̂−

|Z∗
n(d,K,K2)| , and t∗,acr = sup

(d,K)∈Dc
+×K̂−

|Z∗,acr
n (d,K,K2)| . (4.10)

Let z1−α and zacr1−αdenote the (1− α) quantile of the sup-t statistic t∗ and t∗,acr, respectively,
across a large number of independent draws of {ωi}ni=1, say 1,000.

5. The data-driven 100(1− α)% UCB for ATE(d) and ACR(d), d ∈ Dc
+, are respectively given

by

Cn(d) =

[
ÂTEK̂(d)−

(
z∗1−α + Â γ̂1−α̂

) σ̂K̂(d)
√
n

, ÂTEK̂(d) +
(
z∗1−α + Â γ̂1−α̂

) σ̂K̂(d)
√
n

]
(4.11)
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Cacr
n (d) =

[
ÂCRK̂(d)−

(
z∗,acr1−α + Â γ̂1−α̂

) σ̂acr
K̂

(d)
√
n

, ÂCRK̂(d) +
(
z∗,acr1−α + Â γ̂1−α̂

) σ̂acr
K̂

(d)
√
n

]
(4.12)

The UCBs described in Algorithm 2 enjoy attractive statistical guarantees such as honesty
and adaptivity. In practice, these mean that these UCBs are guaranteed to have asymptotically
corrected coverage over a large (and generic) class of data-generating processes (honesty), and
contract at the minimax sup-norm rate (adaptivity). These nice guarantees are established over a
generic subclass G of H, as Low (1997) show that it is impossible to construct UCBs that are honest
and adaptive over H. This restriction, though, can be seen as a technical sidestep without major
practical consequences, though; See Sections 4.3 and Appendix C.3 of CCK for a more detailed
discussion. To save space, we define the class of self-similar functions G in the Appendix. Let
Cn(d,A) and Cn(

acrd,A) denote the UCBs from (4.11) and (4.12) replacing Â with a fixed A > 0.
The next theorem adapts Theorems 4.2 and 4.4 of CCK to our context.

Theorem 4.2. Let Assumptions 1, 2(a), 3, 5, and Assumption 6 listed in the Appendix hold. Then:

(a) There exist a universal constant C2 > 0 and constant A∗
2 (independent of α) such that for all

A ≥ A∗
2, we have

(i) lim inf
n→∞

inf
ATE(·)∈G

PATE

(
ATE(d) ∈ Cn(d,A) ∀d ∈ Dcont

+

)
≥ 1− α;

(ii) inf
p∈[p,p]

inf
ATE(·)∈Gp

PATE

(
sup

d∈Dcont
+

|Cn(d,A)| ≤ C2(1 +A)

(
log n

n

) p
2p+1

)
→ 1.

(b) For p > 1, there exist a universal constant C ′
2 > 0 and constant A∗,′

2 (independent of α) such
that for all A ≥ A∗,′

2 , we have

(i) lim inf
n→∞

inf
ATE(·)∈G

PATE

(
ACR(d) ∈ Cacr

n (d,A) ∀d ∈ Dcont
+

)
≥ 1− α;

(ii) inf
p∈[p,p]

inf
ATE(·)∈Gp

PATE

(
sup

d∈Dcont
+

|Cacr
n (d,A)| ≤ C ′

2(1 +A)

(
log n

n

) p−1
2p+1

)
→ 1.

We end this section discussing how one can build on the data-driven estimators ÂCR
K̂
(d) to

construct an efficient estimator for ACR∗ that can be used to summarize the ACR’s. Our proposed
estimator is simple to compute as it is based on the plug-in principle, i.e.,

ÂCR
∗
= En

[
ÂCR

K̂
(D)

∣∣∣D > 0
]
=

1

nD>0

∑
i:Di>0

ÂCR
K̂
(Di),

with nD>0 =
∑n

i=1 1{Di > 0} denoting the sample size with positive treatment dosage. The next
theorem shows that, under some regularity conditions, this estimator is consistent, asymptotically
normal, and semiparametrically efficient.29

29The semiparametric efficiency bound for average derivatives of conditional expectations was derived by Newey
(1994).
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Theorem 4.3. Let Assumptions 1, 2(a), 3, 5, and Assumption 6 listed in the Appendix hold. Then,
√
n
(
ÂCR

∗
−ACR∗

)
d→ N(0, VACR),

where VACR is the semiparametric efficiency bound of ACR∗ and is given by

VACR = Var

[
ACR(D)− (∆Y − E[∆Y |D = 0]−ATE(D))

f ′D>0(D)

fD>0(D)

∣∣∣∣D > 0

]
Following Newey (1994) and Ackerberg, Chen, and Hahn (2012), we can form a simple and

practical estimator for the VACR by “pretending” we follow a parametric model for the ATE(d)

and ACR(d) functions and use the delta-method.

5 Continuous DiD in Practice: Causal Effects of Medicare PPS

Our results show that clarity about the causal question is crucial because it shapes the choice of
an estimator, the identifying assumption, and the interpretation. TWFE does not estimate an
interpretable causal parameter, but non-parametric methods can. This section evaluates estima-
tors for treatment effects and causal responses in AF’s study of Medicare PPS and discusses the
interpretation and assumptions of both.

To begin, consider the profit maximization problem for a hospital with Medicare inpatient share
of M = m. We follow AF and assume a production function, Ft(L,K), that is homothetic in labor
(L), and capital (K).30 Market wages and rental rates are normalized by the output price, and
Medicare subsidies mean that net input prices are (1− sLtM)w and (1− sKtM)r.

max
L,K

Ft(L,K)− (1− sLtM)wL− (1− sKtM)rK

The solution to this problem generates factor demands K∗
t ((1−sLtM)w, (1−sKtM)w) and L∗

t ((1−
sLtM)w, (1 − sKtM)w), and an associated capital labor ratio that is only a function of the input
price ratio.

We define the “dose” or “intensity” of price regulation as the extent to which a hospital’s subsidy
ratio differs from one: (1−sLtM)

(1−sKtM) − 1 = (sKt−sLt)M
1−sKtM

. This reflects the fact that we observe untreated
outcomes in all periods for hospitals with no Medicare patients (M = 0) and for all hospitals before
PPS when sK,t−1 = sL,t−1 = s.31 Because PPS set sLt = 0 after 1983, we denote the post-PPS
dose as D ≡ sKtM

1−sKtM
. The post-PPS net-of-subsidy input price ratio thus equals (1+D)wr , and we

write potential outcomes for the capital-labor ratio as:

Yt−1 = Yt−1(0) ≡
K∗

t ((1− sM)w, (1− sM)r)

L∗
t ((1− sM)w, (1− sM)r)

30AF’s theoretical analysis includes a productivity shifter/technology choice, an explicit output price in order to
model Medicare’s prospective payment (output price subsidy) as well as multiple types of labor, and an endogenous
choice of m. We set these modelling choices aside because they do not alter out points about how features of the
production technology map to econometric assumptions.

31We assumed weakly positive doses but D < 0 whenever sKt < sLt. In practice this does not happen under
Medicare PPS, so the non-negative dose assumption is satisfied in this example.
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Yt = Yt(D) ≡ Yi

(
sKtM

1− sKtM

)
=
K∗

t (w, (1− sKtM)r)

L∗
t (w, (1− sKtM)r)

Three details of the theoretical set up are worth noting. First, homotheticity allows us to write
potential outcomes as a function of one treatment–the subsidy ratio–because it implies that scale
effects do not alter input ratios. This strong assumption generates sign predictions and structural
interpretations of treatment effects and causal responses. Without it, potential outcomes are a
function of net labor and capital prices separately and both the theoretical analysis and the defi-
nition of causal parameters is more complicated. Second, we use time subscripts to match the fact
that PPS changed over time, but this is not a dynamic model. The assumed lack of forward looking
behavior implies the no anticipation assumption (Assumption 3). Third, PPS creates convex rela-
tionship between D and M . We define causal parameters in terms of D, but empirical comparisons
across values of M will mix together these parameters with the change of variables required to go
from M to D.32

5.1 Average Treatment Effects of PPS

PPS sought to help hospitals invest in new medical technologies with the aim of improving patient
outcomes [CITE THAT OTA REPORT], but costly capital investments were also a key source of
medical inflation in the 1980s. The theoretical model predicts that PPS would raised capital-labor
ratios for all treated hospitals (the first part of AF’s prediction 1). The causal question that AF are
primarily interested in–did PPS raise capital-labor ratios?–is thus of first-order importance both
theoretically and in terms of policy.

The building block parameter that answers this question is the average treatment effect of PPS
on hospitals with M = m:

ATT (d|d) = E[Yt(d)− Yt(0)|D = d] = E

[
Yt

(
sKtm

1− sKtm

)
− Yt(0)

∣∣∣∣M = m

]
As a rough visualization, Figure 4 presents a binned scatter plot of the change in mean capital labor
ratios before and after PPS against the Medicare share of inpatient days m.33 The red horizontal
line equals the mean change in capital-labor ratio for untreated hospitals, each circle is the mean
outcome change for a given bin of the Medicare inpatient share, and their size is proportional to the
number of hospitals in that bin. Almost all groups of treated hospitals had stronger growth in capital
intensity than untreated hospitals, consistent with the theoretical prediction. If Assumption 4 holds,
then this suggests that ATT (d|d) is generally positive.

Results from the nonparametric estimator in Figure 9 formalize what the scatter plot in Figure 4
suggests: ATT (d|d) > 0 for all observed doses. We do not detect an effect for values of m below 5
percent, but we do reject zero for doses between 0.05 and 0.78. Only one percent of hospitals had

32Alternative policies that changed sL by a different amount or changed the capital subsidy as well, would create
a different treatment for the group of hospitals with M = m. This highlights the distinction between heterogeneous
effects across groups of a given policy and heterogeneity within a group to alternative policies.

33We use bins of 2 percentage points to make the figure readable, but use the reported values in our replication of
AF’s results and application of our estimators.
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Notes:

Figure 4: Changes in Capital-Labor Ratios before and After 1983 versus the Medicare Inpatient
Share

more than 78 percent of their inpatient days accounted for by Medicare patients, and the ATT (d|d)
estimates are smaller and much less precise at these highest doses. We return to this point below
when we discuss ACR estimates.

The next choice in a typical continuous DiD analysis is how to aggregate the collection of
ATT (d|d) estimates that come from the nonparametric approach. Our view is that the parameter
of interest should guide this choice, and the most natural aggregation to answer questions about
PPS’ treatment effects is based on the actual distribution of the dose (Sun and Shapiro, 2022).
The solid line in Figure 10 plots the smoothed density of M (and therefore D) among treated
hospitals. Averaging the curve in Figure 9 directly using fD|D>0(d) gives an estimate of ATT ∗ =

E[ATT (D|D)|D > 0] 0.8. In fact, getting ATT ∗ is even easier: estimate a 2x2 DiD comparing
average outcome changes for treated versus untreated units: E[∆Y |D > 0]−E[∆Y |D = 0]. Because
both terms can be written as integrals over D+ weighted by fD|D>0(d), this approach also yields
ATT ∗ = 0.8 (s.e. = 0.06).

As Theorem 3.4 shows, the TWFE estimate of 1.13 comes from an alternative way to aggregate
ATT (d|d) parameters. How does this compare to ATT ∗? First, because about 20 percent of
hospitals have positive Medicare shares that are still below E[M ], Theorem 3.4 and Theorem 3.5
imply that the TWFE estimate has negative weights. The long-dashed line in Figure 10 shows this
directly by plotting wlev(d) for M > 0. But since all ATT (d|d)’s are positive, negative weighting
should understate ATT ∗, yet βtwfe is larger than our preferred estimate of ATT ∗. The second
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Notes:

Figure 5: Non-Parametric Estimates of ATT (d|d) for Medicare PPS

reason that these two estimates differ is that, as discussed above, TWFE scales the (negatively
weighted) average of ATT ’s by a measure of D. Therefore, comparing βtwfe = 1.13 to a similarly
scaled parameter weightd by fD|D>0(d), ATT ∗/E[D] = 0.8/0.45 = 1.78, shows that TWFE is an
underestimate.

Identification of treatment effects relies on parallel trends which researchers typically justify by
presenting evidence of small pre-treatment trends in the outcome (an implication of parallel trends
in all periods). Figure 11 plots event-study estimates of ATT ∗

t parameters that compare treated to
untreated units so that each coefficient equals:

βtwfe
1983+k = E[Y1983+k(0)− Y1983(0)|D > 0]− E[Y1983+k(0)− Y1983(0)|D = 0]

An extension of Assumption 4 to all periods implies that these coefficients are zero when k < 0,
although the converse is not true. The actual pre-treatment estimates are small. There is a
statistically significant difference in 1982 of -0.19. This may reflect the fact that PPS was passed in
April 1983 and partially took effect in that calendar year, and also that hospitals report labor and
capital costs for different fiscal years. Therefore, some 1983 outcomes may include post-treatment
months. The results also show that the ATT grows in each year following PPS, which matches the
fact that PPS’ subsidy reforms actually phased in over three years.

Remark 3 above showed that TWFE estimates of pre-trends will tend to understate pre-
treatment differences when parallel trends violations all have the same sign and some treated
groups receive negative weights. The TWFE estimate in 1982 in Figure 1 is 0.29. In contrast,
the estimate from Figure 11 scaled by the mean dose among treated hospitals (0.45) equals 0.42.
TWFE thus underestimates the one-year pre-trend by about one third. Although TWFE still re-
jects the null of zero for the 1982 coefficient, in general it carries the risk of masking evidence of
parallel trends violations by putting negative weight on pre-treatment outcome changes of low-dose
units.
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Notes:

Figure 6: Weighting Schemes: ATT, ACR, and Dose Distribution for AF

5.2 Average Causal Responses to PPS

The average causal response on the treated after PPS equals:

ACRT (di|di) = E
[
Y ′
it

(
di
)∣∣D = di

]
= E

[
Y ′
it

(
sKmi

1− sKmi

)∣∣∣∣M = mi

]
Here the mapping between mi and di is important for interpreting a DiD estimand that compares
the change in outcomes for two dose groups:

∂

∂m
E

[
Yt

(
sKm

1− sKm

)
− Yt−1(0)

∣∣∣∣M = m

]
=

=
sK

(1− sKm)2
ACRT (di|di) +

∂

∂ℓ
ATT (d|ℓ)

∣∣
ℓ=m

+
∂

∂ℓ
E[∆Y (0)

∣∣M = ℓ]
∣∣
ℓ=m

This expression shows that under Assumption 5, which ensures that the second and third terms
equal zero, DiD comparisons between hospitals with different Medicare inpatient shares equal
ACR(di) times the PPS-specific mapping between mi and the subsidy ratio: ∂d

∂m = sK
(1−sKm)2

.
Since the dose is convex in m, small differences in m skew subsidy ratios more at high Medicare
share than at low ones. A DiD strategy based on m itself therefore yields a parameter that is the
product of this mapping and the underlying ACR.

This also highlights the economic content of SPT in the context of the theoretical model.

6 Conclusion

In this paper, we have studied difference-in-differences approaches to identifying and estimating
causal effects of a multi-valued or continuous treatment. The paper has a number of results that
are potentially useful to empirical researchers, and, to conclude the paper, we briefly summarize
these results.
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Notes:

Figure 7: Event-Study Estimates of ATT ∗

First, while ATT -type parameters can be identified under a standard parallel trends assump-
tion, a fundamental complication in the case with a multi-valued/continuous treatment is that
comparisons across different amounts of the treatment are confounded by “selection bias” type
terms that make these sorts of comparisons very difficult to interpret. This kind of bias carries over
to identifying average causal responses of more dose. These sorts of difficulties can be avoided by in-
voking alternative parallel trends assumptions, but these assumptions are likely to be substantially
stronger than the ones most researchers have in mind when they are using a difference-in-differences
identification strategy. In addition, pre-tests commonly used in DiD applications are not able to
distinguish between these two types of parallel trends assumptions.

Furthermore, two way fixed effects regressions that are commonly used by empirical researchers
have a number of drawbacks. In a baseline case with two periods, TWFE regressions deliver a
weighted average of causal responses to the treatment. The weights are all positive, but they are
driven by the estimation procedure which can result in misleading results in a number of realistic
cases. Moreover, in cases where there are multiple time periods, variation in treatment timing
and in treatment intensity (which are common in applications), TWFE regressions are additionally
sensitive to (i) treatment effect dynamics and (ii) heterogeneous causal responses across timing
groups. We propose an identification and estimation strategy that is straightforward to implement
and does not suffer from these drawbacks.
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Notes:

Figure 8: Non-Parametric Estimates of ATT (d|d) for Medicare PPS
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A Additional Assumptions
Let ∆Y − E[∆Y |D = 0] = h(D) + u. Under Assumption 4, h(d) = ATT (d|d), whereas under
Assumption 5, h(d) = ATE(d). Let σ, σ, C, c be some finite, positive constants, and ρ ∈ (0, 1).
Finally, let

σ2
K(d) = ψK(d)′E

[
ψK(D)ψK(D)′

∣∣D > 0
]− E

[
u2ψK(D)ψK(D)′

∣∣D > 0
]
E
[
ψK(D)ψK(D)′

∣∣D > 0
]−
ψK(d),

and ||σd,K ||2 = ψK(d)′E
[
ψK(D)ψK(D)′

∣∣D > 0
]−
ψK(d), which satisfies ||σd,K || ≍ σK(d) under

Assumption 6(i) below. Let
∣∣∣∣∣∣σacrd,K

∣∣∣∣∣∣2 = (∂ψK(d))′E
[
ψK(D)ψK(D)′

∣∣D > 0
]−

(∂ψK(d)).

Assumption 6 (Additional regularity conditions).

(i) P
(
E
[
u4|X,D > 0

]
≤ σ2

)
= 1, and P

(
E
[
u2|X,D > 0

]
≥ σ2

)
= 1.

(ii) cK ≤ infd∈Dcont
+

||σd,K ||2 ≤ supd∈Dcont
+

||σd,K ||2 ≤ CK for all K ∈ K;

(iii) lim supK→∞ supd∈Dcont
+ ,K2∈K:K2>K(σ2K(d)

/
σ2K2

(d)) < ρ;

(iv) cK3 ≤ infd∈Dcont
+

∣∣∣∣∣∣σacrd,K

∣∣∣∣∣∣2 ≤ supd∈Dcont
+

∣∣∣∣∣∣σacrd,K

∣∣∣∣∣∣2 ≤ CK3 for all K ∈ K.

Assumption 6(iii) is only needed for Theorem 4.2(b), but we keep this assumption here for
simplicity.

B Comparing Alternative Parallel Trends Assumptions
It is worth thinking more carefully about the differences between Assumption 4 and Assumption 5.
In this section, we show that Assumption 5 is not strictly stronger than Assumption 4 though
it is likely to be stronger in practice in most applications. Here, we maintain Assumption 3, so
Yt−1(d) = Yt−1(d

′) = Yt−1(0) for any (d, d′) ∈ D ×D.
To see that Assumption 5 is not strictly stronger, consider the case where there are two doses

d1 and d2. In this case, Assumption 4 is equivalent to the following conditions

E[∆Yt(0)|D = d1] = E[∆Yt(0)|D = d2] = E[∆Yt(0)|D = 0] (B.1)

while Assumption 5 is equivalent to

E[∆Yt(0)] = E[∆Yt(0)|D = 0] (Comp-0)
E[Yt(d1)− Yt−1(0)] = E[Yt(d1)− Yt−1(0)|D = d1] (Comp-1)
E[Yt(d2)− Yt−1(0)] = E[Yt(d2)− Yt−1(0)|D = d2] (Comp-2)

Assumption 4 does not place any restrictions on any potential outcomes besides untreated potential
outcomes, and therefore the “extra” conditions in Equations (Comp-1) and (Comp-2) imply that
Assumption 5 is not weaker than Assumption 4.

On the other hand, Equation (Comp-0) does not imply Equation (B.1); rather, it implies that

E[∆Yt(0)|D = 0] = E[∆Yt(0)|D = d1]
P(D = d1)

P(D = d1) + P(D = d2)
+ E[∆Yt(0)|D = d2]

P(D = d2)

P(D = d1) + P(D = d2)

In other words, the trend in untreated potential outcomes does not have to be exactly the same
for all doses, but, instead, they have to be the same on average.
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In practice, this potentially allows for some units to select their amount of dose on the basis of
the path of their untreated potential outcomes (which is not allowed under the standard parallel
trends assumption in Assumption 4), but that the amount of selection has to average out across
doses to be equal to zero. It seems hard to think of realistic cases where Assumption 5 would be
practically weaker than Assumption 4, though.

A related alternative assumption is

Assumption 5-Alt (Alternative Strong Parallel Trends Assumption). For all d ∈ D and l ∈ D,

E[Yt(d)− Yt−1(d)|D = l] = E[Yt(d)− Yt−1(d)|D = d]

Assumption 5-Alt is a stronger, but related version of the strong parallel trends assumption
in Assumption 5. Assumption 5-Alt says that across all potential doses d, the path of potential
outcomes Yt(d) − Yt−1(d) (which, under a no-anticipation assumption, is the path of outcomes
that a unit would experience if they experienced dose d in time period t) is, on average, (i) the
same across all actual doses experienced, l, and (ii) is equal to the average path of outcomes
for units that actually experienced dose d. Further, note that E[Yt(d) − Yt−1(d)|D = l] is not
identified from the sampling process except in the case where l = d (i.e., the left-hand side of
the equation in Assumption 5-Alt is not identified from the sampling process, but the right-hand
side is). It is immediately clear that this assumption implies both Assumptions 4 and 5. While
it does not place restrictions on the levels of untreated potential outcomes in period t− 1, it does
place (substantial) restrictions on treated potential outcomes and on treatment effect heterogeneity
which is demonstrated in the next proposition.

Proposition B.1. Assumption 5-Alt implies that

ATE(d) = ATT (d|d)

Proof. Starting with the definition of ATE(d),

ATE(d) = E[Yt(d)− Yt(0)]

= E[Yt(d)− Yt−1(0)]− E[Yt(0)− Yt−1(0)]

= E[Yt(d)− Yt−1(0)|D = d]− E[Yt(0)− Yt−1(0)|D = d]

= E[Yt(d)− Yt(0)|D = d]

= ATT (d|d)

where the second equality holds by adding and subtracting E[Yt−1(0)], the third equality holds by
Assumption 5-Alt (also, notice that this equality does not hold under Assumption 4, nor is ATE(d)
generally equal to ATT (d|d) under Assumption 4 alone), the fourth equality holds by canceling the
two E[Yt−1(0)|D = d] terms, and the remaining term in that equality is ATT (d|d)

Proposition B.1 shows that Assumption 5-Alt implies that the overall average effect of dose d
is equal to the average effect of dose d for units who actually experienced dose d. The implication
of this result is that Assumption 5-Alt rules out many forms of selection into a particular dose d
on the basis of the effect of that amount of dose.

We end this section by noting that although Assumption 5 allows one to identify the ATE(d)’s,
it does not allow one to identify the ATT (d|d)’s parameters. This is because Assumption 5 does
not allow identification of E[Yt(0)|D = d], only their averages across values of d. This indeed
highlights that Assumption 4 and Assumption 5 are non-nested. Of course, as illustrated above in
Proposition B.1, Assumption 5-Alt is strong enough to imply these two conditions.
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C Alternative Decompositions for TWFE Regression
In this section, we provide three alternative decompositions of the TWFE regression estimator in
Equation (1.1) in the baseline case with two periods, where no unit is treated yet in the first period,
and where some units remain untreated in the second period.

The first decomposition is one where βtwfe equals a weighted average of 2× 2 DiD comparisons
between pairs of dose groups scaled by the difference in their doses:

Proposition C.1. Consider βtwfe in Equation (1.1) and suppose that Assumption 1 holds.

(1) If Assumption 2(a) holds, then

βtwfe =

∫
D+

∫
D,h>l

w2×2,cont
1 (l, h)

(m∆(h)−m∆(l))

(h− l)
dh dl

+

∫
D,h>0

w2×2,cont
0 (h)

m∆(h)−m∆(0)

h
dh

where

w2×2,cont
1 (l, h) = (h− l)2(fD(h) + fD(l))

2fD|{h,l}(h)fD|{h,l}(l)/Var(D)

w2×2,cont
0 (h) = h2(fD(h) + pD0 )

2fD|{h,0}(h)p
D
0|{h,0}/Var(D)

and

fD|{h,l}(h) = fD(h)/(fD(h) + fD(l))

fD|{h,l}(l) = fD(l)/(fD(h) + fD(l))

fD|{h,0}(h) = fD(h)/(fD(h) + pD0 )

pD0|{h,0} = pD0 /(fD(h) + pD0 )

In addition, w2×2,cont
1 (l, h) ≥ 0 for all (l, h) ∈ D+ × Dh>l, w2×2,cont

0 (h) ≥ 0 for all h ∈ D+,
and

∫
D+

∫
D,h>l w

2×2,cont
1 (l, h) dh dl +

∫
D+

w2×2,cont
0 (h) dh = 1.

(2) If Assumption 2(b) holds, then

βtwfe =
∑
l∈D

∑
h∈D,h>l

w2×2,disc(l, h)
(m∆(h)−m∆(l))

(h− l)

where

w2×2,disc(l, h) = (h− l)2(pDl + pDh )
2pDl|{g,h}(1− pDl|{g,h})/Var(D)

pDl|{l,h} = P(D = l|D ∈ {l, h})

and pDh = P(D = h), pDl = P(D = l). In addition, w2×2,disc(l, h) ≥ 0 for all (l, h) ∈ D2 and∑
l∈D

∑
h∈D,h>l w

2×2,disc(l, h) = 1.

Proof. From the proof of Theorem 3.4, we have that

β = E
[
(D − E[D])

Var(D)
m∆(D)

]
=

1

Var(D)

∫
D
(h− E[D])m∆(h) dFD(h)

=
1

Var(D)

∫
D

(
h−

∫
D
l dFD(l)

)
m∆(h) dFD(h)
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=
1

Var(D)

∫
D

∫
D
(h− l)m∆(h) dFD(h) dFD(l)

=
1

Var(D)

∫
D

∫
D,h>l

(h− l)(m∆(h)−m∆(l)) dFD(h) dFD(l)

=
1

Var(D)

∫
D

∫
D,h>l

(h− l)2
(m∆(h)−m∆(l))

(h− l)
dFD(h) dFD(l) (C.1)

where the second equality holds by writing the expectation as an integral, the third equality write
E[D] as an integral, the fourth equality rearranges terms, the fifth equality holds because the
integrations are symmetric, and the last equality holds by multiplying and dividing by (h− l).

The above arguments hold if treatment is continuous or discrete. Under Assumption 2

Equation (C.1) = 1

Var(D)

∫
D+

∫
D,h>l

(h− l)2
(m∆(h)−m∆(l))

(h− l)
fD(h)fD(l) dh dl

+
1

Var(D)

∫
D,h>0

h2
m∆(h)−m∆(0)

h
fD(h)p

D
0 dh

which holds by splitting up the first integral in Equation (C.1) by whether l ∈ D+ or l = 0. Then,
the result for part (1) holds by multiplying and dividing the first line by (fD(h) + fD(l))

2 and by
the definition fD|{h,l} and multiplying and dividing the second line by (fD(h) + pD0 )

2 and by the
definitions of fD|{h,0} and pD0|{h,0}.

Under Assumption 2(b),

Equation (C.1) = 1

Var(D)

∑
l∈D

∑
h∈D,h>l

(h− l)2
(m∆(h)−m∆(l))

(h− l)
pDh p

D
l

=
1

Var(D)

∑
l∈D

∑
h∈D,h>l

(h− l)2
(m∆(h)−m∆(l))

(h− l)
(pDl + pDh )

2pDl|{g,h}(1− pDl|{g,h})

where the first equality holds immediately and the second equality holds by multiplying and dividing
by (pDl + pDh )

2 and by the definition of pDl|{g,h}.
That the weights are all positive holds immediately by their definitions. That the weights

integrate to one holds because∫
D+

∫
D,h>l

w2×2,cont
1 (l, h) dh dl +

∫
D+

w2×2,cont
0 (h) dh =

1

Var(D)

∫
D

∫
D
1{h > l}(h− l)2 dFD(h) dFD(l)

= 1

The same sort of argument holds for the discrete case as well.

Proposition C.1 is analogous to the decomposition theorem for binary staggered timing designs
in Goodman-Bacon (2021) in that it expresses the TWFE coefficient as a variance-weighted average
of 2× 2 DiD comparisons (it is also mechanically very similar to the Wald-IV theorem in Angrist
(1991)). Each 2×2 term is the change in average outcomes for a group with a higher dose (m∆(h))
minus the same difference for a group with a lower dose (m∆(l)), divided by the difference in
their doses (h − l). de Chaisemartin and D’Haultfœuille (2018) refer to this as a “Wald-DD”
estimator. The weights combine the size of each subsample, (pDl + pDh ), with the variance of the
dose in that subsample. The variance depends on the relative size of the two groups, measured by
pDl|{g,h}(1−p

D
l|{g,h}), and the distance between their doses, (h− l). This formula reflects the intuitive
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Notes: The figure plots each 2× 2 Wald DiD estimate against its weight from Proposition C.1. Closed black circles
are comparisons between one dose group and untreated observations: (∆Ȳh −∆Ȳ0)/h. Open gray triangles are
comparisons between two dose groups: (∆Ȳh −∆Ȳℓ)/(h− ℓ). The weights are proportional to the share of
observations in each subsample (nh + nℓ)

2 and the variance of the dose in each subsample. The variance of the dose
equals the relative size of the two groups (nhℓ(1− nhℓ)), and the square of the distance between their doses (h− ℓ)2.

Figure 9: Baseline Case Decomposition: Two-Way Fixed Effects Estimator as a
Weighted Average of Wald-DiDs

way researchers read a scatter plot between m∆(d) and d: each
(m∆(h)−m∆(l)

k−l

)
is the slope of a line

connecting two points and large groups and groups with very different doses (i.e., far apart on the
x-axis) have the most influence on the slope.

Using the same simulated data as in Appendix E, Figure 9 represents the decomposition result
for βtwfe in a different way by plotting each 2 × 2 Wald-DiD against its weight as in Figure 6 of
Goodman-Bacon (2021). Comparisons between each treated group and the untreated group are in
black circles and comparisons between two treated groups are in gray triangles. With K non-zero
doses and some untreated units there are (K + 1)K/2 Wald-DiD comparisons in Proposition C.1.
With 18 non-zero doses our example has 171 Wald-DiD terms. Because the untreated group is so
large (a quarter of the sample), comparisons to the untreated group get about half the weight in
this example even though there are just 18 of them, one for each observed dose.

Next, we consider a decomposition that is based on (m∆(d) −m∆(0))/d. Under, for example,
Assumption 5, this expression is equal to ATE(d)/d which is an alternative way to define an average
causal response.

Proposition C.2. Consider βtwfe in Equation (1.1) and suppose that Assumption 1 holds.

(1) If Assumption 2(a) holds, then

βtwfe =

∫
D+

walt-acr,cont
1 (l)

(m∆(l)−m∆(0))

l
dl
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where

walt-acr,cont
1 (l) =

(l − E[D])l

Var(D)
fD(l)

In addition,
∫
D w

alt-acr,cont(l) dl = 1, but walt-acr,cont(l) can be negative for some values of
l ∈ D.

(2) If Assumption 2(b) holds, then

βtwfe =
∑
l∈D+

walt-acr,disc (m∆(l)−m∆(0))

l

where

walt-acr,disc(l) =
(l − E[D])l

Var(D)
pDl

In addition,
∑

l∈D+
walt-acr,disc(l) = 1, but walt-acr,disc can be negative for some values of l ∈ D.

Proof. From the proof of Theorem 3.4, we have that

βtwfe =
P(D > 0)

Var(D)
E[(D − E[D])(m∆(D)−m∆(0))|D > 0]

=
P(D > 0)

Var(D)

∫
D+

(l − E[D])(m∆(l)−m∆(0)) dFD|D>0(l)

=
P(D > 0)

Var(D)

∫
D+

(l − E[D])l
(m∆(l)−m∆(0))

l
dFD|D>0(l)

=
1

Var(D)

∫
D+

(l − E[D])l
(m∆(l)−m∆(0))

l
fD(l) dl

=

∫
D+

walt-acr,cont(l)
(m∆(l)−m∆(0))

l
dl

where the second equality holds by writing the expectation as an integral, the third equality holds
by multiplying and dividing by l, the fourth equality holds under Assumption 2, and the last
equality holds by the definition of walt-acr,cont.

For part (2), the first three equalities above continue to hold. The fourth equality replaces the
integral with a summation and fD(l) with pDl ; then the result holds by the definition of walt-acr,disc.

In both cases, the weights can be negative because it is possible that l < E[D] for some values
of l ∈ D+. That the weights integrate to 1 holds because∫

D+

walt-acr,cont(l) dl =

(∫
D+

(l − E[D])l dFD(l) + (0− E[D])0P (D = 0)

)/
Var(D)

=

(∫
D
(l − E[D])l dFD(l)

)/
Var(D)

= 1

An analogous argument applies for walt-acr,disc.

Finally, we provide a decomposition in terms of levels of paths of outcomes: m∆(d)−m∆(0).

Proposition C.3. Consider βtwfe in Equation (1.1) and suppose that Assumption 1 holds.
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(1) If Assumption 2(a) holds, then

βtwfe =

∫
D
wlevels,cont(l)(m∆(l)−m∆(0)) dl

where

wlevels,cont(l) =
(l − E[D])

Var(D)
fD(l)

In addition,
∫
D w

levels,cont(l) dl = 0, and wlevels,cont(l) can be negative for some values of l ∈ D.

(2) If Assumption 2(b) holds, then

βtwfe =
∑
l∈D+

wlevels,disc(m∆(l)−m∆(0))

where

wlevels,disc(l) =
(l − E[D])

Var(D)
pDl

In addition,
∑

l∈D+
wlevels,disc(l) = 0, but wlevels,disc can be negative for some values of l ∈ D.

Proof. From the proof of Theorem 3.4, we have that

βtwfe =
P(D > 0)

Var(D)
E[(D − E[D])(m∆(D)−m∆(0))|D > 0]

=
P(D > 0)

Var(D)

∫
D+

(l − E[D])(m∆(l)−m∆(0)) dFD|D>0(l)

=
1

Var(D)

∫
D+

(l − E[D])(m∆(l)−m∆(0))fD(l) dl

=

∫
D+

wlevels,cont(l)(m∆(l)−m∆(0)) dl

where the second equality holds by writing the expectation as an integral, the third equality holds
under Assumption 2, and the last equality holds by the definition of wlevels,cont.

For part (2), the first two equalities above continue to hold. For the third equality, replace the
integral with a summation and fD(l) with pDl ; then the result holds by the definition of wlevels,disc.

In both cases, the weights can be negative since l can be less than E[D]. That the weights
integrate to 0 holds because∫

D+

wlevels,cont(l) dl =

(∫
D+

(l − E[D]) dFD(l) + (0− E[D])0P(D = 0)

)/
Var(D)

=

(∫
D
(l − E[D]) dFD(l)

)/
Var(D)

= (E[D]− E[D])/Var(D)

= 0

An analogous argument applies for wlevels,disc.

Proposition C.3 suggests that it would be inappropriate to interpret βtwfe as approximating
the level effect of the dose.
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D Additional Details for Multiple Periods and Variation in Treat-
ment Timing

In this section, we consider alternative identifying assumptions for treatment effect parameters of
interest in the case with multiple periods, variation in treatment timing, and where the dose can
vary across units.

As in the baseline case with two time periods, identifying ATT parameters involves untreated
groups that serve as a valid counterfactual for treated groups. We first define a parallel trend
assumption similar to Assumption 4 whose parts correspond to different comparison groups and
time periods where one may believe that parallel trends in untreated potential outcomes holds.

Assumption 4-MP (Parallel Trends with Multiple Periods and Variation in Treatment Timing).

(a) For all g ∈ G, t = 2, . . . , T , d ∈ D, E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|D = 0]

(b) For all g ∈ G, t = g, . . . , T , d ∈ D, E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|D = 0]

(c) For all g ∈ G, t = g, . . . , T , d ∈ D, E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|G = k] for all groups
k ∈ G such that t < k (i.e., pre-treatment periods for group k).

Assumption 4-MP(a) is the strongest assumption about paths of untreated potential outcomes.
It says that paths of untreated potential outcomes are the same for all groups and for all doses
across all time periods. Assumption 4-MP(b) says that the path of outcomes for group g in post
treatment time periods is the same as the path of untreated potential outcomes among never-treated
units. Parallel pre-trends need not hold under part (b). Assumption 4-MP(c) says that the path
of outcomes for group g in post treatment time periods is the same as the path of outcomes among
all groups that are not treated yet in that period — this includes both the untreated group as well
as groups that will eventually be treated but that are not treated yet. Based on the results in
earlier sections, note that each parallel trends assumption in Assumption 4-MP is directed towards
identifying ATT (g, t, d|g, d) rather than ATE(g, t, d).

Next, we provide an analogous set of assumptions that target identifying ATE(g, t, d).

Assumption 5-MP-Extended (Strong Parallel Trends with Multiple Periods and Variation in
Treatment Timing).

(a) For all g ∈ G, t = 2, . . . , T , and d ∈ D, E[Yt(g, d) − Yt−1(0)|G = g,D = d] = E[Yt(g, d) −
Yt−1(0)|G = g] and E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|D = 0]

(b) For all g ∈ G, t = g, . . . , T , d ∈ D, E[Yt(g, d) − Yt−1(0)|G = g,D = d] = E[Yt(g, d) −
Yt−1(0)|G = g] and E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|D = 0]

(c) For all g ∈ G, t = g, . . . , T , d ∈ D, E[Yt(g, d) − Yt−1(0)|G = g,D = d] = E[Yt(g, d) −
Yt−1(0)|G = g] and E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|G = k] for all groups k ∈ G such
that t < k (i.e., pre-treatment periods for group k).

Parts (a), (b), and (c) of the assumption correspond to the same parts in Assumption 4-MP
and differ based on which group is used as the comparison group in terms of untreated potential
outcomes. Part (a) additionally corresponds to Assumption 5-MP in the main text. Finally, the
reason that there are two parts to these assumptions rather than just one as in Assumption 4-MP is
that, in the setup of this section, conditional on being in group g with t ≥ g, there are no untreated
units in the group; thus, the second part of the assumption handles untreated potential outcome
slightly differently than treated potential outcomes.
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Theorem D.1. Under Assumptions 1-MP, 2-MP(a), and 3-MP, and for all g ∈ G, t = 2, . . . , T
such that t ≥ g, and for all d ∈ D,

(1a) If, in addition, either Assumption 4-MP(a) or (c) holds, then

ATT (g, t, d|g, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

(1b) If, in addition, Assumption 4-MP(b) holds, then

ATT (g, t, d|g, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|D = 0]

(2a) If, in addition, either Assumption 5-MP-Extended(a) or (c) holds, then

ATE(g, t, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

(2b) If, in addition, Assumption 5-MP-Extended(b) holds, then

ATE(g, t, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|D = 0]

The proof of Theorem D.1 is provided in Appendix G. Part (1a) of Theorem D.1 says that
ATT (g, t, d|g, d) — the average effect of participating in the treatment in time period t among
units who became treated in period g and experienced dose d — is identified under a parallel
trends assumption and that it is equal to the average path of outcomes experienced by units in
group g under dose d adjusted by the average path of outcomes experienced among units that are
not-yet-treated by period t. The results in the other parts are similar as well. For part (1b), the
weaker parallel trends assumption in Assumption 4-MP(b) implies that the never-treated group
should be used as the comparison group (this is a smaller comparison group relative to the not-
yet-treated group). Parts (2a) and (2b) show that under Assumption 5-MP-Extended the same
estimands identify ATE(g, t, d).

Remark 5. The parallel trends assumptions in Assumption 4-MP are not the only possible ones.
Interestingly, with a multi-valued/continuous treatment, there are some possible (and reasonable)
comparison groups that are available that are not available with a binary treatment. For example,
one could assume that

For all g ∈ G, t = g, . . . , T , d ∈ D, E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|G = k,D = d] for all
groups k ∈ G such that t < k (i.e., pre-treatment periods for group k).

This sort of assumption amounts to using as a comparison group the set of units that are
not yet treated but will eventually experience the same dose. It is straightforward to adapt the
approach described in Theorem D.1 to this sort of case and propose related estimators that can
deliver consistent estimates of ATT (g, t, d|g, d).

Remark 6. If a researcher is interested in targeting a particular ATT (g, t, d|g, d) or ATE(g, t, d), it
is generally possible to weaken Assumption 4-MP or 5-MP-Extended. For example, one could make
parallel trends directly about long differences, (Yt − Yg−1), rather than all short differences (this
sort of assumption is generally weaker), or, in part (c) of each assumption, use more aggregated
comparison groups instead of imposing parallel trends for all possible comparison groups (which is
also weaker), or alternatively only make parallel trends assumptions for the particular dose being
considered.
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E Multiple Periods and Variation in Treatment Timing and Dose
DiD applications often use more than two time periods in which case treatments, whether binary
or not, can turn on at different times for different units. This section extends the results from
the previous sections to allow for multiple time periods (t = 1, ..., T ) with variation in the time
when units become treated (G = g ∈ G). By convention, we set G = T + 1 for units that remain
untreated across all time periods, and we exclude units that are treated in the first period so that
G ⊆ {2, . . . , T + 1}.34 Treated units receive dose D = d ∈ D. We also focus on the case that
treatment is an absorbing state (or where units do not “forget” their treatment experience).

In this section, we somewhat modify the potential outcomes notation from the previous section
to allow for variation in treatment timing. For each unit, we define potential outcomes Yit(g, d)
indexed by both treatment timing and dose. Note that treated potential outcomes at time t
depend on when a unit first becomes treated—i.e., Yit(g, d) may not equal Yit(g′, d) for g ̸= g′—
which allows for general treatment effect dynamics. Yit(T + 1, 0) is the outcome that unit i would
experience if they did not participate in the treatment in any period. For simplicity, we define
Yit(0) = Yit(T + 1, 0) and refer to this as a unit’s untreated potential outcome.35 We also define
the variable Wit = Di1{t ≥ Gi} which is the amount of dose that unit i experiences in time period
t; Wit = 0 for all units that are not yet treated by time period t.

Throughout this section, we make the following assumptions.

Assumption 1-MP (Random Sampling). The observed data consists of {Yi1, . . . , YiT , Di, Gi}ni=1

which is independent and identically distributed.

Assumption 2-MP (Support). (a) The support of D, D = {0}∪D+. In addition, P(D = 0) > 0
and dFD|G(d|g) > 0 for all (g, d) ∈ (G \ {T + 1})×D+.

(b) D+ = [dL, dU ] with 0 < dL < dU <∞.

(c) For all g ∈ (G \{T +1}) and t = 2, . . . , T , E[∆Yt|G = g,D = d] is continuously differentiable
in d on D+.

Assumption 3-MP (No Anticipation / Staggered Adoption). (a) For all g ∈ G and t =
1, . . . , T with t < g (i.e., in pre-treatment periods), Yit(g, d) = Yit(0).

(b) Wi1 = 0 almost surely and for t = 2, . . . , T , Wit−1 = d implies that Wit = d.

Assumption 1-MP says that we have access to T periods of panel data and observe each unit’s
dose and treatment timing. Assumption 2-MP extends our definitions of the support of D to the
case with multiple periods and variation in treatment timing. As in earlier sections, many of our
identification results only require part (a) (which allows for very general treatment regimes) while
some of our results are specialized to the continuous case as in parts (b) and (c).36 Assumption 2-
MP also imposes a kind of common support of the dose across timing groups, though it allows
for the distribution of the dose to vary across timing groups in otherwise unrestricted ways; that

34We could alternatively use G = ∞ for units that remain untreated across all time periods.
35The analysis in this section could be extended to allow for units to be “treated” at time g but with d = 0.

For example, units may live in a jurisdiction that implements a program at time g for which they are not eligible.
Similarly, we could allow for units to have dose d but remain untreated g = T + 1. This would make sense if a
program’s dose was based on a known formula so that it was possible to observe d even for units not actually selected
for treatment.

36For the results in this section that are specialized to the case where the treatment is continuous, it is straight-
forward to adjust them to allow for a multi-valued discrete treatment along the same lines as in the previous section.
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said, it appears to be straightforward to relax this part of the assumption at the cost of additional
notation.

Assumption 3-MP(a) rules out that units anticipate experiencing the treatment in ways that
affect their outcomes before they actually participate in the treatment. It would be relatively
straightforward to extend our arguments in this section to allow for anticipation along the lines of
Callaway and Sant’Anna (2020) (in the case of a binary treatment). Assumption 3-MP(b) implies
that we consider the case with staggered adoption which means that once units become treated with
dose d they remain treated with dose d in all subsequent periods. This allows us to fully categorize
a unit by the timing of their treatment adoption and the amount of dose that they experience.

For each unit, we observe their outcome in period t, Yit, which is given by

Yit = Yit(0)1{t < Gi}+ Yit(Gi, Di)1{t ≥ Gi}.

In other words, we observe a unit’s untreated potential outcomes in time periods before they
participate in the treatment, and we observe treated potential outcomes in post-treatment time
periods that can depend on the timing of the treatment and the amount of the dose.

E.1 Parameters of Interest with a Staggered Continuous Treatment
The causal parameters of interest are the same as in our baseline case except that they are separately
defined for each timing group and in each post-treatment time period. The average treatment effect
parameters of dose d, for group g, in time period t are:

ATT (g, t, d|g, d) = E[Yt(g, d)− Yt(0)|G = g,D = d] and ATE(g, t, d) = E[Yt(g, d)− Yt(0)|G = g].

ATT (g, t, d|g, d) is the average effect of dose d, for timing group g, in time period t, among
units in group g that experienced dose d. ATE(g, t, d) is the average effect of dose d among all
units in timing group g (not all units in the population though), in time period t. ATT (g, t, d|g, d)
and ATE(g, t, d) are similar to the group-time average treatment effects discussed in Callaway and
Sant’Anna (2020) except they are also specific to a dose, and allow for the effect of dose to vary
arbitrarily across timing groups and time periods.

ACR parameters are similarly defined as the effect of a marginal change in the dose on the
outcomes of timing group g in period t. For continuous treatments the ACR parameters are:

ACRT (g, t, d|g, d) = ∂E [Yt(g, l)|G = g,D = d]

∂l

∣∣∣∣∣
l=d

,

ACR(g, t, d) =
∂E [Yt(g, d)|G = g]

∂d
.

For discrete treatments the ACR parameters are:
ACRT (g, t, dj |g, dj) = E[Yt(g, dj)− Yt(g, dj−1)|D = dj , G = g],

ACR(g, t, dj) = E[Yt(g, dj)− Yt(g, dj−1)|G = g].

The two parameters—ACRT (g, t, d|g, d) and ACR(g, t, d)—correspond to ATT (g, t, d|g, d) and
ATE(g, t, d) in that they are either local to a specific timing group and dose or refer to the entire
population.

In many applications, ACR(g, t, d) is relatively high-dimensional and challenging to report.
There are a number of possible aggregations that reduce dimensionality and result in parameters
that are easier to interpret. We focus on aggregations into an overall causal response across doses,
timing groups, and treated periods, as well as into an event study; see Callaway and Sant’Anna
(2020) for additional possible aggregations along these lines. Also, note that the aggregations
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considered below are identified if ACR(g, t, d)’s are identified.
To start with, we define an overall causal response of experiencing dose d, for timing group g,

across all post-treatment time periods

ACRgroup(g, d) =
1

T − g + 1

T∑
t=g

ACR(g, t, d).

These can be further aggregated by averaging across timing groups,

ACRoverall(d) =
∑
g∈G

ACRgroup(g, d)P (G = g|G ≤ T , D = d)

ACRoverall(d) is the average causal response of dose d across all timing groups that participate in
the treatment in any period. It averages ACR(g, t, d) across all observed doses, groups, and treated
periods (in other words, all doses at each event-time and then across all event-times). This is a
natural analogue of ACR(d) in the two period case.

Another further aggregation is to average across the distribution of the dose (of all timing
groups that participate in the treatment)

ACR∗,mp = E
[
ACRoverall(D)|G ≤ T

]
.

ACR∗,mp is the overall average causal response (averaged across doses and and over all timing
groups that participate in the treatment in any time period). ACR∗,mp is a single number; it is
the analogue of ACR∗ from the two period case and is arguably a natural target parameter for a
TWFE regression.

Next, we consider an event study type of aggregation.

ACRes(e, d) =
∑
g∈G

1{g + e ≤ T }ACR(g, g + e, d)P(G = g|G+ e ≤ T , D = d).

ACRes(e, d) is the average causal response of dose d among units that have been exposed to the
treatment for exactly e periods. This can be further aggregated across the distribution of the dose

ACR(e) = E[ACRes(e,D)|G ≤ T ],

which is the average partial effect (averaged across all doses) among units that have been exposed
to the treatment for exactly e periods. Importantly, this keeps the distribution of the dose constant
across different lengths of exposure to the treatment; the distribution of the dose is set to be equal
to the distribution of the dose among the group of units that ever participate in the treatment. For
values of e ≥ 0, ACR(e) can be interpreted as dynamic effects; but it is also interesting to consider
cases where e < 0 which can be interpreted as a pre-test of the parallel trends assumption.

Remark 7. The aggregations above are related to ACR(g,t,d), but similar arguments would
apply to other parameters discussed in the paper including ATT (g, t, d|g, d), ATE(g, t, d), and
ACRT (g, t, d|g, d).

E.2 Identification with a Continuous Treatment and Staggered Timing
With multiple time periods and variation in treatment timing, there are several possible versions
of parallel trends and strong parallel trends assumptions that one could make because there are
many ways to compare groups with different changes in their dose over time.

We focus on a version of strong parallel trends in this section and we provide a number of
alternative parallel trends assumptions (and corresponding identification results) in Appendix D.
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Assumption 5-MP (Strong Parallel Trends with Multiple Periods and Variation in Treatment
Timing). For all g ∈ G, t = 2, . . . , T , and d ∈ D, E[Yt(g, d) − Yt−1(0)|G = g,D = d] =
E[Yt(g, d)− Yt−1(0)|G = g] and E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|D = 0].

Assumption 5-MP is an extension of Assumption 5 to the case with multiple time periods. In
particular, it restricts paths of treated potential outcomes (not just paths of untreated potential
outcomes) so that all dose groups treated at time g would have had the same path of potential
outcomes at every dose.
Theorem E.1. Under Assumptions 1-MP, 2-MP(a), 3-MP, and 5-MP, and for all g ∈ G, t =
2, . . . , T such that t ≥ g, and for all d ∈ D+.

ATE(g, t, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0].

If, in addition, Assumption 2-MP(b) and (c) hold, then, for all d ∈ D+,

ACR(g, t, d) =
∂E[Yt − Yg−1|G = g,D = d]

∂d
.

The proof of Theorem E.1 is provided in Appendix F. The result is broadly similar to the one in
the case with two periods. It says that ATE(g, t, d) can be recovered by a DiD comparison between
the path of outcomes from period g − 1 to period t for units in group g treated with dose d and
the path of outcomes among units that have not participated in the treatment yet. Relative to the
case with two time periods, the main difference is that the “pre-period” is g − 1. The reason to
use the base period g − 1 is that this is the most recent time period when the researcher observes
untreated potential outcomes for units in group g. Thus, the result is very much like the case with
two time periods: take the most recent untreated potential outcomes for units in a particular group,
impute the path of outcomes that they would have experienced in the absence of participating in
the treatment from the group of not-yet-treated units (these steps yield mean untreated potential
outcomes that units in group g would have experienced in time period t) and compare this to the
outcomes that are actually observed for units in group g that experienced dose d.
Remark 8. Theorem E.1 identifies ATE(g, t, d) and ACR(g, t, d) under a version of strong parallel
trends. In Appendix D, we discuss identifying ATT (g, t, d|g, d) and ACRT (g, t, d|g, d) under a
version of parallel trends that only involves untreated potential outcomes; in this case, like in the
two period case, ATT (g, t, d|g, d) is identified, comparisons of ATT (g, t, d|g, d) across different
values of d do not deliver a causal effect of moving from one dose to another (as they additionally
include “selection bias” terms), and derivative of paths of outcomes over time do not recover
ACRT (g, t, d|g, d) due to the same “selection bias” terms.
Remark 9. It is natural to estimate ATE(g, t, d) by simply replacing the population averages in
Theorem E.1 by their sample counterpart. This approach is very simple and intuitive, but in some
cases, it may be possible to develop more efficient estimators using GMM. See the discussion in
Marcus and Sant’Anna (2021) in the context of a binary treatment. When treatment d is continuous,
some smoothing is required. However, one can use off-the-shelf standard nonparametric estimations
procedures based on kernels or sieves to estimate these target causal parameters.

E.3 TWFE estimators with multiple time periods and variation in treatment
timing

In applications with multiple periods and variation in treatment timing, empirical researchers al-
most always estimate a TWFE regression

Yit = θt + ηi + βtwfeWit + vit. (E.1)
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Equation (E.1) is exactly the same as the TWFE regression in the baseline case with two periods
in Equation (1.1) only with the notation slightly adjusted to match this section. The results in
this section generalize the results in several recent papers on TWFE estimates including Goodman-
Bacon (2021) and de Chaisemartin and D’Haultfœuille (2020) to our DiD setup with variation in
treatment intensity.

To start with, write population versions of TWFE adjusted variables by

Ẅit = (Wit − W̄i)−

(
E[Wt]−

1

T

T∑
t=1

E[Wt]

)
, where W̄i =

1

T

T∑
t=1

Wit.

The population version of the TWFE estimator is

βtwfe =

1

T

T∑
t=1

E[YitẄit]

1

T

T∑
t=1

E[Ẅ 2
it]

. (E.2)

As in the previous section, we present both a “mechanical” decomposition of the TWFE esti-
mator and a “causal” decomposition of the estimand that relates assumptions to interpretation.

In order to define these decompositions, we introduce a bit of new notation. First, define the
fraction of periods that units in group g spends treated as

Ḡg =
T − (g − 1)

T
.

For the untreated group g = T + 1 so that ḠT +1 = 0.
Next, we define time periods over which averages are taken. For averaging variables across time

periods, we use the following notation, for t1 ≤ t2,

Ȳ
(t1,t2)
i =

1

t2 − t1 + 1

t2∑
t=t1

Yit.

It is also convenient to define some particular averages across time periods. For two time periods g
and k, with k > g, (below, g and k will often index groups defined by treatment timing), we define

Ȳ
PRE(g)
i = Ȳ

(1,g−1)
i , Ȳ

MID(g,k)
i = Ȳ

(g,k−1)
i , Ȳ

POST (k)
i = Ȳ

(k,T )
i .

Ȳ
PRE(g)
i is the average outcome for unit i in periods 1 to g − 1, ȲMID(g,k)

i is the average outcome
for unit i in periods g to k − 1, and Ȳ

POST (g,k)
i is the average outcome for unit i in periods k to

T . Below, when g and k index groups, Ȳ PRE(g)
i is the average outcome for unit i in periods before

units in either group are treated, ȲMID(g,k)
i is the average outcome for unit i in periods after group

g has become treated but before group k has been treated, and Ȳ
POST (k)
i is the average outcome

for unit i after both groups have become treated.
To fix ideas about how the staggered-timing/continuous treatment case works, consider a setup

with two timing groups, g and k with k > g. Some units in the “early -treated” group have d = 2
and others have d = 4. Some units in the late treated group have d = 5 and others have d = 6.
Thus, the four groups are early-treated/high-dose, early-treated/low-dose, late-treated/high-dose,
and late-treated/low-dose. Figure 10 plots constructed outcomes for these groups with a treatment
effect that is a one-time shift equal to d1.5.

Following Goodman-Bacon (2021), we motivate the decomposition of the TWFE estimand by
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Notes: The figure plots simulated data for four groups: early-treated/high-dose, early-treated/low-dose,
late-treated/high-dose, and late-treated/low-dose.

Figure 10: A Simple Set-Up with Staggered Timing and Variation in the Dose

considering the four types of simple DiD estimands that can be formed using only one source of
variation. The first comparison is a within-group comparison of paths of outcomes among units
that experienced different amounts of the treatment.

δWITHIN (g) =
Cov(Ȳ POST (g) − Ȳ PRE(g), D|G = g)

Var(D|G = g)
. (E.3)

This term is essentially the same as the expression for the TWFE estimand in the baseline two-
period case. It equals the OLS (population) coefficient from regressing the change in average
outcomes before and after g for units treated at time g on their dose, d. Figure 11 uses the four-
group example to show how δWITHIN (g) and δWITHIN (k) use higher-dose units as the “treatment
group” and lower-dose units as the “comparison group”.

The second comparison is based on treatment timing. It compares paths of outcomes between
a particular timing group g and a “later-treated” group k (i.e., k > g) in the periods after group g
is treated but before group k becomes treated relative to their common pre-treatment periods.37

δMID,PRE(g, k) =
E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = k

]
E[D|G = g]

. (E.4)

Panel A of Figure 12 plots the outcomes used in this comparison with timing-group averages in
black and the specific dose groups from Figure 10 in light gray. Under a parallel trends assumption,
we show below that this term corresponds to a reasonable treatment effect parameter because the

37Each of the following expressions also includes a term in the denominator. Below, this term is useful for inter-
preting differences across groups as partial effects of more treatment, but, for now, we largely ignore the expressions
in the denominator.
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Notes: The figure shows the within-timing group comparison between higher- and lower-dose units defined by
δWITHIN (g) and δWITHIN (k).

Figure 11: Within-Timing-Group Comparisons Across Doses

path of outcomes for group k (which is still in its pre-treatment period here) is what the path
of outcomes would have been for group g if it had not been treated. Also note that this term
encompasses comparisons of group g to the “never-treated” group.

The third comparison is between paths of outcomes for the “later-treated” group k in its post-
treatment period relative to a pre-treatment period adjusted by the same path of outcomes for the
“early -treated” group g.

δPOST,MID(g, k) =
E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = g

]
E[D|G = k]

.

(E.5)
These terms use the already-treated group g as the comparison group for group k. Panel B of
Figure 12 plots the outcomes used in this term. Mechanically, the TWFE regression exploits this
comparison because group g’s treatment status/amount is not changing over these time periods.
However, these are post-treatment periods for group g and parallel trends assumptions do not place
restrictions on paths of post-treatment outcomes, which are subtracted in Equation (E.5). Below
we discuss assumptions about treatment effect heterogeneity over time that are necessary to deal
with this issue.38

The final comparison that shows up in the TWFE estimator is between paths of outcomes
between “early” and “late” treated groups in their common post-treatment periods relative to
their common pre-treatment periods. In other words, this comparison only uses periods in which
treatment status differs and focusing only on the “endpoints” where the two timing groups are
either both untreated or both treated with potentially different average doses.

δPOST,PRE(g, k) =
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
E[D|G = g]− E[D|G = k]

. (E.6)

Figure 13 shows the outcomes that determine the comparisons that show up in this term. The
reason that this term shows up in βtwfe is that differences in the paths of outcomes between groups

38This sort of comparison also shows up in the case with a binary, staggered treatment. See, e.g., Borusyak and
Jaravel (2017), de Chaisemartin and D’Haultfœuille (2020) and Goodman-Bacon (2021).
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Notes: The figure shows the between-timing-group comparisons that average the outcomes in groups g and k across
dose levels and compare the early group to the later group (panel C) or the later group to the early group (panel D).

Figure 12: Between-Timing-Group Comparisons

that have different distributions of the treatment are informative about βtwfe. For example, if
more dose tends to increase outcomes and group g’s dose is higher on average than group k’s, then
outcomes may increase more among group g than group k resulting in δPOST,PRE(g, k) not being
equal to 0.39

Next, we show how βtwfe weights these simple DiD terms together and discuss its theoretical
interpretation under a parallel trends assumptions. To characterize the weights, first, define

pg|{g,k} = P (G = g|G ∈ {g, k}),
which is the probability of being in group g conditional on being in either group g or k. We also
define the following weights, which measure the variance of the treatment variable used to estimate
each of the simple DiD terms in equations Equations (E.3) to (E.6).

wg,within(g) = Var(D|G = g)(1− Ḡg)Ḡgpg

/
1

T

T∑
t=1

E[Ẅ 2
it],

wg,post(g, k) = E[D|G = g]2(1− Ḡg)(Ḡg − Ḡk)(pg + pk)
2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
it],

wk,post(g, k) = E[D|G = k]2Ḡk(Ḡg − Ḡk)(pg + pk)
2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
it],

wlong(g, k) = (E[D|G = g]− E[D|G = k])2Ḡk(1− Ḡg)(pg + pk)
2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
it].

These weights are similar to the ones in Goodman-Bacon (2021) in the sense that they combine
the size of the sample and the variance of treatment used to calculate each simple DiD term.
In wg,within(g), for example, Var(D|G = g) measures how much the dose varies across units with

39To be more precise, this term involves comparisons between groups g and k for the group with a higher dose
on average to the group with a smaller dose on average. When E[D|G = g] > E[D|G = k], this corresponds to
the expression in Equation (E.6). When E[D|G = g] < E[D|G = k], one can multiply both the numerator and
denominator by −1 so that we effectively make a positive-weight comparison for the group that experienced more
dose relative to the group that experienced less dose.
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Notes: The figure shows the comparisons between timing groups in the POST (k) window when both are treated
with potentially different average doses and the PRE(g) window when neither group is treated.

Figure 13: Long Comparisons Between Timing Groups

G = g, (1−Ḡg)Ḡg measures the variance that comes from timing which falls when g is closer to 0 or
T , and pg measures the share of units with G = g (i.e.,. subsample size). Since they only compare
outcomes between timing-groups, wg,post(g, k) and wk,post(g, k) do not contain a within-timing-
group variance ofD, but they do include E[D|G = k]2 which reflects the fact that timing groups with
higher average doses get more weight. The rest of the timing weights have the same interpretation
as in Goodman-Bacon (2021). Finally, wlong(g, k) includes the square of the difference in mean
doses between groups g and k—(E[D|G = g] − E[D|G = k])2—which shows that the “endpoint”
comparisons only influence βtwfe to the extent that timing groups have different average doses.
Two timing groups with the same average dose do not contribute a δPOST,PRE(g, k) term because
there is no differential change in their doses between the PRE(g) window (when both groups are
untreated) and the POST (k) window (when both groups have E[D|G = g] = E[D|G = k]).

Our next result combines the simple DiD terms and their variance weights to provide a me-
chanical decomposition of βtwfe in DiD setups with variation in treatment timing and variation in
treatment intensity.
Proposition E.1. Under Assumptions 1-MP, 2-MP(a), and 3-MP, βtwfe in Equation (E.1) can
be written as
βtwfe =

∑
g∈G

wg,within(g)δWITHIN (g)

+
∑
g∈G

∑
k∈G,k>g

{
wg,post(g, k)δMID,PRE(g, k) + wk,post(g, k)δPOST,MID(g, k) + wlong(g, k)δPOST,PRE(g, k)

}
.

In addition, (i) wg,within(g) ≥ 0, wg,post(g, k) ≥ 0, wk,post(g, k), and wlong(g, k) ≥ 0 for all g ∈ G
and k ∈ G with k > g, and (ii)

∑
g∈G w

g,within(g)+
∑

g∈G
∑

k∈G,k>g

{
wg,post(g,k)(g, k)+wk,post(g, k)+

wlong(g, k)
}
= 1.

Proposition E.1 generalizes the decomposition theorem for binary staggered timing designs in
Goodman-Bacon (2021) to our setup with variation in treatment intensity.40 Notice that it does

40In particular, in the special case of a staggered, binary treatment, wg,within(g)δWITHIN (g) = 0 (since there is no
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not require Assumption 2-MP(b) or (c), and is therefore compatible with a binary, multi-valued,
continuous, or mixed treatment. It says that βtwfe can be written as a weighted average of the four
comparisons in Equations (E.3) to (E.6). These weights are all positive and sum to one.

Proposition E.1 is a new, explicit description of what kinds of comparisons TWFE uses to
compute βtwfe, but it does not on its own provide guidance on how to interpret TWFE estimates.
Our baseline results, for example, show that simple estimators like δWITHIN (g) equal averages
of ACRT parameters plus “selection bias” that arises from heterogeneous treatment effect func-
tions. Similarly, the terms that compare outcomes across timing groups necessarily average over
the dose-specific treatment effects of units within that timing group. We analyze the theoretical
interpretation of each of these simple DiD estimand under different assumptions and then discuss
what this implies about the (arguably implicit) identifying assumptions and estimand for TWFE.

To begin we define additional weights that apply to the underlying causal parameters in the
DiD terms in Equations (E.3) through (E.6):

wwithin
1 (g, l) =

(
E[D|G = g,D ≥ l]− E[D|G = g]

)
Var(D|G = g)

P(D ≥ l|G = g),

w1(g, l) =
P(D ≥ l|G = g)

E[D|G = g]
, w0(g) =

dL
E[D|G = g]

,

wacross
1 (g, k, l) =

(P(D ≥ l|G = g)− P(D ≥ l|G = k))

(E[D|G = g]− E[D|G = k])
, w̃across

0 (g, k) =
dL

(E[D|G = g]− E[D|G = k])
,

w̃across
1 (g, k, l) =

P(D ≥ l|G = k)

(E[D|G = g]− E[D|G = k])
.

In addition, define the following differences in paths of outcomes over time

πPOST (k̃),PRE(g̃)(g) = E
[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|G = g

]
− E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|D = 0

]
,

πMID(g̃,k̃),PRE(g̃)(g) = E
[(
ȲMID(g̃,k̃) − Ȳ PRE(g̃)

)
|G = g

]
− E

[(
ȲMID(g̃,k̃) − Ȳ PRE(g̃)

)
|D = 0

]
,

πPOST (k̃),MID(g̃,k̃)(g) = E
[(
Ȳ POST (k̃) − ȲMID(g̃,k̃)

)
|G = g

]
− E

[(
Ȳ POST (k̃) − ȲMID(g̃,k̃)

)
|D = 0

]
,

and, similarly,

π
POST (k̃),PRE(g̃)
D (g, d) = E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|G = g,D = d

]
− E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|D = 0

]
,

π
MID(g̃,k̃),PRE(g̃)
D (g, d) = E

[(
ȲMID(g̃,k̃) − Ȳ PRE(g̃)

)
|G = g,D = d

]
− E

[(
ȲMID(g̃,k̃) − Ȳ PRE(g̃)

)
|D = 0

]
,

π
POST (k̃),MID(g̃,k̃)
D (g, d) = E

[(
Ȳ POST (k̃) − ȲMID(g̃,k̃)

)
|G = g,D = d

]
− E

[(
Ȳ POST (k̃) − ȲMID(g̃,k̃)

)
|D = 0

]
,

which are the same paths of outcomes but conditional on having dose d.
The following result is our main result on interpreting TWFE estimates with continuous treat-

ment.

Theorem E.2. Under Assumptions 1-MP, 2-MP, and 3-MP,

within group variation in the dose in this case), and wlong(g, k)δPOST,PRE(g, k) = 0 (because the distribution of the
dose is the same across all groups). Then, Proposition E.1 collapses to Theorem 1 in Goodman-Bacon (2021) because
the terms wg,post(g,k)δMID,PRE(g, k) and wk,post(g, k)δPOST,MID(g, k) correspond exactly to between-timing-group
comparisons.
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(1) The four comparisons in Equations (E.3) to (E.6) can be written as

δWITHIN (g) =

∫
D+

wwithin
1 (g, l)

∂π
POST (g),PRE(g)
D (g, l)

∂l
dl,

δMID,PRE(g, k) =

∫
D+

w1(g, l)
∂π

MID(g,k),PRE(g)
D (g, l)

∂l
dl + w0(g)

π
MID(g,k),PRE(g)
D (g, dL)

dL

− w0(g)
πMID(g,k),PRE(g)(k)

dL
,

δPOST,MID(g, k) =

∫
D+

w1(k, l)
∂π

POST (k),MID(g,k)
D (k, l)

∂l
dl + w0(k)

πPOST (k),MID(g,k)(k, dL)

dL

− w0(k)

(
πPOST (k),PRE(g)(g)− πMID(g,k),PRE(g)(g)

dL

)
,

δPOST,PRE(g, k) =

∫
D+

wacross
1 (g, k, l)

∂π
POST (k),PRE(g)
D (g, l)

∂l
dl

−

{∫
D+

w̃across
1 (g, k, l)

(
∂π

POST (k),PRE(g)
D (k, l)

∂l
−
∂π

POST (k),PRE(g)
D (g, l)

∂l

)
dl

+ w̃across
0 (g, k)

(
π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL

)}
.

(2) If, in addition, Assumption 5-MP holds, then

δWITHIN (g) =

∫
D+

wwithin
1 (g, l)ACR

POST (g)
(g, l)dl,

δMID,PRE(g, k) =

∫
D+

w1(g, l)ACR
MID(g,k)

(g, l) dl + w0(g)
ATE

MID(g,k)
(g, dL)

dL
,

δPOST,MID(g, k) =

∫
D+

w1(k, l)ACR
POST (k)

(k, l) dl + w0(k)
ATE

POST (k)
(k, dL)

dL

− w0(k)

(
πPOST (k),PRE(g)(g)− πMID(g,k),PRE(g)(g)

dL

)
,

δPOST,PRE(g, k) =

∫
D+

wacross
1 (g, k, l)ACR

POST (k)
(g, l) dl

−

{∫
D+

w̃across
1 (g, k, l)

(
∂π

POST (k),PRE(g)
D (k, l)

∂l
−
∂π

POST (k),PRE(g)
D (g, l)

∂l

)
dl

+ w̃across
0 (g, k)

(
π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL

)}
.

In addition, (i) wwithin
1 (g, d) ≥ 0, w1(g, d) ≥ 0, and w0(g) ≥ 0, for all g ∈ G and d ∈ D+ and (ii)∫

D+
wwithin
1 (g, l) dl = 1,

∫
D+

w1(g, l) dl + w0(g) = 1, and
∫
D+

wacross
1 (g, k, l) dl = 1.

Part (1) of Theorem E.2 links the four sets of comparisons in the TWFE estimator in Proposi-
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tion E.1 to derivatives of conditional expectations (this is analogous to Theorem 3.4 in the baseline
case above) along with some additional (nuisance) paths of outcomes.

Part (2) of Theorem E.2 imposes Assumption 5-MP. Under Assumption 5-MP, δWITHIN (g)
and δMID,PRE(g, k) both deliver weighted averages of ACR-type parameters. However,
δPOST,MID(g, k) and δPOST,PRE(g, k) still involve non-negligible nuisance terms. Under Assump-
tion 5-MP, the additional term in δPOST,MID(g, k) involves the difference between treatment effects
for group g in group k’s post-treatment periods relative to treatment effects for group g in the pe-
riods after group g is treated but before group k is treated — that is, treatment effect dynamics.
Parallel trends assumptions do not imply that this term is equal to 0. And, in the special case where
the treatment is binary, this term corresponds to the “problematic” term related to treatment effect
dynamics in Goodman-Bacon (2021).

The additional nuisance term in δPOST,PRE(g, k) involves differences in partial effects of more
treatment across groups in their common post-treatment periods. Parallel trends does not restrict
these partial effects to be equal to each other. This term does not show up in the case with a binary
treatment because, by construction, the distribution of the dose is the same across groups. It is
helpful to further consider where this expression comes from. For simplicity, temporarily suppose
that the partial effect of more dose is positive and constant across groups, time, and dose. In this
case, if group g has more dose on average than group k, then its outcomes should increase more
from group g and k’s common pre-treatment period to their common post-treatment period. This
is the comparison that shows up in δPOST,PRE(g, k). However, when partial effects are not the
same across groups and times (which is not implied by any parallel trends assumption), then, for
example, it could be the case that the partial effect of dose is positive for all groups and time
periods but greater for group k relative to group g. If these differences are large enough, it could
lead to the cross-group, long-difference comparisons in δPOST,PRE(g, k) having the opposite sign.

Next, we engage on how one could potentially “rescue” TWFE procedures such that βtwfe

would always recover a weighted average of reasonable treatment effect parameters. To do so, one
must further restrict different types of treatment effect heterogeneity.

Assumption 7. (a) [No Treatment Effect Dynamics] For all g ∈ G \ (T + 1) and t ≥ g (i.e,
post-treatment periods for group g), ACR(g, t, d) and ATE(g, t, dL) do not vary with t.

(b) [Homogeneous Causal Responses across Groups] For all g ∈ G \ (T + 1) with t ≥ g and
k ∈ G \ (T + 1) with t ≥ k, ACR(g, t, d) = ACR(k, t, d) and ATE(g, t, dL) = ATE(k, t, dL).

(c) [Homogeneous Causal Responses across Dose] For all g ∈ G\(T +1) with t ≥ g, ACR(g, t, d)
does not vary across d, and, in addition, ATE(g, t, dL)/dL = ACR(g, t, d).

Assumption 7 introduces three additional conditions limiting treatment effect heterogeneity.
Assumption 7(a) imposes that, within a timing-group, the causal response to the treatment does
not vary across time which rules out treatment effect dynamics. Assumption 7(b) imposes that, for
a fixed time period, causal responses to the treatment are constant across timing-groups. Assump-
tion 7(c) imposes that, within timing-group and time period, the causal response to more dose is
constant across different values of the dose.

Proposition E.2. Under Assumptions 1-MP, 2-MP, 3-MP, and 5-MP,

(a) If, in addition, Assumption 7(a) holds, then

δPOST,MID(g, k) =

∫
D+

w1(k, l)ACR
POST (k)

(k, l) dl + w0(k)
ATE

POST (k)
(k, dL)

dL
.
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(b) If, in addition, Assumption 7(b) holds, then

δPOST,PRE(g, k) =

∫
D+

wacross
1 (g, k, l)ACR

POST (k)
(g, l) dl.

(c) If, in addition, Assumption 7(a), (b) and (c) hold, then

βtwfe = ACR∗,mp.

Proposition E.2 provides additional conditions under which the nuisance terms in
δPOST,MID(g, k) and δPOST,PRE(g, k) are equal to 0. For δPOST,MID(g, k), these nuisance terms
can be eliminated by ruling out treatment effect dynamics; that is, by assuming that, within a
particular group, the causal response to more dose does not vary across time. Ruling out these sort
of treatment effect dynamics is analogous to the kinds of conditions that are required to interpret
TWFE estimates with a binary treatment. In order for the nuisance terms in δPOST,PRE(g, k) to
be equal to 0, we impose homogeneous causal responses across groups — that the causal response
to more dose is the same across groups conditional on having the same amount of dose and being
in the same time period. Neither of these assumptions are implied by any of the parallel trends
assumptions that we have considered, and they are both potentially very strong. Therefore, under
both Assumption 7(a) and (b), βtwfe is equal to a weighted average of average causal response
parameters, but these weights continue to be driven by the TWFE estimation strategy and, like in
the baseline two period case, can continue to deliver poor estimates of the overall average causal
response to the treatment. Imposing Assumption 7(a), (b), and (c) implies that ACR(g, t, d) does
not vary by timing group, time period, or the amount of dose, and part (c) of Proposition E.2 says
that βtwfe is equal to the overall average causal response under these additional, strong conditions.
Remark 10. The results in Part (2) of Theorem E.2 and in Proposition E.2 relied on the multi-
period version of strong parallel trends in Assumption 5-MP. In Theorem E.2-Extended in Ap-
pendix F, we additionally show that, under a multi-period version of standard parallel trends
(this is analogous to Assumption 4 in the two period case and details are provided in Assump-
tion 4-MP(a) in Appendix D), similar results hold except that ACR·

(·, d) should be replaced by
ACRT

·
(·, d|·, d)+ ∂ATT

·
(·,d|·,l)

∂l

∣∣∣
l=d

where the second term is a “selection bias” term, and ATE·
(·, dL)

should be replaced by ATT ·
(·, dL|·, dL). This implies that, under a standard version of parallel trends,

all four comparisons in Equations (E.3) to (E.6) include “selection bias” terms.

E.4 Discussion
The results in this section suggest three important weaknesses of TWFE estimands in a difference-
in-differences framework with multiple time periods, and variation in treatment intensity and timing
of adoptions. First, like the TWFE estimands considered above in the case with two time periods,
TWFE estimands have weights that are driven by the estimation method. As above, these weights
may have undesirable properties in setups where treatment effect heterogeneity is the rule rather
than the exception.

Second, in addition to reasonable treatment effect parameters, TWFE estimands also include
undesirable components due to treatment effect dynamics and heterogeneous causal responses across
groups and time periods. That these show up in the TWFE estimand is potentially problematic
and can possibly lead to very poor performance of the TWFE estimator. Ruling out these problems
requires substantially stronger conditions in addition to any kind of parallel trends assumption.

Finally, even when these extra conditions hold (i.e., the best case scenario for TWFE), if a
researcher invokes a standard parallel trends assumption, the TWFE estimand delivers weighted
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averages of derivatives of ATT -type parameters which are themselves hard to interpret because,
like in the two period case, they include both actual causal responses and “selection bias” terms.

Of these three weaknesses, the first two can be completely avoided by using the estimands pre-
sented in Theorem E.1. These estimands rely only on parallel trends assumptions; in particular,
they are available without imposing any conditions on treatment effect dynamics or how causal
responses vary across groups. The third weakness, though, is a more fundamental challenge of
difference-in-differences approaches with variation in treatment intensity as comparing treatment
effect parameters across different values of the dose appears to fundamentally require imposing
stronger assumptions that rule out some forms of selection into different amounts of the treat-
ment. Although undesirable, we are not aware of any other practical solution to this empirically
relevant DiD problem. Thus, we urge practitioners to transparently discuss their assumptions,
potentially exploiting context-specific knowledge to justify the plausibility of a stronger parallel
trends assumption in the given application.

F Proofs
F.1 Proofs of Results in Section 3.2
This section contains the proofs of the results in Section 3.2 on identifying ATT (d|d) and ATE(d)
under parallel trends assumptions and with a multi-valued/continuous treatment.

Proof of Theorem 3.1
Proof. To show the result, notice that

ATT (d|d) = E[Yt(d)− Yt(0)|D = d]

= E[Yt(d)− Yt−1(0)|D = d]− E[Yt(0)− Yt−1(0)|D = d]

= E[Yt(d)− Yt−1(0)|D = d]− E[Yt(0)− Yt−1(0)|D = 0]

= E[∆Yt|D = d]− E[∆Yt|D = 0]

where the second equality holds by adding and subtracting E[Yt−1(0)|D = d], the third equality
holds by Assumption 4, and the last equality holds because Yt(d) and Yt−1(0) are observed potential
outcomes when D = d and Yt(0) and Yt−1(0) are observed potential outcomes when D = 0.

Proof of Proposition 3.1
Proof. To show the result, notice that

ATE(d) = E[Yt(d)− Yt(0)]

= E
[
E[Yt(d)− Yt(0)|D]

]
=

∫
D
ATT (d|l) dFD(l)

where the second equality holds by the law of iterated expectations, and the third equality holds
by the definition of ATT (d|l). Then, the result holds because ATT (d|l) is only identified under
Assumption 4 when d = l.
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Proof of Theorem 3.2
Proof. For Equation (a-Cont), notice that, for d ∈ D+ and (d+ h) ∈ D+,
E[∆Yt|D = d]− E[∆Yt|D = d+ h]

h
=
ATT (d|d)−ATT (d+ h|d+ h)

h

=
ATT (d|d)−ATT (d+ h|d)

h
+
ATT (d+ h|d)−ATT (d+ h|d+ h)

h

where the first equality holds by Theorem 3.1 and the second equality holds by ??. The result
holds by taking the limit as h→ 0 and the definition of ACRT (d|d).

For Equation (a-MV) and for dj ∈ D+,

E[∆Yt|D = dj ]− E[∆Yt|D = dj−1] =
(
ATT (dj |dj)−ATT (dj−1|dj)

)
+
(
ATT (dj−1|dj)−ATT (dj−1|dj−1)

)
= ACRT (dj |dj) +

(
ATT (dj−1|dj)−ATT (dj−1|dj−1)

)
where the first equality holds by Theorem 3.1 and ?? and the second equality holds by the definition
of ACRT (dj |dj).

Similarly, the result in Equation (b-Cont) holds by noting that for d ∈ D+ and (d+ h) ∈ D+,
E[∆Yt|D = d]− E[∆Yt|D = d+ h]

h
=
ATE(d)−ATE(d+ h)

h

which follows from ?? and then by following the same arguments as for Equation (a-Cont).
For Equation (b-MV) and for dj ∈ D+,

E[∆Yt|D = dj ]− E[∆Yt|D = dj−1] =
(
ATE(dj)−ATT (dj−1)

)
which holds by ??.

Proof of Theorem 3.3
Proof. Notice that

ATE(d) = E[Yt(d)− Yt(0)]

= E[Yt(d)− Yt−1(0)]− E[Yt(0)− Yt−1(0)]

= E[Yt(d)− Yt−1(0)|D = d]− E[Yt(0)− Yt−1(0)|D = 0]

= E[∆Yt|D = d]− E[∆Yt|D = 0]

where the second equality holds by adding and subtracting E[Yt−1(0)], the third equality holds
by Assumption 5, and the fourth equality holds because Yt(d) and Yt−1(0) are observed outcomes
when D = d.

F.2 Proofs of Results from Section 3.3
This section contains the proofs of the results in Section 3.3 on interpreting TWFE regressions with
a multi-valued/continuous treatment.

Proof of Theorem 3.4
To conserve on notation, we define

m∆(d) = E[∆Y |D = d],
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and write ∆Yi = ∆Yit, since we have only two time periods.

Proof. First, notice that Equation (1.1) is equivalent to

∆Yi = (θt − θt−1) + βtwfeDi +∆vit (F.1)

which holds by taking first differences and because all units are untreated in the first period.
Therefore, it immediately follows that

βtwfe =
E[∆Y (D − E[D])]

Var(D)

= E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(0))

]
= E

[
(D − E[D])

Var(D)
(m∆(D)−m∆(0))|D > 0

]
P(D > 0)

= E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(dL))|D > 0

]
P(D > 0) + E

[
(D − E[D])

Var(D)
(m∆(dL)−m∆(0))|D > 0

]
P(D > 0)

= A1 +A2

where the first equality holds because Equation (F.1) is a simple linear regression of ∆Y on an
intercept and D, the second equality holds because E[(D−E[D])m∆(0)] = 0, the third equality holds
because E[m∆(D) −m∆(0)|D = 0] = 0, and the fourth equality holds by adding and subtracting
m∆(dL).

We consider A1 and A2 separately next. First, for A1,

A1 = E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(dL))|D > 0

]
P(D > 0)

=
P(D > 0)

Var(D)

∫ dU

dL

(k − E[D])(m∆(k)−m∆(dL)) dFD|D>0(k)

=
P(D > 0)

Var(D)

∫ dU

dL

(k − E[D])

∫ k

dL

m′
∆(l) dl dFD|D>0(k)

=
P(D > 0)

Var(D)

∫ dU

dL

(k − E[D])

∫ dU

dL

1{l ≤ k}m′
∆(l) dl dFD|D>0(k)

=
P(D > 0)

Var(D)

∫ dU

dL

m′
∆(l)

∫ dU

dL

(k − E[D])1{l ≤ k} dFD|D>0(k) dl

=
P(D > 0)

Var(D)

∫ dU

dL

m′
∆(l)E[(D − E[D])1{l ≤ D}|D > 0] dl

=
P(D > 0)

Var(D)

∫ dU

dL

m′
∆(l)E[(D − E[D])|D ≥ l]P(D ≥ l|D > 0) dl

=

∫ dU

dL

m′
∆(l)

(E[D|D ≥ l]− E[D])P(D ≥ l)

Var(D)
dl (F.2)

where the first equality is the definition of A1, the second equality holds by rearranging terms
and writing the expectation as an integral, the third equality holds by the fundamental theorem
of calculus, the fourth equality rewrites the inner integral so that it is over dU to dL, the fifth
equality holds by changing the order of integration and rearranging terms, the sixth equality holds
by rewriting the inner integral as an expectation, the seventh equality holds by the law of iterated
expectations (and since D ≥ l =⇒ D > 0), and the last equality holds by combining terms.

60



Next, for A2, it immediately holds that

A2 = E
[
(D − E[D])

Var(D)
(m∆(dL)−m∆(0))|D > 0

]
P(D > 0)

=
(E[D|D > 0]− E[D])P(D > 0)dL

Var(D)

(m∆(dL)−m∆(0))

dL
(F.3)

where the first equality is the definition of A2, and the second equality holds by multiplying and
dividing by dL.

Then, the first result in Theorem 3.4 holds by combining Equations (F.2) and (F.3). That the
weights are all positive holds immediately since (E[D|D ≥ l]−E[D]) > 0 for all l ≥ dL, P(D ≥ l) > 0
for all l ≥ dL, (E[D|D > 0]− E[D]) > 0, P(D > 0) > 0, and Var(D) > 0.

Next, we next show that
∫ dU
dL

w1(l) dl + w0 = 1. First, notice that∫ dU

dL

w1(l) dl + w0 =
1

Var(D)

{∫ dU

dL

E[D|D ≥ l]P(D ≥ l) dl

− E[D]

∫ dU

dL

P(D ≥ l) dl

+ E[D|D > 0]P(D > 0)dL

− E[D]P(D > 0)dL

}
=

1

Var(D)

{
B1 −B2 +B3 −B4

}
and we consider B1, B2, B3, and B4 in turn.

For B1, first notice that for all l ∈ D+,

E[D|D ≥ l]P (D ≥ l) = E[D1{D ≥ l}|D ≥ l]P(D ≥ l)

= E[D1{D ≥ l}] (F.4)

which holds by the law of iterated expectations and implies that

B1 =

∫ dU

dL

E[D|D ≥ l]P(D ≥ l) dl

=

∫ dU

dL

∫
D
d1{d ≥ l} dFD(d) dl

=

∫
D
d

(∫ dU

dL

1{l ≤ d} dl
)
dFD(d)

=

∫
D
d(d− dL) dFD(d)

= E[D2]− E[D]dL (F.5)

where the first line is the definition of B1, the second equality holds by Equation (F.4), the third
equality holds by changing the order of integration, the fourth equality holds by carrying out the
inner integration, and the last equality holds by rewriting the integral as an expectation.

Next, for term B2,

B2 = E[D]

∫ dU

dL

P(D ≥ l) dl
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= E[D]P(D > 0)

∫ dU

dL

P(D ≥ l|D > 0) dl

= E[D]P(D > 0)

∫ dU

dL

∫ dU

dL

1{d ≥ l} dFD|D>0(d) dl

= E[D]P(D > 0)

∫ dU

dL

(∫ dU

dL

1{l ≤ d} dl
)
dFD|D>0(d)

= E[D]P(D > 0)

∫ dU

dL

(d− dL) dFD|D>0(d)

= E[D]P(D > 0)
(
E[D|D > 0]− dL

)
= E[D]2 − E[D]P(D > 0)dL (F.6)

where the first equality is the definition of B2, the second equality holds by the law of iterated
expectations, the third equality holds by writing P(D ≥ l|D > 0) as an integral, the fourth equality
changes the order of integration, the fifth equality carries out the inside integration, the sixth
equality rewrites the integral as an expectation, the last equality holds by combining terms and by
the law of iterated expectations.

Next,

B3 = E[D|D > 0]P(D > 0)dL

= E[D]dL (F.7)

which holds by the law of iterated expectations. And finally, recall that

B4 = E[D]P(D > 0)dL (F.8)

Thus, from Equations (F.5) to (F.8), it follows that

B1 −B2 +B3 +B4 = E[D2]− E[D]2 = Var(D)

which implies the result.

For part (2), the proof is similar as for part (1), but we provide the details here for completeness.
Notice that,

βtwfe = E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(0))

]
=

1

Var(D)

∑
d∈D

(d− E[D])(m∆(d)−m∆(0))p
D
d

=
1

Var(D)

∑
d∈D

(d− E[D])pDd
∑

dj∈D+

1{dj ≤ d}(m∆(dj)−m∆(dj−1))

=
1

Var(D)

∑
dj∈D+

(m∆(dj)−m∆(dj−1))
∑
d∈D

(d− E[D])1{d ≥ dj}pDd

=
∑

dj∈D+

(m∆(dj)−m∆(dj−1))
(E[D|D ≥ dj ]− E[D])P(D ≥ dj)

Var(D)

=
∑

dj∈D+

w1(dj)(dj − dj−1)
(m∆(dj)−m∆(dj−1))

(dj − dj−1)
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where the second equality holds by writing the expectation as a summation, the third equality
holds by adding and subtracting m∆(dj) for all dj ’s between 0 and d, the fourth equality holds
by changing the order of the summations, the fifth equality writes the second summation as an
expectation, and the last equality holds by the definition of the weights and by multiplying and
dividing by (dj − dj−1). That w1(dj)(dj − dj−1) > 0 holds immediately since w1(dj) ≥ 0 for all
dj ∈ D+ and dj > dj−1. Further,

∑
dj∈D+

w1(dj)(dj − dj−1) =

 ∑
dj∈D+

E[1{D ≥ dj}D](dj − dj−1)− E[D]
∑

dj∈D+

P(D ≥ dj)(dj − dj−1)

 /Var(D)

= (A−B)/Var(D)

We consider each of these terms in turn:

A =
∑

dj∈D+

∑
dk∈D

1{dk ≥ dj}dkpDdk(dj − dj−1)

=
∑
dk∈D

pDdkdk
∑

dj∈D+,dj≤dk

(dj − dj−1)

=
∑
dk∈D

pDdkdk(dk − 0)

= E[D2]

where the first equality holds by writing the expectation for Term A as a summation, the second
equality holds by re-ordering the summations, the third equality holds by canceling all the duplicate
dj terms across summations (and because d0 = 0), and the last equality holds by the definition of
E[D2].

Next,

B = E[D]
∑

dj∈D+

∑
dk∈D

1{dk ≥ dj}pDdk(dj − dj−1)

= E[D]
∑
dk∈D

pDdk

∑
dj∈D+,dj≤dk

(dj − dj−1)

= E[D]
∑
dk∈D

dkp
D
dk

= E[D]2

where the first equality holds by writing the expectation for Term B as a summation, the second
equality holds by re-ordering the summations, the third equality holds by canceling all the duplicate
dj terms across summations (and because d0 = 0), and the last equality holds by the definition of
E[D].

This implies that A−B = Var(D) which implies that the weights sum to 1.

Proof of ??

Proof. The result holds immediately by plugging in the result in Theorem 3.2 into the result
in Theorem 3.4 as well as noting that E[∆Yt|D = dL] − E[∆Yt|D = 0] = ATT (dL|dL) (under
Assumption 4) and that E[∆Yt|D = dL]− E[∆Yt|D = 0] = ATE(dL) (under Assumption 5).
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G Proofs of Results from Section E
This section contains the proofs of results from Appendix E on DiD with a multi-valued/continuous
treatment and with multiple periods and variation in treatment timing.

Proof of Theorems D.1 and E.1
This section proves Theorem D.1; note that Theorem E.1, in the main text, corresponds to Part
(2a) of Theorem D.1 (under Assumption 5-MP-Extended(a)).

For part (1a), we show the result under Assumption 4-MP(c) which is strictly weaker than
Assumption 4-MP(a). First, notice that,

ATT (g, t, d|g, d) = E[Yt(d)− Yt(0)|G = g,D = d]

= E[Yt(d)− Yg−1(0)|G = g,D = d]− E[Yt(0)− Yg−1(0)|G = g,D = d]

= E[Yt(d)− Yg−1(0)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|G = g,D = d] (G.1)

= E[Yt(d)− Yg−1(0)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|Wt = 0]

= E[Yt(d)− Yg−1(0)|G = g,D = d]− E[Yt(0)− Yg−1(0)|Wt = 0]

= E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

where the first equality is the definition of ATT (g, t, d|g, d), the second equality holds by adding
and subtracting E[Yg−1(0)|G = g,D = d], the third equality holds by adding and subtracting
E[Ys(0)|G = g,D = d] for s = g, . . . , (t− 1), the fourth equality holds under Assumption 4-MP(c),
the fifth equality holds by canceling all the terms involving E[Ys(0)|Wt = 0] for s = g, . . . , (t − 1)
(i.e., from the reverse of the argument for the third equality), and the last equality holds from
writing the potential outcomes in terms of their observed counterparts.

For part (1b), in Equation (G.1),
∑t

s=g E[Ys(0) − Ys−1(0)|G = g,D = d] =
∑t

s=g E[Ys(0) −
Ys−1(0)|D = 0] under Assumption 4-MP(b). Then, the result holds by otherwise following the
same arguments as in part (1a).

For part (2a), we show the result under Assumption 5-MP-Extended(c) which is strictly weaker
than Assumption 5-MP-Extended(a). First, notice that

ATE(g, t, d) = E[Yt(g, d)− Yt(0)|G = g]

= E[Yt(g, d)− Yt−1(0)|G = g]− E[Yt(0)− Yt−1(0)|G = g]

= E[Yt(g, d)− Yt−1(0)|G = g,D = d]− E[Yt(0)− Yt−1(0)|G = g]

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]− E[Yt−1(0)− Yg−1(0)|G = g,D = d]

−
(
E[Yt(0)− Yg−1(0)|G = g]− E[Yt−1(0)− Yg−1(0)|G = g]

)
= E[Yt(g, d)− Yg−1(0)|G = g,D = d]−

t∑
s=g

E[Ys(0)− Ys−1(0)|G = g] (G.2)

−
t−1∑
s=g

(
E[Ys(0)− Ys−1(0)|G = g,D = d]− E[Ys(0)− Ys−1(0)|G = g]

)
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= E[Yt(g, d)− Yg−1(0)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|Wt = 0]

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]− E[Yt(0)− Yg−1(0)|Wt = 0]

= E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

where the first equality holds by the definition of ATE(g, t, d), the second equality adds and sub-
tracts E[Yt−1(0)|G = g], the third equality holds by Assumption 5-MP-Extended(c), the fourth
equality adds and subtracts both E[Yg−1(0)|G = g,D = d] and E[Yg−1(0)|G = g], the fifth equal-
ity holds by writing “long differences” as summations over “short differences” and by rearranging
terms, the sixth equality holds by Assumption 5-MP-Extended(c) and by canceling terms, the
seventh equality holds by rewriting the sum of short differences as a long difference, and the last
equality holds by writing potential outcomes in terms of their corresponding observed outcomes
and is the result.

The expression for ACR(g, t, d) comes from taking the partial derivative of ATE(g, t, d) = E[Yt−
Yg−1|G = g,D = d]−E[Yt−Yg−1|Wt = 0] with respect to d and by noting that E[Yt−Yg−1|Wt = 0]
does not depend on d.

Finally, for part (2b), in Equation (G.2),
∑t

s=g E[Ys(0) − Ys−1(0)|G = g] =
∑t

s=g E[Ys(0) −
Ys−1(0)|D = 0] under Assumption 5-MP-Extended(b). The result then follows using the same
subsequent arguments as in part (2a).

G.1 Proofs of Proposition E.1, Theorem E.2, and Proposition E.2
This section contains the proofs for interpreting TWFE regressions in the case with a continuous
treatment, multiple periods, and variation in treatment timing as in Appendix E.

Before proving the main results in this section, we introduce some additional notation.

v(g, t) = 1{t ≥ g} − Ḡg (G.3)

where the term 1{t ≥ g} is equal to one in post-treatment time periods for units in group g and
recalling that we defined Ḡg = T −g+1

T which is the fraction of periods that units in group g are
exposed to the treatment (and notice that this latter term does not depend on the particular time
period t). Further, notice that v(g, t) is positive in post-treatment time periods and negative in
pre-treatment time periods for units in a particular group. Finally, also note that, for the “never-
treated” group, g = T + 1 (which we set by convention and is helpful to unify the notation in this
section) so that both terms in the expression for v are equal to 0 for the “never-treated” group.

Furthermore, recall that, for 1 ≤ t1 ≤ t2 ≤ T , we defined

Ȳ
(t1,t2)
i =

1

t2 − t1 + 1

t2∑
t=t1

Yit

where below (and following the notation used throughout the paper), we sometimes leave the
subscript i implicit.

We next state and prove some additional results that are helpful for proving the main results.
The first lemma re-writes (overall) expected dose experienced in period t adjusted by the overall
expected dose (across periods and units) in a form that is useful in proving later results.

Lemma G.1. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

E[Wt]−
1

T

T∑
s=1

E[Ws] =
∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg
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Proof. First, notice that

E[Wt] =
∑
g∈G

∫
D
E[Wt|G = g,D = d] dFD|G(d|g)pg

=
∑
g∈G

∫
D
d1{t ≥ g} dFD|G(d|g)pg (G.4)

where the first equality holds by the law of iterated expectations and the second equality holds
because, after conditioning on group and dose, Wt is fully determined.

Thus,

E[Wt]−
1

T

T∑
s=1

E[Ws] =
∑
g∈G

∫
D
d1{t ≥ g} dFD|G(d|g)pg −

1

T

T∑
s=1

∑
g∈G

∫
D
d1{s ≥ g} dFD|G(d|g)pg

=
1

T

T∑
s=1

∑
g∈G

∫
D
d (1{t ≥ g} − 1{s ≥ g}) dFD|G(d|g)pg

=
∑
g∈G

∫
D
d

{
1

T

T∑
s=1

1{t ≥ g} − 1{s ≥ g}

}
dFD|G(d|g)pg

=
∑
g∈G

∫
D
d

{
1{t ≥ g} − T − g + 1

T

}
dFD|G(d|g)pg

=
∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg

where the first equality applies Equation (G.4) to both terms, the second equality combines terms by
averaging the first term across time periods, the third equality re-orders the summations/integrals,
the fourth equality holds because 1{t ≥ g} does not depend on s and by counting the fraction of
periods where s ≥ g, and the last equality holds by the definition of v(g, t).

The next lemma provides an intermediate result for the expression for the numerator of βtwfe

in Equation (E.1).

Lemma G.2. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

E[YitẄit] =
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}

Proof. Starting with the numerator for βtwfe in Equation (E.1)

1

T

T∑
t=1

E[YitẄit]

=
1

T

T∑
t=1

{
E[YitWit]− E[YitW̄i]− E[Yt]

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)}

=
1

T

T∑
t=1

{
E[YtD1{t ≥ G}]− E

[
YtD

T −G+ 1

T

]
− E[Yt]

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)}
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=
1

T

T∑
t=1

{∑
g∈G

∫
D

(
E[Ytd1{t ≥ g}|G = g,D = d]− E

[
Yt

T − g + 1

T
d
∣∣∣G = g,D = d

])
dFD|G(d|g)pg

− E[Yt]

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]v(g, t)

)
dFD|G(d|g)pg − E[Yt]

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]v(g, t)

)
dFD|G(d|g)pg − E[Yt]

∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}

where the first equality holds by the definition of Ẅit, the second equality holds by plugging in
for Wit and W̄i, the third equality holds by the law of iterated expectations, the fourth equality
holds by the definition of v(g, t), the fifth equality holds by Lemma G.1, and the sixth equality just
combines terms.

Next, based on the result in Lemma G.2, we can write the numerator in the expression for βtwfe

as

1

T

T∑
t=1

E[YitẄit]

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg (G.5)

+
1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg (G.6)

where the first equality holds from Lemma G.2 and the second equality holds by adding and
subtracting E[Yt|G = g].

The expression in Equation (G.5) involves comparisons between units in the same group but
that have different doses. The expression in Equation (G.6) involves comparisons across different
groups. We consider each of these terms in more detail below.

Lemma G.3. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg

=
∑
g∈G

{
(1− Ḡg)ḠgCov

(
Ȳ POST (g) − Ȳ PRE(g), D|G = g

)}
pg
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Proof.

1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg

=
1

T

T∑
t=1

{∑
g∈G

E[Yt(D − E[D|G = g])|G = g]v(g, t)pg

}

=
∑
g∈G

{
1

T

T∑
t=1

E[Yt(D − E[D|G = g])|G = g]v(g, t)

}
pg

=
∑
g∈G

{
− 1

T
(T − g + 1)

T

g−1∑
t=1

E[Yt(D − E[D|G = g])|G = g]

+
1

T
(g − 1)

T

T∑
t=g

E[Yt(D − E[D|G = g])|G = g]

}
pg

=
∑
g∈G

{
g − 1

T
(T − g + 1)

T

(
1

T − g + 1

T∑
t=g

E[Yt(D − E[D|G = g])|G = g]

− 1

g − 1

g−1∑
t=1

E[Yt(D − E[D|G = g])|G = g]

)}
pg

=
∑
g∈G

{
g − 1

T
(T − g + 1)

T

(
E
[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])|G = g

])}
pg

=
∑
g∈G

{
(1− Ḡg)Ḡg

(
E
[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])|G = g

])}
pg

=
∑
g∈G

{
(1− Ḡg)ḠgCov

(
Ȳ POST (g) − Ȳ PRE(g), D|G = g

)}
pg

where the first equality holds by the law of iterated expectations (and combining terms involving
d and Yt), the second equality changes the order of the summations, the third equality holds by
splitting the summation involving t in time period g and plugs in for v(g, t) (which is constant
within group g and across time periods from 1, . . . , g − 1 and from g, . . . , T ), the fourth equality
multiplies and divides by terms so that the inside expressions can be written as averages, the fifth
equality holds by changing the order of the expectation and averaging over time periods, the sixth
equality holds by the definition of Ḡg, and the last equality holds by the definition of covariance.

Lemma G.3 shows that part of the TWFE estimator comes from a weighted average of post-
vs. pre-treatment outcomes within group but who experienced different doses. In particular, notice
that, for units in group g, Ȳ POST (g)

i is their average post-treatment outcome while Ȳ PRE(g)
i is their

average pre-treatment outcome.
Next, we consider the expression from Equation (G.6) above which arises from differences in

outcomes across groups. We handle this term over several following results.
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Lemma G.4. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G,k>g

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}

Proof. Notice that

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

{∑
g∈G

E[D|G = g]
(
E[Yt|G = g]− E[Yt]

)
v(g, t)pg

}

=
1

T

T∑
t=1

{∑
g∈G

E[D|G = g]
(
E[Yt|G = g]−

∑
k∈G

E[Yt|G = k]pk

)
v(g, t)pg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G

E[D|G = g]v(g, t)
(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G,k>g

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}
where the first equality holds by integrating over D, the second equality holds by the law of iterated
expectations, the third equality holds by combining terms, and the last equality holds because all
combinations of g and k occur twice.

Lemma G.4 is helpful because it shows that the cross-group part of the TWFE estimator can
be written as comparisons for each group relative to later-treated groups.

Next, we provide an important intermediate result. Before stating this result, we define the
following weights

w̃g,within(g) = Var(D|G = g)(1− Ḡg)Ḡgpgw̃
g,post(g, k) = E[D|G = g]2(1− Ḡg)(Ḡg − Ḡk)pkpg

w̃k,post(g, k) = E[D|G = k]2Ḡk(Ḡg − Ḡk)pkpg

w̃long(g, k) = (E[D|G = g]− E[D|G = k])2Ḡk(1− Ḡg)pkpg

which correspond to wg,post, wk,post, and wlong(g, k) in the main text except they do not divide by
T −1

∑T
t=1 E[Ẅ 2

it]. In addition, notice that

E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

=


−E[D|G = g]Ḡg + E[D|G = k]Ḡk for t < g < k

E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk for g ≤ t < k

E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk) for g < k ≤ t

(G.7)

which holds by the definition of v and is useful for the proof of the following lemma.
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Lemma G.5. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)

(
E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = k

])

+ w̃k,post(g, k)

(
E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = g

])
+ w̃long(g, k)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]}

Proof. The result holds as follows

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
∑
g∈G

∑
k∈G,k>g

{
1

T

T∑
t=1

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
1

T
(
−E[D|G = g]Ḡg + E[D|G = k]Ḡk

) g−1∑
t=1

(
E[Yt|G = g]− E[Yt|G = k]

)

+
1

T
(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) k−1∑
t=g

(
E[Yt|G = g]− E[Yt|G = k]

)

+
1

T
(
E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk)

) T∑
t=k

(
E[Yt|G = g]− E[Yt|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
(1− Ḡg)

(
−E[D|G = g]Ḡg + E[D|G = k]Ḡk

) (
E[Ȳ PRE(g)|G = g]− E[Ȳ PRE(g)|G = k]

)
+ (Ḡg − Ḡk)

(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) (
E[Ȳ MID(g,k)|G = g]− E[Ȳ MID(g,k)|G = k]

)
+ Ḡk

(
E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk)

) (
E[Ȳ POST (k)|G = g]− E[Ȳ POST (k)|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
(1− Ḡg)

(
−E[D|G = g](Ḡg − Ḡk) + (E[D|G = k]− E[D|G = g])Ḡk

) (
E[Ȳ PRE(g)|G = g]− E[Ȳ PRE(g)|G = k]

)
+ (Ḡg − Ḡk)

(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) (
E[Ȳ MID(g,k)|G = g]− E[Ȳ MID(g,k)|G = k]

)
+ Ḡk

(
(E[D|G = g]− E[D|G = k])(1− Ḡg)− E[D|G = k](Ḡg − Ḡk)

) (
E[Ȳ POST (k)|G = g]− E[Ȳ POST (k)|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
E[D|G = g](1− Ḡg)(Ḡg − Ḡk)

(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g))|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g))|G = k

])

+ E[D|G = k]Ḡk(Ḡg − Ḡk)

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k))|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k))|G = g

])
+ (E[D|G = g]− E[D|G = k])Ḡk(1− Ḡg)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g))|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g))|G = k

])}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)

(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g))|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g))|G = k

])

+ w̃k,post(g, k)

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k))|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k))|G = g

])
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+ w̃long(g, k)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g))|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g))|G = k

])}
where the first equality uses the result in Lemma G.4, the second equality changes the order of
the summations (splitting them at g and k where the value of v(g, t) and v(k, t) change) and uses
Equation (G.7), the third equality holds by averaging over time periods (which involves multiplying
and dividing by g − 1 in the first line, multiplying and dividing by k − g in the second line, and
multiplying and dividing by T −k+1 in the last line), the fourth equality rearranges the expressions
for the weights, the fifth equality holds by rearranging terms with common weights, and the last
equality holds by the definitions of w̃g,post, w̃k,post, and w̃long and by noticing that

pkpg = (pg + pk)
2pg|{g,k}(1− pg|{g,k})

which holds by multiplying and dividing both pk and pg by (pg + pk) and by the definition of
pg|{g,k}.

The result in Lemma G.5 is very closely related to the result on interpreting TWFE regressions
with a binary treatment and multiple time periods and variation in treatment timing in Goodman-
Bacon (2021).41 In particular, it says that, even with a continuous/multi-valued treatment, the
TWFE regression estimator involves comparisons between (i) the path of outcomes for units that
become treated relative to the path of outcomes for units that are not treated yet, (ii) the path of
outcomes for units that become treated relative to the path of outcomes for units that have already
been treated, and (iii) comparisons of the paths of outcomes across groups from their common pre-
treatment periods to their common post-treatment periods. Intuitively, the first set of comparisons
are very much in the spirit of DiD, but the second and third sets of comparisons are not (except
under additional specialized conditions). We formalize this intuition in the proof of Theorem E.2
below.

Lemma G.6. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

E[Ẅ 2
it] =

∑
g∈G

w̃g,within(g) +
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k) + w̃k,post(g, k) + w̃long(g, k)

}
Proof. To start with, notice that E[Ẅ 2

it] = E[WitẄit]. Then, we can apply the arguments of
Lemmas G.2 to G.5 but with Wit replacing Yit. This implies that

1

T

T∑
t=1

E[Ẅ 2
it]

=
∑
g∈G

w̃g,within(g)
Cov(W̄POST (g) − W̄PRE(g), D|G = g)

Var(D|G = g)

+
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)

E
[
(W̄MID(g,k) − W̄PRE(g))|G = g

]
− E

[
(W̄MID(g,k) − W̄PRE(g))|G = k

]
E[D|G = g]

+ w̃k,post(g, k)
E
[
(W̄POST (k) − W̄MID(g,k))|G = k

]
− E

[
(W̄POST (k) − W̄MID(g,k))|G = g

]
E[D|G = k]

+ w̃long(g, k)
E
[
(W̄POST (k) − W̄PRE(g))|G = g

]
− E

[
(W̄POST (k) − W̄PRE(g))|G = k

]
E[D|G = g]− E[D|G = k]

}
41One difference worth noting is that the weights are slightly different due to the terms involving E[D|G = g]

and E[D|G = k]. With a binary treatment, these expectations are equal to each other by construction, but with a
continuous treatment these terms are no longer generally equal to each other. This also implies that the third term
does not show up in the case with a binary treatment.
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=
∑
g∈G

w̃g,within(g) +
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k) + w̃k,post(g, k) + w̃long(g, k)

}
where the last equality holds by noting that W̄ = D in post-treatment periods and W̄ = 0 in
pre-treatment periods, and then by canceling terms.

Proof of Proposition E.1

Proof. Proposition E.1 immediately holds by combining the results in Lemma G.2, from Equa-
tions (G.5) and (G.6), and by Lemmas G.3 to G.5 (which all concern the numerator in the expres-
sion for βtwfe in Equation (E.2)), and then dividing by (1/T )

∑T
t=1 E[Ẅ 2

it] (which corresponds to
the denominator in the expression for βtwfe in Equation (E.2)). That the weights are all positive
holds immediately by their definitions. That they sum to one holds by the definitions of the weights
and by Lemma G.6.

Next, we move to proving Theorem E.2. To do this we provide expressions for each of the com-
parisons that show up in Proposition E.1 in terms of derivatives of paths of outcomes. These results
invoke Assumption 2-MP(b) and (c) and, therefore, use that the treatment is actually continuous,
but they do not invoke any parallel trends assumptions. That said, it would be straightforward to
adapt these results to the case with a discrete multi-valued treatment along the lines of the baseline
two period case considered above.

It is also useful to note that

∂π
POST (k̃),PRE(g̃)
D (g, d)

∂d
=
∂E
[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

)
|G = g,D = d

]
∂d

∂π
MID(g̃,k̃),PRE(g̃)
D (g, d)

∂d
=

E
[(
ȲMID(g̃,k̃) − Ȳ PRE(g̃)

)
|G = g,D = d

]
∂d

∂π
POST (k̃),MID(g̃,k̃)
D (g, d)

∂d
=
∂E
[(
Ȳ POST (k̃) − ȲMID(g̃,k̃)

)
|G = g,D = d

]
∂d

which holds because the second parts of each πD term do not vary with the dose.
Next, we consider a result for the main term in δWITHIN (g) in Equation (E.3).

Lemma G.7. Under Assumptions 1-MP, 2-MP, and 3-MP,

Cov
(
Ȳ POST (g) − Ȳ PRE(g), D|G = g

)
=

∫
D+

(
E[D|G = g,D ≥ l]− E[D|G = g]

)
P(D ≥ l|G = g)

∂E[Ȳ POST (g) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

Proof. First, notice that

Cov
(
Ȳ POST (g) − Ȳ PRE(g), D|G = g

)
= E

[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])|G = g

]
Then, the proof follows essentially the same arguments as in ?? with Ȳ POST (g)− Ȳ PRE(g) replacing
∆Y and the other arguments relating to the distribution of the dose holding conditional on being
in group g. The second term, involving dL, in ?? does not show up here as, by construction, there
are no untreated units in group g.

Lemma G.7 says that part of δWITHIN (g) in the TWFE regression estimator comes from a
weighted average of ∂E[Ȳ POST (g)−Ȳ PRE(g)|G=g,D=d]

∂d .
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Next, we consider the main term in the expression for δMID,PRE(g, k) in Equation (E.4). This
term is quite similar to the baseline two-period case considered in ?? because units in group k have
not been treated yet.

Lemma G.8. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = k

]
=

∫
D+

P(D ≥ l|G = g)
∂E[ȲMID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

+ dL
E[ȲMID(g,k) − Ȳ PRE(g)|G = g,D = dL]− E[ȲMID(g,k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[ȲMID(g,k) − Ȳ PRE(g)|G = k]− E[ȲMID(g,k) − Ȳ PRE(g)|D = 0]

dL

Proof. To start with, notice that

E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = k

]
= E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|D = 0

]
−
(
E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = k

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|D = 0

])
=

∫
D+

P(D ≥ l|G = g)
∂E[ȲMID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

+ dL
E[ȲMID(g,k) − Ȳ PRE(g)|G = g,D = dL]− E[ȲMID(g,k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[ȲMID(g,k) − Ȳ PRE(g)|G = k]− E[ȲMID(g,k) − Ȳ PRE(g)|D = 0]

dL

where the first equality holds by adding and subtracting E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|D = 0

]
. For

the second equality, notice that

E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|D = 0

]
= E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g,D = dL

]
+ E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g,D = dL

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|D = 0

]
Moreover,

E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g,D = dL

]
=

∫
D+

E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g,D = d

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g,D = dL

]
dFD|G(d|g)

=

∫
D+

∫
D+

1{l ≤ d}
∂E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g,D = l

]
∂l

dl dFD|G(d|g)

=

∫
D+

P(D ≥ l|G = g)
∂E[ȲMID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

where the first equality holds by the law of iterated expectations, the second equality holds by the
fundamental theorem of calculus, and the last equality holds by changing the order of integration
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and simplifying.
Combining the above expressions implies the result.

Next, we consider the main term for δPOST,MID(g, k) in Equation (E.5) which comes from
comparing paths of outcomes for newly treated groups relative to already-treated groups.

Lemma G.9. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = g

]
=

∫
D+

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − ȲMID(g,k)|G = k,D = l]

∂l
dl

+ dL
E[Ȳ POST (k) − ȲMID(g,k)|G = k,D = dL]− E[Ȳ POST (k) − ȲMID(g,k)|D = 0]

dL

−
{
E[Ȳ POST (k) − Ȳ PRE(g)|G = g]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

−
(
E[ȲMID(g,k) − Ȳ PRE(g)|G = g]− E[ȲMID(g,k) − Ȳ PRE(g)|D = 0]

)}
Proof. Notice that

E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = g

]
=

(
E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|D = 0

])

−

(
E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = g

]
− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|D = 0

])

=

(
E
[(
Ȳ POST (k) − ȲMID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|D = 0

])
(G.8)

−

{(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

])

−
(
E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|D = 0

])}

=

∫
D+

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − ȲMID(g,k)|G = k,D = l]

∂l
dl (G.9)

+ dL
E[Ȳ POST (k) − ȲMID(g, k)|G = g,D = dL]− E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|D = 0

]
dL

−

{(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

])

−
(
E
[(
ȲMID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
ȲMID(g,k) − Ȳ PRE(g)

)
|D = 0

])}
where the first equality holds by adding and subtracting E

[(
Ȳ POST (k) − ȲMID(g,k)

)
|D = 0

]
, the

second equality holds by adding and subtracting both E
[
Ȳ PRE(g)|G = g

]
and E

[
Ȳ PRE(g)|D = 0

]
,

and the last equality holds by applying the same sort of arguments as in the proof of Lemma G.8.
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The expression in Lemma G.9 appears complicated and is worth explaining in some more detail.
Consider Equation (G.8) in the proof of Lemma G.9. There are three parts of this expression.
The first part compares the path of outcomes in post-treatment periods relative to some pre-
treatment periods for units in group k to the path of outcomes for units that never participate in
the treatment. This sort of comparison is very much in the spirit of DiD and will correspond to
a reasonable treatment effect parameter under appropriate parallel trends assumptions. Similarly,
under suitable parallel trends assumptions, the terms in the second and third lines will correspond
to treatment effects for group g between periods k and T (the second line) and treatment effects
for group g between periods g and k − 1 (the third line). Therefore, the difference between these
terms can be thought of as some form of treatment effect dynamics. That means, in general, for
this overall term to correspond to a treatment effect parameter for group k, there needs to be no
treatment effect dynamics for group g. Ruling out treatment effect dynamics is not implied by
any sort of parallel trends assumption and therefore involves an additional (and potentially very
strong) assumption.

Finally, we consider the main term for δPOST,PRE(g, k) in Equation (E.6).

Lemma G.10. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
=

∫
D+

(P(D ≥ l|G = g)− P(D ≥ l|G = k))
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

−

{∫
D+

P(D ≥ l|G = k)

(
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = l]

∂l
− ∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l

)
dl

+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

}

Proof. First, by adding and subtracting terms

E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
= E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

]
−
(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

])
Then, using similar arguments as in Lemma G.8 above, one can show that

E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

]
=

∫
D+

P(D ≥ l|G = g)
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

and that

E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|D = 0

]
=

∫
D+

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = l]

∂l
dl
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+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

Then, the result holds by adding and subtracting
∫
D+

P(D ≥ l|G =

k)∂E[Ȳ
POST (k)−Ȳ PRE(g)|G=g,D=l]

∂l dl and combining terms.

Proof of Part (1) of Theorem E.2

Proof. Starting from the result in Proposition E.1, the expression for δWITHIN (g) comes from its
definition, the result in Lemma G.7, and the definition of the weights wwithin

1 (g, l). The expres-
sion for δMID,PRE(g, k) comes from its definition, the result in Lemma G.8, and the definitions
of w1(g, l) and w0(g). The expression for δPOST,MID(g, k) comes from combining its definition
with the result in Lemma G.9, and the definitions of w1(k, l) and w0(k). Finally, the expression
for δPOST,PRE(g, k) comes from its definition, the result in Lemma G.10, and the definitions of
wacross
1 (g, k, l), w̃across

1 (g, k, l), and w̃across
0 (g, k).

That wwithin
1 (g, d) ≥ 0, w1(g, 0) ≥ 0, w0(g) ≥ 0 for all g ∈ G and d ∈ D+ all hold immediately

from the definitions of the weights. That
∫
D+

wwithin
1 (g, l) dl = 1,

∫
D+

w1(g, l) dl + w0(g) = 1, and∫
D+

wacross
1 (g, k, l) dl = 1 hold from the same sorts of arguments used to show that the weights

integrate to 1 in the proof of Theorem 3.4.

Notice that none of the previous results have invoked any sort of parallel trends assumption.
Next, we push forward the previous results once a researcher invokes parallel trends assumptions;
in the main text, we considered the case where the researcher invoked Assumption 5-MP, but
here we consider both that assumption and Assumption 4-MP(a). To further understand this, for
1 ≤ t1 < t2 ≤ T define

Ȳ
(t1,t2)
i (g, d) =

1

t2 − t1 + 1

t2∑
t=t1

Yit(g, t, d)

which averages potential outcomes from time periods t1 to t2 for unit i if they were in group g and
experienced dose d. Note that Ȳ (t1,t2)

i = Ȳ
(t1,t2)
i (Gi, Di). Next, for t1 ≤ t2, define

ATT
(t1,t2)(g, d|g, d) = 1

t2 − t1 + 1

t2∑
t=t1

ATT (g, t, d|g, d)

which is the average treatment effect experienced by units in group g who experienced dose d
averaged across periods from t1 to t2. Likewise, define

ATE
(t1,t2)(g, d) =

1

t2 − t1 + 1

t2∑
t=t1

ATE(g, t, d)

which is the average treatment effect of dose d among all units in group g averaged across periods
from t1 to t2. An alternative expression for ATT (t1,t2)(g, d|g, d) is given by

ATT
(t1,t2)(g, d|g, d) = E

[
Ȳ (t1,t2)(g, d)− Ȳ (t1,t2)(0)|G = g,D = d

]
which holds by the definition of ATT (g, t, d|g, d) and changing the order of the expectation and
the average over time periods; here, E[Ȳ (t1,t2)(0)|G = g,D = d] is the average outcome that units
in group g that experienced dose d would have experienced if they had not participated in the
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treatment between time periods t1 and t2. Similarly, for ATE(t1,t2)(g, d),

ATE
(t1,t2)(g, d) = E

[
Ȳ (t1,t2)(g, d)− Ȳ (t1,t2)(0)|G = g

]
In addition, define

ACRT
(t1,t2)(g, d|g, d) = ∂ATT (g, l|g, d)

∂l

∣∣∣
l=d

and ACR
(t1,t2)(g, d) =

∂ATE(g, d)

∂d

which are the average causal response to a marginal increase in the dose among units in group g
conditional on having dose experienced dose d (for ACRT (g, d|g, d)) and the average causal response
to a marginal increase in the dose among all units in group g.

The next result connects derivatives of conditional expectations to ACRT and ACR parameters
under parallel trends assumptions.

Lemma G.11. Under Assumptions 1-MP, 2-MP, and 3-MP, and for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 ≤ T
(i.e., t1 and t2 are pre-treatment periods for group g, and t3 and t4 are post-treatment periods for
group g), and for d ∈ D+,

(1) If, in addition, Assumption 4-MP(a) holds, then

∂E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
∂d

= ACRT
(t3,t4)(g, d|g, d) + ∂ATT

(t3,t4)(g, d|g, l)
∂l

∣∣∣
l=d

(2) If, in addition, Assumption 5-MP holds, then

∂E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
∂d

= ACR
(t3,t4)(g, d)

Proof. For part (1), notice that, for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 ≤ T (i.e., for group g, t1 and t2 are
pre-treatment time periods while t3 and t4 are post treatment time periods), we can write

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t3,t4)(0)|G = g,D = d

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g,D = d

]
= ATT

(t3,t4)(g, d|g, d)

− E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g,D = d

]
where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by adding and subtracting E

[
Ȳ (t3,t4)(0)|G = g,D = d

]
, and

the last equality holds by the definition of ATT (t3,t4)(g, d|g, d).
This equation looks very similar to DiD-type equations in simpler cases such as when there

are two periods and two groups. The left hand side is immediately identified. The right hand
side involves a causal effect parameter of interest and an unobserved path of untreated potential
outcomes that would typically be handled using a parallel trends assumption.

In particular, under Assumption 4-MP(a) (though notice that Assumption 4-MP(b) and (c) are
not generally strong enough here),

E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|D = 0

]
which, importantly, does not vary across d or g.
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This suggests that, under Assumption 4-MP(a),

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
= ATT

(t3,t4)(g, d|g, d)− E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|D = 0

]
Taking derivatives of both sides of the previous equation with respect to d implies the result.

For part (2), notice that,

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)|G = g,D = d

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)|G = g

]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t3,t4)(0)|G = g

]
+ E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g

]
= ATE

(t3,t4)(g, d) + E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|D = 0

]
where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by Assumption 5-MP, the third equality holds by adding and
subtracting E[Ȳ (t3,t4)(0)|G = g], and the last equality holds by the definition of ATE(t3,t4)(g, d)
and by Assumption 5-MP. Taking derivatives of both sides implies the result for part (2).

The result in Lemma G.11 says that, under Assumption 4-MP(a), the derivative of the path
of outcomes (averaged over some post-treatment periods) relative to some pre-treatment periods
corresponds to ACRT (g, t, d|g, d) plus the derivative of a selection bias-type term with respect to d
across some post-treatment time periods for units in group g. Similarly, under Assumption 5-MP,
the derivative of the averaged path of outcomes over time in some post-treatment periods relative
to the same average path of outcomes in some pre-treatment periods corresponds to an average of
ACR(g, d) with respect to d across the same post-treatment time periods.

The intuition for this sort of result is very similar to that of Theorem 3.2 in the baseline case
with two time periods.

Lemma G.12. Under Assumptions 1-MP, 2-MP, and 3-MP, and for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 < k
(i.e., t1 and t2 are pre-treatment periods for both groups g and k, group g is treated before group k,
and t3 and t4 are post-treatment periods for group g but pre-treatment periods for group k),

(1) If, in addition, Assumption 4-MP(a) holds, then

dL
E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
dL

= dL
ATT

(t3,t4)(g, dL|g, dL)
dL

(2) If, in addition, Assumption 5-MP holds, then

dL
E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
dL

= dL
ATE

(t3,t4)(g, dL)

dL

Proof. For part (1), notice that

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)|G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t3,t4)(0)|G = g,D = dL

]
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+
{
E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]}
= ATT

(t3,t4)(g, dL)

where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by adding and subtracting E

[
Ȳ (t3,t4)(0)|G = g,D = dL

]
, and

the last equality holds by the definition of ATT (t3,t4)(g, dL) and because the difference between
the two terms involving paths of untreated potential outcomes on the second line of the previous
equality is equal to 0 under Assumption 4-MP(a). Then, the result holds by multiplying and
dividing by dL.

For part (2),

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)|G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)|G = g

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]
= E

[
Ȳ (t3,t4)(g, dL)− Ȳ (t3,t4)(0)|G = g

]
+
{
E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = g

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)|G = k

]}
= ATE

(t3,t4)(g, dL)

where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by Assumption 5-MP, the third equality holds by adding and
subtracting E[Ȳ (t3,t4)(0)|G = g], and the last equality holds by Assumption 5-MP. The result holds
by multiplying and dividing by dL.

Proof of Part (2) of Theorem E.2

Proof. The result holds immediately by using the results of Lemmas G.11 and G.12 in each of the
expressions for δWITHIN (g), δMID,PRE(g, k), δPOST,MID(g, k), and δPOST,PRE(g, k) in part (1) of
Theorem E.2.

Proof of Proposition E.2

Proof. For part (a), using similar arguments as in Lemma G.8 and then under Assumption 5-MP,
it follows that

E
[
Ȳ POST (k) − Ȳ PRE(g)|G = g

]
− E

[
Ȳ POST (k) − Ȳ PRE(g)|D = 0

]
=

∫
D+

P(D ≥ l|G = g)ACR
POST (k)

(g, l) dl + dL
ATE

POST (k)
(g, dL)

dL

and that

E
[
ȲMID(g,k) − Ȳ PRE(g)|G = g

]
− E

[
ȲMID(g,k) − Ȳ PRE(g)|D = 0

]
=

∫
D+

P(D ≥ l|G = g)ACR
MID(g,k)

(g, l) dl + dL
ATE

MID(g,k)
(g, dL)

dL
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Under Assumption 7(a), ACR(g, t, d) and ATE(g, t, dL) do not vary over time which implies that,
for all g ∈ G and k ∈ G with k > g, ACRPOST (k)

(g, l) = ACR
POST (k)

(g, l) for all l ∈ D+ and
ATE

POST (k)
(g, dL) = ATE

MID(g,k)
(g, dL). This implies that E

[
Ȳ POST (k) − Ȳ PRE(g))|G = g

]
=

E
[
ȲMID(g,k) − Ȳ PRE(g))|G = g

]
which implies the result for part (a).

For part (b), notice that, under Assumption 5-MP,

∂π
POST (k),PRE(g)
D (k, l)

∂l
−
∂π

POST (k),PRE(g)
D (g, l)

∂l
= ACR

POST (k)
(k, l)−ACR

POST (k)
(g, l)

= 0

for l ∈ D+ and where the second equality holds by Assumption 7(b) (which implies that, for a
particular time period, ACR(g, t, d) does not vary across groups).

The same sort of arguments imply that

π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL
=
ATE

POST (k)
(k, dL)−ATE

POST (k)
(g, dL)

dL
= 0

Finally, for part (c), under Assumption 7(a), (b), and (c), ACR(g, t, d) does not vary across
groups, time periods, or dose; since this does not vary, we denote it by ACR for the remainder of the
proof. Moreover, from Theorem E.2, we have that

∫
D+

wwithin
1 (g, l) dl = 1,

∫
D+

w1(g, l) dl+w0(g) =

1, and that
∫
D+

wacross
1 (g, k, l) = 1. From the first two parts of the current result, we also have that

the nuisance paths of outcomes in δPOST,MID(g, k) and δPOST,PRE(g, k) are both equal to 0 under
Assumption 7(a) and (b). This implies that, under the conditions for part (c), δWITHIN (g) =
δMID,PRE(g, k) = δPOST,MID(g, k) = δPOST,PRE(g, k) = ACR. Finally, from Proposition E.1, we
have that βtwfe is a weighted average of δMID,PRE(g, k), δPOST,MID(g, k), δPOST,MID(g, k), and
δPOST,PRE(g, k). That these are all equal to each other implies that βtwfe = ACR = ACR∗,mp.

Next, we provide a version of Theorem E.2 extended to the case where Assumption 4-MP(a)
(which is the multi-period version of standard parallel trends that only involves untreated potential
outcomes) holds.

Theorem E.2-Extended. Under Assumptions 1-MP, 2-MP, 3-MP, and 4-MP(a),

δWITHIN (g) =

∫
D+

wwithin
1 (g, l)

(
ACRT

POST (g)
(g, l|g, l) + ∂ATT

POST (g)
(g, l|g, h)

∂h

∣∣∣
h=l

)
dl

δMID,PRE(g, k) =

∫
D+

w1(g, l)

(
ACRT

MID(g,k)
(g, l|g, l) + ∂ATT

MID(g,k)
(g, l|g, h)

∂h

∣∣∣
h=l

)
dl

+ w0(g)
ATT

MID(g,k)
(g, dL|g, dL)

dL

δPOST,MID(g, k) =

∫
D+

w1(k, l)

(
ACRT

POST (k)
(k, l|k, l) + ∂ATT

POST (k)
(k, l|k, h)

∂h

∣∣∣
h=l

)
dl

+ w0(k)
ATT

POST (k)
(k, dL|k, dL)

dL
− w0(k)

(
πPOST (k),PRE(g)(g)− πMID(g,k),PRE(g)(g)

dL

)
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δPOST,PRE(g, k) =

∫
D+

wacross
1 (g, k, l)

(
ACRT

POST (k)
(g, l|g, l) + ∂ATT (g, l|g, h)

∂h

∣∣∣
h=l

)
dl

−

{∫
D+

w̃across
1 (g, k, l)

(
∂π

POST (k),PRE(g)
D (k, l)

∂l
−
∂π

POST (k),PRE(g)
D (g, l)

∂l

)
dl

+ w̃across
0 (g, k)

(
π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL

)}
where the weights are the same as in Theorem E.2 and satisfy the same properties.

Proof. The result holds immediately by plugging in the results of part (1) of Lemmas G.11 and G.12
for δWITHIN (g), δMID,PRE(g, k), δPOST,MID(g, k), and δPOST,PRE(g, k) in part (1) of Theorem E.2.
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